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Accelerated life testing is a fundamental practice in reliability engineering, making 

the evaluation of component or device performance over extended lifetimes impractical 

to encounter during design. This study delves into the application of the Weibull 

distribution to model lifetime data, showcasing its versatility in real-world scenarios. 

The evaluation includes critical metrics such as Akaike’s information criterion (AIC), 

Bayesian information criterion (BIC), coefficient of determination, and standard error 

for distribution comparison. Utilizing Maximum Likelihood Estimation (MLE) for 

parameter estimation, a simulation study is conducted with varying sample sizes, and 

the R programming language is employed for in-depth analysis. Real data analysis 

involves Weibull using goodness-of-fit criteria. Maximum Likelihood Estimates 

(MLEs) are obtained, and the likelihood ratio test demonstrates the Weibull model's 

superior alignment with the data. The study concludes with the simplicity of producing 

Quick Fit plots for analysis using R software. The presented approach provides a 

comprehensive understanding of reliability characteristics, combining theoretical 

insights with practical applications and numerical analyses. The estimated parameters 

(β=0.973725, 𝜂=14167.5) and statistical measures (K-Smirov, AIC, BIC, Anderson-

Darling, Cramer-von Misses) underscore the thoroughness of the evaluation process. 

The likelihood ratio test further substantiates the Weibull distribution's closer 

alignment with the input data compared to the standard 2-parameter Weibull 

distribution. These findings offer a significant methodology for accelerated life testing 

and model selection, providing essential practical insights into reliability engineering. 
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1. Introduction 
A key component of reliability engineering is accelerated 

life testing. To evaluate the performance of a component or 

device over lifetimes that would be impractical to encounter 

under design conditions at the time of product introduction, it 

is a means to shorten the time to failure. Identification of 

stress factors that can be changed in a controlled manner 

during testing to hasten the degradation of component 

materials is the key to this testing. The study of dependability 

benefits from the modeling of failure times. Therefore, 

probability distributions that link a given value of the 

examined variable with the chance of occurrence must be used 

to statistically model the objects under study [1]. 

Exponential, Gamma, Lognormal, and Weibull 

distributions are those that are most frequently employed to 

represent failure times, according to [2]. Choosing the 
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distribution that most closely matches the failure times 

constitutes the analysis [3]. Software, particularly R, is 

widely utilized for identifying the distributions that best-fit 

failure times, supporting both numerical and analytical 

approaches [4] [5]. Techniques, including graphical methods 

like the probability paper, are employed to establish or 

suggest accurate failure time data models [6]. 

Nonparametric functional regression techniques, such as the 

Kernel Model and KNN Model, offer alternative approaches 

for scalar Y and functional x [7]. Algorithmic applications 

for transforming positive original responses have been 

proposed to produce a family of distributions [8]. 

Proposing a study exploring the application of the 

transmuted Weibull distribution for modeling lifetime data, 

[9] highlights its versatility in real-world scenarios. In this 

study, the emphasize is on demonstrating how the Weibull 

distribution can effectively describe +lifetimes, utilizing 

examples from actual data. The two-parameter Weibull 

distribution is specifically utilized to model datasets, and the 

comparison of distributions involves metrics such as 

Akaike’s information criterion (AIC), Bayesian information 

criterion (BIC), coefficient of determination, and standard 

error. The estimation of distribution parameters is carried 

out using the maximum likelihood method. 

 

2. Methodology 
First, the approach to working with the Weibull 

distribution is presented in this section.   When a random 

variable X has the following probability density function 

(pdf), it is said to have a Weibull distribution with parameters 

𝛽 > 0 and 𝜂 = 1 

 𝑔 (𝑥) =  
𝛽

𝜂
(

𝑥

𝜂
)𝛽−1𝑒

−(
𝑥

𝜂
)

𝛽

,  x > 0      (1)             

The probability density function (PDF) of the Weibull 

distribution is depicted in Fig. 1 for different values of the 

shape parameter (𝛽) while keeping the scale parameter (𝜂) 

fixed at 1 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

The cumulative distribution function (cdf) of the Weibull 

Distribution can be expressed as follows. 

 

𝐺(𝑥) = 1 − 𝑒
−(

𝑥

𝜂
)

𝛽

                                                          (2)                                                 

 

The cumulative distribution function (CDF) of the Weibull 

distribution is illustrated in Fig. 2 for varying values of the 

shape parameter (𝛽), with the scale parameter (𝜂) held 

constant at 1. 

