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ABSTRACT

The basis number, b(G) ,of a graph G is defined to be the smallest

positive integer k such that G has a k-fold basis for its cycle space. We

investigate the basis number of semi-strong product of K, with a path, a

cycle, a star, a wheel and a complete graph.
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1-Introduction.

In recent years, there was a grawing literature on the basis number of

graphs. We refer the readers to the papers [1],[2],[3].[4].[5] and [8].
Throughout this paper, we consider only finite, undirected and simple
graphs. Our terminology and notations will be standard except as indicated.
For undefined terms, see [7] and [11].
Let G be a connected graph, and let ey, e>,......, eq be an ordering of the edges.
Then any subset S of edges corresponds to a (0,1)-vector (a1, az,...., aq) in the
usual way, with aj =1 if ej €S and a =0 otherwise, for i=1,2, ...,q. These
vectors form a g-dimensional vector space, denoted by (Z2)% over the field
Z>.

The vectors in (Z2)% which correspond to the cycles in G generate a
subspace called the cycle space of G, and denoted by &(G). It is well known
that

dim §G)= y(G)=q- p+ k,
where p is the number of vertices, k is the number of connected components
and 1{G) is the cyclomatic number of G. A basis for &G) is called h-fold if
each edge of G occurs in at most h of the cycles in the basis. The basis
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number of G, denoted by b(G), is the smallest positive integer h such that
&(G) has an h-fold basis, and such a basis is called a required basis of G and
denoted by Br(G). If B is a basis for £G) and e is an edge of G, then the fold
of e in B, denoted by fg(e) is defined to the number of cycles in B containing
e. The first important result of the basis number occured in 1937 when
MacLane [9] proved that a graph G is planar if and only if b(G)<2.

Definition; The semi-strong product of two disjoint graphs G=(V1,E1)

and H=(V2,E2) is the graph G*H with vertex set Vix V2 in which (viv2) is
joined to (uyu2) whenever [viuieE: and vou,eEz] or [viuieE: and
vo=Uz].Note that the semi-strong product of graphs is neither associative

nor commutative; so G*H and H*G are not isomorphic in general. It is clear
that

deggxy (U, V) = degg (u) . degy, (v) + degg (u)

where deg (u) is the degree of vertex u in G. Thus the number of edges in
G*His 20,q9,+p,q,, where p,and q,,i =1,2 are the number of vertices and

edges respectively in G and H. Moreover G*H contains as subgraphs
V, copies of G; for each vertex ve V, there is a v-copy G, of G with vertex

set{(x,v):xeV1}. Itis clear that UGV is a subgraph [7] of G*H.
vev,

The basis number of the complete graphs, complete bipartite graphs and
n-cube are determined in[10] and [6]. The basis number of the cartesian
product of some graphs is determined in [2].

The purpose of this paper is to determine the basis number of the semi-
strong product of K,with some special graphs. It is proved that

b(K,*Pn) = b(PwK,) =2; n>3,

2, forevennx>4,
b(Kz*Cn)={
3, foroddn>3,

b(Ch+K,) =3, nx>4,
b(K,*Sn) =b(Sn+K,) =2; n>3,
b(Wn<K,) =3, nx4,

and

3, forn=3,45and 6
b(K,+Ky) ={
4. forn>7
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2- The basis number of K,*Pyand Pnr<K,.

Let the vertex sets of path Pn and the cycle C, be the addition group
Zn of positive integers residue modulo n. Let the path P, be 0,1,2...,n-1 and
the cycle Cn be 0,7,2,...,(n-1)0.1t is clear that if n=2,then K, P> is the 4-
cycle (x,u)(y,u)(x,v)(y,v)(x,u), therefore b( K, »P2)=1.
It is not difficult to see that K,~P, , n>3 can be embedded in a
plane[7].Therefore, b( K, «Pn) = 2, for n>3.

Theorem 1. For every positive integers n> 3, b( K, «Pn)= b(Pn+K , )=2.
Proof: One can observe that the graph K, «Pn, n>3 can be embedded in the
plane, therefore by MacLanes theorem[9],b( K, «Pn)=2.Similarly,the graph
Pn=K,, n>3 is planar graph (observe that Pn~K, is not isomorphic to
K, +Pn ),therefore by MacLanes Theorem[9], b(Pn+K,) = 2.

3-The basis number of K>+C, and Cn+Ko> .

It can be shown that for every even integer n>4,the graph K>«Cy is
cubic having 2n vertices and can be embedded in a plane, therefore
b(K2+Cn) = 2,for every even n>4.

Theorem 2. For every even integer n>4,we have b(K>+Cp) = 2.
Proof. Since the graph Kx»C,, n>4 is planar, therefore by MacLanes
theorem[9], we have b(K2+Cp) = 2.

