Al-Rafidain Journal of Computer Sciences and Mathematics (RJCM)

www.csmj.mosuljournals.com

Semi-h-Open Sets and Semi-h-Continuity in Topological Spaces Barah Mahmood Sulaiman

Department of Mathematics, College of Computer Science and Mathematics, University of Mosul, Iraq Email: barah_mahmood82@uomosul.edu.iq

Article information Abstract

Article history: Received :23/11/2023 Accepted :15/1/2024 Available online: 25/6/2024

In this study, we generalized two known open sets, called: $semi$ -open and h -open sets to find a new type called $semi-h$ -open set. In topological space, we have presented the relationship of several famous open sets to this set. We have also studied the ϵ - θ -open continuity in topological space.

Keywords: semi-open, *h*-open, semi-*h*-open, semi-*h*-continuity.

Correspondence: Author: Barah Mahmood Sulaiman Email:barah_mahmood82@uomosul.ed u.iq

1. Introduction

In [5], Levin gave the term semi-open for the set A , in the topological space (\mathcal{X}, τ) and studied its topological properties; it is a term given to the set if A fulfills the condition $A \subseteq \text{cl}(\text{int}(\mathcal{A}))$. Since then, it has been widely explored in several literary works [4, 6, and 10]. Njastad [9] introduced a set called α -open; if $\mathcal{A} \subseteq \mathcal{X}$ and $\mathcal{A} \subseteq$ $int(cl(int(\mathcal{A})))$, since then, this notion has been studied by many authors see [3, 5 and 8]. The concept of the h -open of the set $\mathcal A$ was introduced by [1]; if $\mathcal{A} \subseteq \mathcal{X}$ and if for every $\mathcal{G} \neq \emptyset$, \mathcal{X} , and $\mathcal{G} \in \tau$ such that $\mathcal{A} \subseteq int(\mathcal{A} \cup \mathcal{G})$. Abdullah and etc. [2], introduced and defined the $h\alpha$ -open set and studied their properties.

2. *Semi-h-Open Sets*

Definition (2.1): For the set $\mathcal{A} \subseteq \mathcal{X}$ in (\mathcal{X}, τ) is semi- \hbar -open, if there exists $\mathcal H$ set which is \hbar - open such that $\mathcal{H} \subseteq \mathcal{A} \subseteq cl(\mathcal{H})$.

Example (2.2): Let $X = \{1,2,3\}$, and $\tau = \{\emptyset, \mathcal{X}, \{2\}, \{1,2\}\}\$ Then $\tau^{\hat{n}} = {\emptyset, \mathcal{X}, \{1\}, \{2\}, \{1, 2\}, \{1, 3\}}$ represent \hat{n} -open

sets $\tau^{sh} = {\emptyset, \mathcal{X}, \{1\}, \{2\}, \{1, 2\}, \{1, 3\}, \{2, 3\}}$ represent semi-h-open sets.

In this example, the $\tau^{\hat{n}} \neq \tau^{s\hat{n}}$ but $\tau^{s\hat{n}}$ isn't equal to the power set of X. Clearly that τ^{sh} of this example isn't T.S. because $\{1,3\} \cap \{2,3\} = \{3\}$ isn't semi- h open set.

Proposition (2.3): A subset A in (\mathcal{X}, τ) is semi- \hbar open if and only if $\mathcal{A} \subseteq \text{cl}(int_{\mathcal{A}}(\mathcal{A}))$.

Proof: Let $\mathcal{A} \subseteq \text{cl}(int_{\mathcal{A}}(\mathcal{A}))$. Then take $\mathcal{H} =$ $int_{\mathcal{A}}(\mathcal{A})$. We have $\mathcal{H} \subseteq \mathcal{A} \subseteq cl(\mathcal{H})$. Conversely, let the set A be an semi- h -open, then there exists *K* which is *h*-open, where $H \subseteq \mathcal{A} \subseteq cl(\mathcal{H})$ we have $\mathcal{H} \subseteq int_{\mathbb{A}}(\mathcal{A})$ therefore $cl(\mathcal{H}) \subseteq$ $cl(int_{\hat{h}}(\mathcal{A}))$, so $\mathcal{A} \subseteq cl(int_{\hat{h}}(\mathcal{A}))$.

