On The Basis Number Of Semi-Strong Product Of K_2 With Some **Special Graphs** Ghassan T. Marougi

College of Computer Sciences and Mathematics University of Mosul, Iraq

Received on:23/2/2009 Accepted on:24/6/2009

ABSTRACT

The basis number, b(G), of a graph G is defined to be the smallest positive integer k such that G has a k-fold basis for its cycle space. We investigate the basis number of semi-strong product of K_2 with a path, a cycle, a star, a wheel and a complete graph.

Keywords: Basis number, Cycle space.

حول العدد الأساس للجداء شبه المتين لبيان K2 مع بعض البيانات الخاصة غسان طوبيا مروكي كلية علوم الحاسوب والرياضيات، جامعة الموصل

تاريخ القبول: 2009/06/24

تاريخ الاستلام: 2009/02/23

الملخص

k يعرف العدد الاساس، b(G) لبيان G على انه العدد الصحيح الموجب الاصغر بحيث ان G له قاعدة ذات ثنية-k لفضاء داراته .في هذا البحث قمنا بحساب العدد الاساس للجداء شبه المتين لبيان K_2 مع كل من الدرب والدارة والنجمة والعجلة والبيان التام. الكلمات المفتاحية: العدد الأساس، فضياء الدار ات.

1-Introduction.

In recent years, there was a grawing literature on the basis number of graphs. We refer the readers to the papers [1],[2],[3],[4],[5] and [8]. Throughout this paper, we consider only finite, undirected and simple graphs. Our terminology and notations will be standard except as indicated. For undefined terms, see [7] and [11].

Let G be a connected graph, and let e_1, e_2, \dots, e_q be an ordering of the edges. Then any subset S of edges corresponds to a (0,1)-vector (a_1, a_2, \dots, a_q) in the usual way, with $a_i = 1$ if $e_i \in S$ and $a_i = 0$ otherwise, for i = 1, 2, ..., q. These vectors form a q-dimensional vector space, denoted by $(Z_2)^q$ over the field \mathbb{Z}_2 .

The vectors in $(Z_2)^q$ which correspond to the cycles in G generate a subspace called the cycle space of G, and denoted by $\xi(G)$. It is well known that

dim
$$\xi(G) = \gamma(G) = q - p + k$$
,

where p is the number of vertices, k is the number of connected components and $\chi(G)$ is the cyclomatic number of G. A basis for $\xi(G)$ is called h-fold if each edge of G occurs in at most h of the cycles in the basis. The basis

number of G, denoted by b(G), is the smallest positive integer h such that $\xi(G)$ has an h-fold basis, and such a basis is called a <u>required basis</u> of G and denoted by $B_r(G)$. If B is a basis for $\xi(G)$ and e is an edge of G, then the <u>fold of e in B</u>, denoted by $f_B(e)$ is defined to the number of cycles in B containing e. The first important result of the basis number occured in 1937 when MacLane [9] proved that a graph G is planar if and only if $b(G) \le 2$.

Definition: The semi-strong product of two disjoint graphs $G=(V_1,E_1)$ and $H=(V_2,E_2)$ is the graph G^*H with vertex set $V_1 \times V_2$ in which (v_1,v_2) is joined to (u_1,u_2) whenever $[v_1u_1 \in E_1 \text{ and } v_2u_2 \in E_2]$ or $[v_1u_1 \in E_1 \text{ and } v_2=u_2]$. Note that the semi-strong product of graphs is neither associative nor commutative; so G^*H and H^*G are not isomorphic in general. It is clear that

$$\deg_{G^*H}(u,v) = \deg_G(u) \cdot \deg_H(v) + \deg_G(u)$$

where $\deg_G(u)$ is the degree of vertex u in G. Thus the number of edges in G*H is $2q_1q_2+p_2q_1$, where p_i and q_i , i=1,2 are the number of vertices and edges respectively in G and H. Moreover G*H contains as subgraphs V_2 copies of G; for each vertex $v \in V_2$ there is a v-copy G_v of G with vertex $\text{set}\{(x,v):x \in V_I\}$. It is clear that $\bigcup_{v \in V_2} G_v$ is a subgraph [7] of G*H.

The basis number of the complete graphs, complete bipartite graphs and n-cube are determined in [10] and [6]. The basis number of the cartesian product of some graphs is determined in [2].