Theorem 3. For every odd integer n>3,we have b( K,+Cn)=3.
Proof. One can easily show that the graph K.+C, for odd
n>3 contains subgraph homeomorphic to Kz 3. Thus the graph K2+Ch, is non
planar and so by MacLanes theorem [9], b(K2+Cn) > 3. To complete the
proof we show a 3-fold basis for & K2+Cn). Consider the following set of
cycles:

B(K2+Cn) =SUT
Where,

S = {(0,))(1,j+1)(0,j+1)(1,j)(0,))}: j=0,1,2,...,n-1 mod(n)},
and

T = {(0,0)(1,1)(0,2)(1,3)...(0,n-1)(1,n-1)(0,0)}.
It is clear that the cycles SU T-{ C},where
C ={(0,n-1)(1,0)(0,0)(1,n-1)(0,n-1)} forms boundaries of planar subgraph F
of Ko«Cn(see Figure).Therefore
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SUT-{ C} is independent set of cycles. On the other hand the cycle C
contains the edge (0,n-1)(1,0) which is not present in any cycle of SUT-{
C}.Therefore, SUT is independent set of cycles. Since
B(K2+Cn) = n+1=y ( K2+Ch),
then B(K2+Cy) is a basis for & Ko+Ch).
To find the fold of the basis B(K2+Cp). It is clear that
fs(e)<2, fr(e)<1, for each edge ec E(K2+Cn)- { C},
fs(e) =1, fr(e) =1, foreachedgeeec { C},
where
C={(0,n-1)(1,0)(0,0)(1,n-1)(0,n-1)}.
Thus, the fold in B(K2+Cp) of every edge of K»+Cy is not more than 3.
Hence B(K2+Cy) is a 3-fold basis. This completes the proof of the theorem.

03) (1.2
Figure : The planar subgraph F of K2«Cs

Now, we consider the semi-strong product Cn«K> .1t is easy to show
that C3+K> , is planar graph ,therefore b(Cz+K>) = 2.

Theorem 4. For every integers n>4 ,we have b(Cn+K>) = 3.

Proof. One can easily show that the graph Cn«K2 , n>4 contains subgraph
homeomorphic to complete bipartite graph Ksz [7].Thus

Cn+K2 is nonplanar and so by MacLanes theorem[9], b(Cn+K2) >3 forn>4 .
To complete the proof of the theorem we show a 3-fold basis for &( Cn+Kb>).
Consider the set of cycles in Cy+K2 , B(CxK2)=AUDUV

Where

A = {a,=(1,0)(i+1,1)(i,1)(i+1,0)(1,0): i=0,1,2,...,n-1(mod n) },

D ={d, = (i,0)(i+1,0)(i+2,0)(i*+1,1)(i,0): i=0,1,2,...,n-2(mod n) },

And
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(0,0)(1,1)(2,0)(3,1)(4,0)...(n-1,1)(0,0),
(0,1)(1,0)(2,1)(3,0)(4,1)...(n-1,0)(0,1): if n odd

(0,0)(1,1)(2,0)(3,1)...(n-1,0)(0,0),
(0,1)(1,0)(2,1)(3,0)...(n-1,1)(0,1): ifneven

Since

IB(C, *K,)| = n+(n-1)+2
=2n+l
= 7 (CnK2)

It is clear that the cycles A,D and V are independent since they are
boundaries of planar graph. Also, AU D is independent set of cycles since if
a, is any cycle generated from cycles of A, then &, contains an edge
(i+1,1)(1,1) For each i=0,1,2,...,n-1(mod n) which is not present in any cycle
of D. Moreover if ¢, is any cycle generated from cycles of AUD, then c,
contains an edge of the form (i,0)(i+1,0) for each i=0,1,2,...,n-2 which is
not present in any cycle of V, therefore AUDUYV is independent set of
cycles and so it is a basis for & Cn+K2).

To find the fold of B(Cn+K2),partition the edge set E(Cn+K2) into
LUMUN, where

L ={1,0)(i+1,1),(1,1)(i+1,0): i=0,1,2,...,n-1(mod n) },
M = {(0,j)(n-1,j):j=0,1},

N = {1i,j)(i+1,j): i=0,1,2,...,n-2(mod n) and j=0,1}.
Then one may verify that

fa(e) =1, fpo(e)<1, fv(e)<1, foreachedgeecl;

fa(e) =1, fo(e)<1, fv(e)<1, foreachedgeeecM;

fa(e) =1, fpo(e)<2 fv(e)=0, foreach edge eeN.
Thus the fold in B(Cr+K>) of every edge of Cy+K> is not more than 3. Hence
B(Cn+K?) is a 3-fold basis for & Cn+K>). The proof is complete.

4. The basis number of K»+S,, and Sn+Ko .

In this section we consider the semi-strong product of K with a star
Sn which is isomorphic to complete bipartite graph Kin-1 .Denote the vertex
set of the star Sn by 0123...(n-1), where deg,(0)=n-1,and all other

vertices are of degree 1.Since S>=P- ,therefore the graph K»«S, is the cycle
{(0,0)(1,1)(0,1)(1,0)(0,0)}therefore b(K2+S2)=1.

Similarly , b(S2*K2)=1. On the other hand, for n>3the graph K»S, is
planar graph ,therefore b(K2+Sp)=2.Similarly, for n>3,the graph Sp=Kz is
planar graph ,therefore b(Sn+K2)=2.

and
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5. The basis number of Wn+K2 and Ko+Kh,

In this section we consider the semi-strong product of a wheel with
K2, where Wh is the join of the cycle 123...(n-1)1 with the vertex 0. That is,
Wn: Cn-1+ K1 .