 

 
 

 

Reliability is the complement of the Cumulative 

Distribution Function (CDF), representing the probability 

that failure will not happen until time (t), as given by [10]. 

Reliability of the Weibull distribution is illustrated in Fig. 3 

for varying values of the shape parameter (𝛽), with the scale 

parameter (𝜂) held constant at 1. 

 

 

 

 

 

 

 

 

 

 

 

 

𝑅(𝑡) = 𝑒− (
𝑡

𝜂
)

𝛽

                                       (3) 

where 𝜂 corresponds to the mean time to failure (𝑚𝑡𝑡𝑓) 

specifically when the slope,𝛽 is set to one. The relationship 

between 𝛽 and mttf is established through a gamma function 

of 𝛽, as demonstrated in the subsequent equation [11]:  

Fig. 2. Cumulative distribution function (CDF) of the 

Weibull distribution for different values of 𝛽 and 𝜂 =1. 

 

Fig. 3. Reliability of the Weibull distribution for different 

values of 𝛽 and 𝜂 =1. 

 

Fig. 1. Probability density function (PDF) of the 

Weibull distribution for different values of (𝛽) and 

(𝜂) =1. 
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𝑚𝑡𝑡𝑓 = 𝜂Γ[1 +
1

𝛽
]                                       (4)    

 When 𝛽 = 1.0, mttf = 𝜂 , the Exponential distribution.  

When 𝛽 > 1.0, mttf is less than 𝜂.  

When 𝛽 < 1.0, mttf is greater than 𝜂.  

When 𝛽 =
1

2
 , mttf= 2𝜂 .  

It is essential to differentiate between 𝑚𝑡𝑏𝑓 (Mean Time 

Between Failures) and 𝑚𝑡𝑡𝑓 (Mean Time To Failure), as 

they represent distinct concepts. 𝑚𝑡𝑏𝑓 denotes the average 

time interval between occurrences of failures and is 

computed by dividing the cumulative operational time of 

all units by the total count of observed failures. These two 

parameters possess dissimilar characteristics, although 

they equate when instances of system suspensions are 

absent. However, under scenarios involving suspensions, 

substantial discrepancies may emerge. mtbf finds 

relevance primarily in systems that are capable of being 

repaired. Moreover, the Weibull hazard function, denoted 

as h(t), plays a critical role in depicting the instantaneous 

rate of failures and is mathematically expressed as follows:  

 

ℎ(𝑡) =  
𝑓(𝑡)

𝑅(𝑡)
=

𝛽

𝜂
(

𝑥

𝜂
)𝛽−1𝑒

−(
𝑥
𝜂)

𝛽

𝑒−(
𝑥

𝜂
)

𝛽   

undergoes compensation and simplification, resulting in 

 

ℎ(𝑥) =
𝛽

𝜂
(

𝑥

𝜂
)𝛽−1                                                                (5)                                                              

 

The Weibull hazard function, of the Weibull distribution is 

illustrated in Fig. 4 for varying values of the shape parameter 

(𝛽), with the scale parameter (𝜂) held constant at 1 

 

 
Fig. 4. Weibull hazard function for different values of 𝛽 and 

𝜂 =1. 

 

The mean residual life MRL at a given time x measures the 

expected remaining lifetime of an individual of age x. It is 

given by [12,13]  

𝑚(𝑥) = 𝐸(𝑋 − 𝑥|𝑋 ≥ 𝑥) 

 

=
1

𝑅(𝑥)
∫

∞

0
𝑅(𝑢) 𝑑𝑢 (6) 

 It’s noteworthy that 𝑚(0) represents the mean time to failure. 

The Mean Residual Life (MRL) can be expressed in terms of 

the cumulative hazard rate function as demonstrated by the 

integral equation:  Here is how you can write your equations: 

For the substitution, you can write:  𝑢 =  (
𝑡

η
)𝛽. Then 𝑑𝑢 =

𝛽

η
(

𝑡

η
)𝛽−1𝑑𝑡. 