The purpose of this paper is to determine the basis number of the semistrong product of K_2 with some special graphs. It is proved that

$$b(K_2*P_n) = b(P_n*K_2) = 2; \quad n \ge 3,$$

$$b(K_2*C_n) = \begin{cases} 2, & \text{for even } n \ge 4, \\ 3, & \text{for odd } n \ge 3, \end{cases}$$

$$b(C_n*K_2) = 3, \quad n \ge 4,$$

$$b(K_2*S_n) = b(S_n*K_2) = 2; \quad n \ge 3,$$

$$b(W_n*K_2) = 3, \quad n \ge 4,$$

and

b(
$$K_2 * K_n$$
) = $-\begin{cases} 3, & \text{for n} = 3,4,5 \text{ and } 6 \\ 4, & \text{for n} \ge 7 \end{cases}$

2- The basis number of $K_2 * P_n$ and $P_n * K_2$.

Let the vertex sets of path P_n and the cycle C_n be the addition group Z_n of positive integers residue modulo n. Let the path P_n be 0,1,2...,n-1 and the cycle C_n be 0,1,2,...,(n-1)0.It is clear that if n=2,then K_2*P_2 is the 4-cycle (x,u)(y,u)(x,v)(y,v)(x,u), therefore b(K_2*P_2)=1.

It is not difficult to see that $K_2 *P_n$, $n \ge 3$ can be embedded in a plane[7]. Therefore, b($K_2 *P_n$) = 2, for $n \ge 3$.

Theorem 1. For every positive integers $n \ge 3$, b($K_2 * P_n$)= b($P_n * K_2$)=2.

Proof: One can observe that the graph $K_2 *P_n$, $n \ge 3$ can be embedded in the plane, therefore by MacLanes theorem[9],b($K_2 *P_n$)=2.Similarly,the graph $P_n * K_2$, $n \ge 3$ is planar graph (observe that $P_n * K_2$ is not isomorphic to $K_2 *P_n$),therefore by MacLanes Theorem[9], b($P_n * K_2$) = 2.

3-The basis number of K_2*C_n and C_n*K_2 .

It can be shown that for every even integer $n \ge 4$, the graph $K_{2*}C_n$ is cubic having 2n vertices and can be embedded in a plane, therefore

$$b(K_2*C_n) = 2$$
, for every even $n \ge 4$.

Theorem 2. For every even integer $n \ge 4$, we have $b(K_{2}*C_n) = 2$.

Proof. Since the graph $K_{2}*C_{n}$, $n \ge 4$ is planar, therefore by MacLanes theorem[9], we have $b(K_{2}*C_{n}) = 2$.

Theorem 3. For every odd integer $n \ge 3$, we have $b(K_2 *C_n) = 3$.

Proof. One can easily show that the graph $K_{2}*C_{n}$, for odd

 $n \ge 3$ contains subgraph homeomorphic to $K_{3,3}$. Thus the graph $K_{2}*C_{n}$, is non planar and so by MacLanes theorem [9], $b(K_{2}*C_{n}) \ge 3$. To complete the proof we show a 3-fold basis for $\xi(K_{2}*C_{n})$. Consider the following set of cycles:

$$B(\mathbf{K}_{2}*\mathbf{C}_{n}) = S \bigcup T$$

Where,

$$S = \{(0,j)(1,j+1)(0,j+1)(1,j)(0,j)\}: j=0,1,2,...,n-1 \mod(n)\},$$

and

$$T = \{(0,0)(1,1)(0,2)(1,3)\dots(0,n-1)(1,n-1)(0,0)\}.$$

It is clear that the cycles $S \cup T - \{C\}$, where

 $C = \{(0,n-1)(1,0)(0,0)(1,n-1)(0,n-1)\}$ forms boundaries of planar subgraph F of $K_{2*}C_n$ (see Figure). Therefore

 $S \cup T - \{C\}$ is independent set of cycles. On the other hand the cycle C contains the edge (0,n-1)(1,0) which is not present in any cycle of $S \cup T - \{C\}$. Therefore, $S \cup T$ is independent set of cycles. Since

$$B(K_2*C_n) = n+1=\gamma (K_2*C_n),$$

then $B(K_2*C_n)$ is a basis for $\xi(K_2*C_n)$.

To find the fold of the basis $B(K_2*C_n)$. It is clear that

 $f_S(e) \le 2$, $f_T(e) \le 1$, for each edge $e \in E(K_2 * C_n) - \{C\}$,

 $f_S(e) = 1$, $f_T(e) = 1$, for each edge $e \in \{C\}$,

where

 $C = \{(0,n-1)(1,0)(0,0)(1,n-1)(0,n-1)\}.$

Thus, the fold in $B(K_{2}*C_{n})$ of every edge of $K_{2}*C_{n}$ is not more than 3.

