PDF

Keywords

N-Flat
MC2 - ring
WPSI ring
GQ - injective
CAM - ring

Abstract

Let I be a right ideal of a ring R , then R/I is right N-flat module if and only if for each , there exists  and a positive integer n such that  and  .In this paper, we first introduce and characterize rings whose every simple singular right R-module is N - flat. Next, we investigate the strong regularity of rings whose every  simple singular right R - module is N-flat. It is proved that : R is strongly regular ring if and only if R is a wjc , MERT and  2 - primal ring whose simple singular right R- module is N - flat. Let R be  a wjc ring satisfying condition (*). If every simple singular right R-module is  N-flat .Then, the Center of R is a regular ring.  
https://doi.org/10.33899/csmj.2013.163522
  PDF