Since 
𝑡

η
 = 𝑢1 𝛽⁄ , this gives us 𝑑𝑢 =  

𝛽

η
(𝑢1 𝛽⁄ )𝛽−1𝑑𝑡 =

 
𝛽

η
𝑢1−1 𝛽⁄  𝑑𝑡, so that  

𝑑𝑡 =
η

β
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(7)                                      

 Here Γ(η, 𝑥) = ∫
∞

𝑥
𝑒−1𝑧η−1 𝑑𝑧 represents the upper 

incomplete Gamma function. 

 

3. Maximum Likelihood Estimators   
The likelihood function for a sample of n independent and 

identically distributed observations 𝑥1, 𝑥2, … , 𝑥𝑛,  from the 

Weibull distribution is given by[12,13,14]: 

L (η, 𝛽)= ∏𝑛
𝑖=1

𝛽

𝜂
(

𝑥𝑖

𝜂
)𝛽−1𝑒

−(
𝑥𝑖
𝜂

)
𝛽

                                        (8)                                      

To simplify computations, take the natural logarithm of the 

likelihood function: 

ln L (η, 𝛽)= ∑𝑛
𝑖=1 [𝑙𝑛

𝛽

𝜂
+ (𝛽 − 1)𝑙𝑛 (

𝑥𝑖

𝜎
) − (

𝑥𝑖

𝜎
)

𝛽

] 

Differentiate the log-likelihood function for the parameters  𝛽 

and η, and set the derivatives equal to zero to find the values 

that maximize the likelihood. 

Derivative for 𝛽: 

𝜕𝑙

𝜕𝛽
=  ∑

𝑛

𝑖=1

[
1

𝛽
+ 𝑙𝑛 (

𝑥𝑖

𝜎
) − (

𝑥𝑖

𝜎
)

𝛽

𝑙𝑛 (
𝑥𝑖

𝜎
)] = 0 
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Derivative for η: 

𝜕𝑙

𝜕η
=  ∑

𝑛

𝑖=1

[−
𝛽

η2
+ (

𝛽 − 1

η
) − 𝛽 (

𝑥𝑖

𝜎
)

𝛽−1

] = 0 

The MLE is obtained by maximizing this log-likelihood 

function. To simplify the math, the log transformation is 

used. The optimization is performed iteratively by negating 

the log-likelihood function and finding its minimum. 

This iterative optimization is achieved using an optimization 

function in the nlm function in R. 

 

4. Application  

4.1 Simulation Study 

Simulation study, as a method, involves the 

representation or emulation of real-world phenomena using 

specific models. Given the intricacies of complex operations 

encountered in reality, which may be challenging to 

comprehend and analyze directly, models resembling real-

world scenarios become invaluable. Simulation serves as a 

tool to enhance understanding and analysis by providing 

insights into the underlying processes or real-world 

situations. 

In this section, we present a simulation study wherein data is 

generated using the inverse transformation method of the 

cumulative distribution function. 

x = −η(−ln (1 − F(x)))
1
β 

 
The primary objective is to assess the performance of 

estimators, specifically Maximum Likelihood Estimators 

(MLEs). The evaluation is based on the comparison of their 

estimates and Mean Squared Errors (MSEs). The simulation 

tests are carried out with varying sample sizes (n = 25, 50, 75, 

100, 150) for the Weibull distribution. The implementation 

utilizes the R programming language, adjusting values for the 

two parameters (𝜷, 𝜂). The experiment is iterated 1000 times 

for each combination of sample size and shape parameter 

values. Tables 1, 2, and 3 present the estimated parameters 

and MSEs for the estimations of (𝜷, 𝜂) in three distinct cases. 

Case (1) is outlined in Table. 1, Case (2) in Table. 2, and 

Case (3) in Table. 3. 

These simulation results offer practical applications by 

improving device design and guiding maintenance strategies. 

Understanding the performance of MLEs under different 

conditions provides reliability engineers with valuable 

insights, enabling better decision-making in designing 

components that meet or exceed expected lifetimes. 

Maintenance strategies can be optimized based on a deeper 

understanding of failure patterns, enhancing efficiency and 

cost-effectiveness. 

This study's practical significance extends to the engineering 

community, providing a foundation for robust practices in 

accelerated life testing and reliability analysis. The results 

contribute to informed decision-making, fostering 

advancements in device reliability and maintenance 

strategies. 