Hence $B(K_2*C_n)$ is a 3-fold basis. This completes the proof of the theorem.

Figure : The planar subgraph F of $K_{2}*C_{5}$

Now, we consider the semi-strong product C_n*K_2 . It is easy to show that C_3*K_2 , is planar graph, therefore $b(C_3*K_2) = 2$.

Theorem 4. For every integers $n \ge 4$, we have $b(C_n * K_2) = 3$.

Proof. One can easily show that the graph $C_{n*}K_2$, $n \ge 4$ contains subgraph homeomorphic to complete bipartite graph $K_{3,3}$ [7]. Thus

 $C_{n*}K_{2}$ is nonplanar and so by MacLanes theorem[9], $b(C_{n*}K_{2}) \geq 3$ for $n \geq 4$. To complete the proof of the theorem we show a 3-fold basis for $\xi(C_{n*}K_{2})$. Consider the set of cycles in $C_{n*}K_{2}$, $B(C_{n*}K_{2})=A \cup D \cup V$

Where

A = {
$$a_i = (i,0)(i+1,1)(i,1)(i+1,0)(i,0): i=0,1,2,...,n-1 \pmod{n}$$
 },

$$D = \{ d_i = (i,0)(i+1,0)(i+2,0)(i+1,1)(i,0) : i=0,1,2,...,n-2 \pmod{n} \},\$$

And

```
V = \begin{cases} (0,0)(1,1)(2,0)(3,1)(4,0)...(n-1,1)(0,0), \\ (0,1)(1,0)(2,1)(3,0)(4,1)...(n-1,0)(0,1): & \text{if n odd} \\ (0,0)(1,1)(2,0)(3,1)...(n-1,0)(0,0), \\ (0,1)(1,0)(2,1)(3,0)...(n-1,1)(0,1): & \text{if n even} \end{cases}
Since
|B(C_n * K_2)| = n + (n-1) + 2
= 2n + 1
= \gamma (C_n * K_2)
```

It is clear that the cycles A,D and V are independent since they are boundaries of planar graph. Also, $A \cup D$ is independent set of cycles since if a_i is any cycle generated from cycles of A, then a_i contains an edge (i+1,1)(i,1) For each $i=0,1,2,...,n-1 \pmod{n}$ which is not present in any cycle of D. Moreover if c_i is any cycle generated from cycles of $A \cup D$, then c_i contains an edge of the form (i,0)(i+1,0) for each i=0,1,2,...,n-2 which is not present in any cycle of V, therefore $A \cup D \cup V$ is independent set of cycles and so it is a basis for $\xi(C_n*K_2)$.

To find the fold of $B(C_n*K_2)$, partition the edge set $E(C_n*K_2)$ into $L \bigcup M \bigcup N$, where

$$\begin{split} L &= \{ \ i,0)(i+1,1), (i,1)(i+1,0) \colon i=0,1,2,\dots, n\text{-}1 (\text{mod } n) \ \}, \\ M &= \{ (0,j)(n\text{-}1,j) \colon j=0,1 \}, \end{split}$$

and

$$N = \{ i,j)(i+1,j): i=0,1,2,...,n-2 \pmod{n} \text{ and } j=0,1 \}.$$

Then one may verify that

$$f_A(e) = 1$$
, $f_D(e) \le 1$, $f_V(e) \le 1$, for each edge $e \in L$; $f_A(e) = 1$, $f_D(e) \le 1$, $f_V(e) \le 1$, for each edge $e \in M$; $f_A(e) = 1$, $f_D(e) \le 2$ $f_V(e) = 0$, for each edge $e \in N$.

Thus the fold in B($C_{n*}K_2$) of every edge of $C_{n*}K_2$ is not more than 3. Hence B($C_{n*}K_2$) is a 3-fold basis for ξ ($C_{n*}K_2$). The proof is complete.

4. The basis number of K_2*S_n and S_n*K_2 .

In this section we consider the semi-strong product of K_2 with a star S_n which is isomorphic to complete bipartite graph $K_{I,n-I}$. Denote the vertex set of the star S_n by 0123...(n-1), where $\deg_{S_n}(0) = n-1$, and all other vertices are of degree 1.Since $S_2 = P_2$, therefore the graph $K_2 * S_2$ is the cycle $\{(0,0)(1,1)(0,1)(1,0)(0,0)\}$, therefore $b(K_2 * S_2) = 1$.

Similarly, $b(S_2*K_2)=1$. On the other hand, for $n \ge 3$, the graph K_2*S_n is planar graph, therefore $b(K_2*S_n)=2$. Similarly, for $n \ge 3$, the graph S_n*K_2 is planar graph, therefore $b(S_n*K_2)=2$.