Theorem 5. For every integers n>4 ,we have b(Wn=K2) = 3.

Proof. One can easily show that the graph Wn«K2 , n>4 contains subgraph
homeomorphic to complete bipartite graph Ks3z .Thus Wn+K> is nonplanar
and so by MacLanes theorem[9], b(Wn+K2) >3. To complete the proof of
the theorem we show a 3-fold basis for & Wh=K>).Consider the set of cycles
in Wn*K2 .

1
B(Wn+Kz) = | JB,W,)) UAUDUEUC,
j=0
Where B, (W,’) is a required basis for a j-copy, W,’ . That is,
B, W,') = {(0,))(,j)(i+1,))(0,j): i=1,2,...,n-1 mod(n-1) and j=0,1},
A = {(1,0)(i+1,1)(1,1)(i+1,0)(i,0): i=1,2,...,n-1 mod(n-1) },
D= {(0,0)(1,l)(O,l)(l,O)(0,0) i:172:-~-=n_1 }a
E ={(i,1)(i+1,1)(i+2,0)(i+1,0)(i,1), (i,0)(i+1,0)(i+2,1)(i+1,1)(i,0):
i=0,1,2,...,n-3 },
and
C= {(0,0)(1,1)(n-1,1)(0,0)}
It is clear that
[BW, *Ly)| = 2(n-1)+(n-1)+(n-1)+2(n-2)+1
= 6n-7= y (Wn=K>).
1
It is clear that | JB, W) is a 2-fold required basis of W,'. Also,
j=0
A,D,E and C are independent set of cycles because they are boundaries of
planar subgraph of Wx«K>. Moreover, AU D is independent since it is edge-

disjoint cycles. On the other hand, if c, is any cycle generated from cycles in
AUD, then ¢, belong to A or D since AUD is edge-disjoint cycles, hence
if ¢, €A, then cycle c, contains an edge of the form (i,0)(i+1,1), for each
i=1,2,...,n-1 mod(n-1) ,which is not present in any cycle of E; if ¢, € D, then
there is no edge in common with the cycles of E. Therefore, AUDUE is
independent set of cycles. Furthermore if a, is any cycle generated from
cycles in AUDUE, then a; contains an edge of the form (i,0)(i+1,1),
(1,1)(i+1,0), (0,0)(i+1,1) or (0,1)(i+1,0) for each
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1
i=0,1,2,...,n-2 which is not present in any cycle ofU B, (W) ,therefore
j=0

1
UBr(\Nnj) UAUDUE is independent set of cycles. To prove that C is

j=0

1
independent of U B,W,)) UAUDUE . Suppose that C is a sum modulo 2 of

j=0

1 m
cycles in UBr(\Nnj) UAUDUE. Then C:Zdj(modZ) ,where d; is a linear

j=0 j=1
1 m
combination of cycles in | JB,w/) UAUDUE . Thus d; =C® > d; (mod
j=0 i=2
2).Therefore
d;=C®d,®d; ®...@d,, cE(Al D),
where @ is the ring sum. But
E(AUD)={(i,0)(i+1,1)} U{(i,0)(i+1,0)} U{(0,0)(i,1)}
which is an edge set of a forest. This contradicts the fact that d, is a cycle or

1
edge disjoint union cycles. Thus (UBr(an) UAUDUE) UC, is a basis for

j=0

& Wn+K2).
To find the fold of B(Wn+K?), partition the edge set of Wn+K> into

1 ) 1 .
Q=e(Jcly) @ =edJsd,
j=0 j=0

Q;= {(0,0)(3,1), (0,1)(1,1): i=1,2,...,n-1 },
and

Q4 = E(WH*KZ)'{ QlUQZUQS }

Therefore, if G= O B, (W), then

j=0
fo(e) = 1, fa(e)=1, fo(e) =0, feuc (e) < 1, for each edge ec Q,,
fo(e) =1, fa(e)=0, fo(e) =1, feuc (e) =0, for each edge ec Q2,
fo(e) =0, fa(e)=0, fo(e) =1, feuc (e) < 1, for each edge e Q3,
fe(e) = 0, fa(e) <1, fp(e) =0, feuc (e) < 2, for each edge ec Q4.
Thus B(Wn=K>) is a 3-fold basis for & Wn+K>). The proof is complete.

Now, consider the basis number of KoxKp, .
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It is clear that the graph Kx+K, is a complete bipartite graph Knn .
Schmeichel [10] proved that b(Kmn ) = 4 for mn>5 except for the
following: Ks, and Kes where r=5,6,7,8 and s=6,7,8,10 . Also, Alsardary

and Ali [4] proved that b(Ksr ) = b(Kes ) = 3 for r=5,6,7,8 and s=6,7,8,10 .
Therefore the following proposition follows from [4] and [10].
3, for n=3,4,5and 6

Proposition. b(K2+Kn)= {
4, for n>7.
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