 

These tables illustrate the Mean Squared Error (MSE), a 

metric that gauges the average squared difference between the 

estimated and true parameter values. Lower MSE values 

signify greater accuracy in parameter estimation. Notably, the 

MSE values exhibit a downward trend with increasing sample 

size, aligning with the expectation that larger sample sizes 

contribute to more precise parameter estimates. Additionally, 

the selection of initial values for β and η appears to influence 

the performance of the estimation methods, as evidenced by 

the corresponding MSE values. The tables include Akaike 

Information Criterion (AIC) and Bayesian Information 

Criterion (BIC) values, likely employed for model selection. 

Lower AIC and BIC values suggest a more favorable fit for 

the model. In essence, these tables offer a comprehensive 

overview of estimation performance across diverse conditions, 

facilitating the evaluation and comparison of different 

estimation methods. 

 

4.2 Real Data  

In this section, we showcase instances where the Weibull 

distribution (Wd) model is juxtaposed with other related 

models. To ensure a balanced comparison, we employ various 

goodness of fit criteria. The R software is used to conduct 

numerical analyses to determine the distribution that best fits 

each data set. The Maximum Likelihood Estimates (MLEs) of 

the parameters of the distributions are displayed in the 

subsequent tables. The models are selected using the Akaike 

Information Criterion (AIC), also known as the Bayesian 

Information Criterion (BIC). The data used in this context is 

purely for illustrative purposes. All crucial numerical 

computations have been executed using the R software. Our 

first dataset pertains to the analysis of gear data, obtained from 

the smithdat folder within the SuperSMITH installation, as 

shown in Table. 4. These data points, representing subjects, 

have been fitted using the Weibull distribution, and the 

estimated parameters are outlined in the table below. It’s 

noteworthy that the subject data have been modeled using both 

the Weibull and the transmuted Weibull distributions. Table. 

5 presents the Maximum Likelihood Estimates (MLEs) and 

maximal log-likelihood values for the Weibull distributions. 

The likelihood ratio test demonstrates that the Weibull 

distribution better fits the input data than the standard 2-

parameter Weibull distribution. 

 

Where  

A = Anderson-Darling statistic. 

W = Cramer-von Misses statistic;  

 

Quick Fit functions have fit characteristics included in the 

function name, and reasonable defaults are used, making it 

straightforward to get a full analysis. Fig. 5 simply 

demonstrates the simplicity of producing a Quick Fit plot. 
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Table 1. MSE of the parameter estimations of estimation at the sample sizes (25,50,100,150) for the initial value set  

(𝛽=1.4, 𝜂 =1). 

     Methods 

 

Sample 

size 

Parameters Estimate 
MSE 

 Value MSE AIC BIC 

wd 
25 

 

𝛽 1.17624 0.050067 
37.1835 39.6213 0.8243463 

𝜂  0.77094 0.05246599 

wd 
50 

 

𝛽 1.392868 5.085831e-05 
80.79324 84.61728 0.7721594 

𝜂  0.9338179 0.004380075 

wd 
100 

 

𝛽 1.428079 0.0007884332 
-155.737 -147.922 0.770635 

𝜂  0.9994493 3.033195e-07 

wd 
150 

 

𝛽 1.417022 0.0002897649 
244.5604 250.5817 0.773764 

𝜂  0.9813339 0.0003484228 

  

Table 2. MSE of the parameter estimations of estimation at the sample sizes (25,50,100,150) For the initial value set 

(𝛽=0.7, 𝜂 =1). 

Methods 

 

Sample 

size 

Parameters Estimate 
MSE 

 Value MSE AIC BIC 

wd 
25 

 

𝛽 0.7417809 0.00174564 
56.86037 59.29812 9.343934 

𝜂  0.9683636 0.001000863 

wd 
50 

 

𝛽 0.6964223 1.279985e-05 
100.5557 104.3798 6.985404 

𝜂  0.872006 0.01638245 

wd 
100 

 

𝛽 0.7140396 0.0001971093 
225.752 230.9624 6.380177 

𝜂  0.9988995 1.211052e-06 

wd 
150 

 

𝛽 0.7020947 4.387814e-06 
352.3819 358.4032 6.27817 

𝜂  1.057965 0.003359905 

  

Table 3. MSE of the parameter estimations of estimation at the sample sizes (25,50,100,150) For the initial value set 

(𝛽=7, 𝜂 =1). 