5. The basis number of $W_{n}*K_{2}$ and $K_{2}*K_{n}$

In this section we consider the semi-strong product of a wheel with K_2 , where W_n is the join of the cycle 123...(n-1)1 with the vertex 0. That is, $W_n = C_{n-1} + K_1$.

Theorem 5. For every integers $n \ge 4$, we have $b(W_n * K_2) = 3$.

Proof. One can easily show that the graph $W_{n*}K_{2}$, $n \ge 4$ contains subgraph homeomorphic to complete bipartite graph $K_{3,3}$. Thus $W_{n*}K_2$ is nonplanar and so by MacLanes theorem[9], $b(W_{n}*K_{2}) \geq 3$. To complete the proof of the theorem we show a 3-fold basis for $\xi(W_n*K_2)$. Consider the set of cycles in $W_{n}*K_{2}$:

$$B(W_n*K_2) = \bigcup_{j=0}^1 B_r(W_n^j) \cup A \cup D \cup E \cup C,$$

Where $B_r(W_n^j)$ is a required basis for a j-copy, W_n^j . That is,

$$B_r(W_n^j) = \{(0,j)(i,j)(i+1,j)(0,j) : i=1,2,...,n-1 \mod(n-1) \text{ and } j=0,1\},$$

$$A = \{(i,0)(i+1,1)(i,1)(i+1,0)(i,0) : i=1,2,...,n-1 \mod(n-1)\},$$

$$D = \{(0,0)(i,1)(0,1)(i,0)(0,0) : i=1,2,...,n-1\},$$

$$E = \{(i,1)(i+1,1)(i+2,0)(i+1,0)(i,1), (i,0)(i+1,0)(i+2,1)(i+1,1)(i,0) : i=0,1,2,...,n-3\},$$

and

$$C = \{(0,0)(1,1)(n-1,1)(0,0)\}.$$

It is clear that

$$|B(W_n * L_m)| = 2(n-1) + (n-1) + (n-1) + 2(n-2) + 1$$

= 6n-7= \gamma(W_n * K_2).

 $= 6n-7 = \gamma (W_n*K_2).$ It is clear that $\bigcup_{i=0}^{1} B_r(W_n^j)$ is a 2-fold required basis of W_n^j . Also,

A,D,E and C are independent set of cycles because they are boundaries of planar subgraph of $W_{n*}K_2$. Moreover, A \bigcup D is independent since it is edgedisjoint cycles. On the other hand, if c_i is any cycle generated from cycles in $A \cup D$, then c_i belong to A or D since $A \cup D$ is edge-disjoint cycles, hence if $c_i \in A$, then cycle c_i contains an edge of the form (i,0)(i+1,1), for each $i=1,2,...,n-1 \mod(n-1)$, which is not present in any cycle of E; if $c_i \in D$, then there is no edge in common with the cycles of E. Therefore, $A \cup D \cup E$ is independent set of cycles. Furthermore if a_i is any cycle generated from cycles in A \bigcup D \bigcup E, then a_i contains an edge of the form (i,0)(i+1,1), (i,1)(i+1,0), (0,0)(i+1,1) or (0,1)(i+1,0) for each

 $\mathbf{i}=0,1,2,\ldots,\mathbf{n}-2$ which is not present in any cycle of $\bigcup_{j=0}^1 B_r(W_n^j)$, therefore $\bigcup_{j=0}^1 B_r(W_n^j)$ $\cup \mathbf{A} \cup \mathbf{D} \cup \mathbf{E}$ is independent set of cycles. To prove that \mathbf{C} is independent of $\bigcup_{j=0}^1 B_r(W_n^j)$ $\cup \mathbf{A} \cup \mathbf{D} \cup \mathbf{E}$. Suppose that \mathbf{C} is a sum modulo 2 of cycles in $\bigcup_{j=0}^1 B_r(W_n^j)$ $\cup \mathbf{A} \cup \mathbf{D} \cup \mathbf{E}$. Then $\mathbf{C} = \sum_{j=1}^m d_j \pmod{2}$, where d_j is a linear combination of cycles in $\bigcup_{j=0}^1 B_r(W_n^j)$ $\cup \mathbf{A} \cup \mathbf{D} \cup \mathbf{E}$. Thus $d_1 = \mathbf{C} \oplus \sum_{j=2}^m d_j \pmod{2}$. Therefore

$$d_1 = C \oplus d_2 \oplus d_3 \oplus ... \oplus d_m \subseteq E(A \bigcup D),$$

where \oplus is the ring sum. But

$$E(A \cup D) = \{(i,0)(i+1,1)\} \cup \{(i,0)(i+1,0)\} \cup \{(0,0)(i,1)\}$$

which is an edge set of a forest. This contradicts the fact that d_1 is a cycle or edge disjoint union cycles. Thus $(\bigcup_{j=0}^{1} B_r(W_n^j) \cup A \cup D \cup E) \cup C$, is a basis for $\xi(W_n * K_2)$.