Methods 

 

Sample 

size 

Parameters Estimate 
MSE 

 Value MSE AIC BIC 

wd 
25 

 

𝛽 5.881204 1.251704 
-13.3299 -10.8921 0.07438244 

𝜂  0.9493018 0.002570306 

wd 
50 

 

𝛽 7.363925 0.1324413 
-48.0245 -44.2004 0.0662862 

𝜂  1.013052 0.0001703603 

wd 
100 

 

𝛽 7.837957 0.70192 
-129.096 -123.885 0.0580619 

𝜂  0.9835058 0.000272057 

Wd 
150 

 

𝛽 7.044783 0.002005491 
-126.376 -120.355 0.0542712 

𝜂  1.001298 1.683608e-06 

 

Table 4. The gear data obtained from the smithdat folder on the SuperSMITH installation. 
4325.816 6089.124 6281.571 7329.370 7586.772 

8361.412 9136.757 9794.200 10939.03 10942.62 

11090.46 11635.25 12160.14 13057.69 14307.81 

 

Table 5. The normality tests of the original and transformed datasets. 

Datasets MLE Std. Dev. 
K-Smirov Statistics 

Stat. p-value AIC BIC W A 

wd 
𝛽 =0.973725 0.138803 0.11596  0.9227 379.47 381.46 0.03914  3.134 

𝜂=14167.5  3467.59 Min(-log(Likelihood)) =-211.479 
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Fig 5. A Probability Plot with Quick Fit. 

 

Fig. 6. Multi-distribution with Weibull two, three parameters, and lognormal.  
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Fig. 6 shows a multi-distribution, and the best distribution is 

the Weibull with a 2-parameter. When comparing the 𝑅2 in 

the three cases Weibull with 2 -parameter= 0.9783 and 

lognormal = 0.9732) it is concluded that the best value is 

transformed Weibull with 2 parameters. 

The precursor computation for establishing bounds on the 

likelihood ratio involves creating a likelihood contour at a 

specified confidence level for a given model. These contours 

represent horizontal sections through the peaked likelihood 

mound centered around the maximum likelihood estimate. 

The contour slices are generated at ratio values determined by 

the following relationship[15]: 

 

 ratio test  =  mle −
𝑞𝑐ℎ𝑖𝑠𝑞(𝐶𝐿, 𝑑𝑒𝒇)

2
 

 

where mle is the maximum log-likelihood estimate, CL is the 

confidence limit, and def represents the degrees of freedom. 

The degrees of freedom are set to 1 when comparing the 

model fit itself and 2 when making comparisons against other 

data. we can show that in Fig. 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The points on a specific confidence level contour are 

used to define confidence interval bounds. Fig. 8 shows how 

the extreme Beta value points form asymptotes for the bouns 

on a 2-parameter mode.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Fisher Matrix bounds including uncertainty in the 

third parameter. The data used for Fig. 6 have been applied to 

form these bounds as bold purple lines in Fig. 9. 

Fig. 7. Comparison of datasets by likelihood contour 

based on a submitted data set with 3 failure points and 

approximately 30,000 right-censored suspensions, values. 

 

Fig. 8. Likelihood ratio bounds formed by confidence 

level contour. 
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5. Conclusion  
In conclusion, this research showcases the Weibull 

distribution's efficacy in accelerated life testing, emphasizing 

its versatility in real-world scenarios. Employing Maximum 

Likelihood Estimation (MLE) and the R programming 

language, a simulation study with varied sample sizes 

demonstrates the Weibull distribution's robustness. Real data 

analysis validates the approach using rigorous criteria like 

AIC and BIC, particularly in gear data modeling. The 

likelihood ratio tests the Weibull model's superior fit. The 

study provides a practical understanding of reliability 

characteristics, blending theoretical insights with numerical 

analyses. Quick Fit plots in R demonstrate the simplicity of 

our proposed approach. Overall, this research contributes 

valuable insights to reliability engineering, offering a 

comprehensive methodology for accelerated life testing and 

model selection concisely and practically. Additionally, the 

research introduces novel insights into likelihood contours, 

confidence intervals, and Fisher Matrix bounds, enriching the 

understanding of uncertainty in parameter estimation. 
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Fig. 9. Unusually formed Fisher Matrix bounds on a 2-parameter model. 
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