To find the fold of $B(W_{n*}K_2)$, partition the edge set of $W_{n*}K_2$ into

$$Q_{1} = E(\bigcup_{j=0}^{1} C_{n-1}^{j}), \quad Q_{2} = E(\bigcup_{j=0}^{1} S_{n}^{j}),$$

$$Q_{3} = \{(0,0)(i,1), (0,1)(i,1): i=1,2,...,n-1 \},$$
and

$$Q_4 = \mathbb{E}(\mathbf{W_n} * \mathbf{K_2}) - \{ Q_1 \bigcup Q_2 \bigcup Q_3 \}.$$

Therefore, if $G = \bigcup_{i=0}^{1} B_r(W_n^i)$, then

 $f_G(e) = 1$, $f_A(e) = 1$, $f_D(e) = 0$, $f_{EUC}(e) \le 1$, for each edge $e \in Q_1$,

$$f_G(e) = 1$$
, $f_A(e) = 0$, $f_D(e) = 1$, $f_{EUC}(e) = 0$, for each edge $e \in Q_2$,

$$f_G(e) = 0$$
, $f_A(e) = 0$, $f_D(e) = 1$, $f_{EUC}(e) \le 1$, for each edge $e \in Q3$,

$$f_G(e) = 0$$
, $f_A(e) \le 1$, $f_D(e) = 0$, $f_{EUC}(e) \le 2$, for each edge $e \in Q4$.

Thus $B(W_{n^*}K_2)$ is a 3-fold basis for $\xi(W_{n^*}K_2)$. The proof is complete.

Now, consider the basis number of $K_{2}*K_{n}$.

It is clear that the graph $K_{2*}K_n$ is a complete bipartite graph $K_{n,n}$. Schmeichel [10] proved that $b(K_{m,n}) = 4$ for $m,n \ge 5$ except for the following: $K_{5,r}$ and $K_{6,s}$ where r=5,6,7,8 and s=6,7,8,10. Also, Alsardary and Ali [4] proved that $b(K_{5,r}) = b(K_{6,s}) = 3$ for r=5,6,7,8 and s=6,7,8,10. Therefore the following proposition follows from [4] and [10].

Proposition.
$$b(K_{2}*K_{n}) = \begin{cases} 3, & \text{for } n=3,4,5 \text{ and } 6 \\ 4, & \text{for } n \geq 7. \end{cases}$$

REFERENCES

- [1] Ali, A.A., Marougi, G.T., (1993), The basis number of the lexicographic product of graphs, Ars Combinatoria, 36, 271-282.
- [2] Ali, A.A., Marougi, G.T.,(1992), The basis number of the Cartesian product of some graphs, J. Indian Math.Soc. 58,No.2, 123-134.
- [3] Al-Rhayyel, A.A., Jaradat, M.M,(1996), On the basis number of the direct product of some graphs, Bull. Cal. Math. Soc. 88,No.6, 509-516.
- [4] Alsardary, S.Y. Ali, A.A.,(2003), The basis number of some special non planar graphs, Czechoslovak Math. J., 53,No.2, 225-240.
- [5] Alzoubi, M. Y., Jaradat, M.M., (2005), On the basis number of the composition of different ladders with some graphs, International Journal of Mathematics and Mathematical Sciences, 12, 1861-1868.
- [6] Banks ,J.A. , Schmeichel, E.F.,(1982),The basis number of the *n*-cube, J. Combin. Theory, ser.*B*, 33,No.2, 95-100.
- [7] Harary, F.,(1972), **Graph Theory**, 3rd pr. Reading- Massachusetts, Addison-Wesly.
- [8] Jaradat, M.M.,(2003), On the basis number of the direct product of graphs, Australas J.Combin. 27,293-306.
- [9] MacLane, S.,(1937), A combinatorial condition for planar graphs, Fund. Math. 28,22-32.
- [10] Schmeichel, E.F.,(1981), The basis number of a graph, J. Combin. Theory, Ser. B, 30,No.2, 123-129.
- [11] West,D.B.,(1999) **Introduction to graph theory**, New Delhi. Prentice-Hall of India .