Proposition (2.4): Every open set is *semi-h*-open. **Proof:** Let G be an open subset of (\mathcal{X}, τ) , by [1, Theorem 2.1], G is an \hbar -open set. So $\mathcal{G} \subseteq \mathcal{G} \subseteq$ $cl(G).$

Reverse of the aforementioned proposition is false as given in Example (2.2) , $\{1\}$, $\{1,3\}$ and $\{2,3\}$ are semi- h -open sets. But it is not open sets.

Proposition (2.5): for all h -open set in any T.S. is semi-h-open.

Proof: Let \mathcal{H} an $\hat{\theta}$ -open subset of (\mathcal{X}, τ) , since $\mathcal{H} \subseteq \mathcal{H} \subseteq cl(\mathcal{H})$. So \mathcal{H} is semi- h -open.

Reverse of the aforementioned proposition is incorrect as given in Example (2.2) , $\{2,3\}$ is semi- \hbar -open but not \hbar -open.

Theorem (2.6): The union of any family of semi h -open sets is semi- h -open.

Proof: Let's consider a collection $\{\mathcal{A}_i\}_{i\in I}$ of semi- \hbar -open sets, where each \mathcal{A}_i is semi- \hbar -open. For each A_i , there is an h -open set \mathcal{H}_i so that means $\mathcal{H}_i \subseteq \mathcal{A}_i \subseteq cl(\mathcal{H}_i)$. Now, consider the family of $\hat{\theta}$ -open sets $\{\mathcal{H}_i\}_{i\in I}$. Let $\mathcal{H} = \bigcup_{i\in I} \mathcal{H}_i$. \mathcal{H} is $\hat{\theta}$ -open. Since $= \bigcup_{i \in I} A_i$, for any point $z \in \mathcal{U}$, there exists $j \in I$ such that $z \in A_j$. Since A_j is semi- h -open, we have $A_j \subseteq cl(H_j)$, where H_j is *h*-open. Therefore, $z \in cl(\mathcal{H}_i)$, and consequently, $\mathcal{U} \subseteq$ $\bigcup_{i \in \mathcal{N}} cl(\mathcal{H}_i) = cl(\mathcal{H})$. We have shown that $\mathcal{U} =$ i∈I $\bigcup_{i \in \mathcal{I}} \mathcal{A}_i$ is semi- \hbar -open, as there is an \hbar -open set \mathcal{H} i∈I with $\mathcal{H} \subseteq \mathcal{U} \subseteq cl(\mathcal{H})$.

Remark (2.7): The intersection of semi- h -open sets need not be $semi-h$ -open as shown in Example $(2.2) \{1,3\} \cap \{2,3\} = \{3\}$ and $\{3\}$ is not semi- h -open set.

Proposition (2.8): Every semi-open sets are semi- $\n *h*-open.$

Proof: Let S be a semi-open subset in (\mathcal{X}, τ) , then there exist $\mathcal{G} \in \tau$, such that $\mathcal{G} \subseteq \mathcal{S} \subseteq cl(\mathcal{G})$. Since \mathcal{G} is also $\hat{\ell}$ -open set by [1. Theorem 2.1] we get that δ is a semi- \hbar -open set.

Reverse of the aforementioned proposition is incorrect, as in example 2.9.

Example (2.9): Let
$$
X = \{1,2,3,4\}
$$
, and

 $\tau = {\emptyset, \mathcal{X}, \{4\}, \{3,4\}}$ $\tau^s = \{\emptyset, \mathcal{X}, \{3,4\}, \{1,4\}, \{2,3,4\},\$ $\{1,2,4\}, \{2,4\}, \{1,3,4\}, \{4\}\}\$ $\tau^{\hat{n}} = {\emptyset, \mathcal{X}, \{3,4\}, \{1,2,3\}, \{3\}, \{4\}\}\$ $\tau^{sh} = {\emptyset, \mathcal{X}, \{3,4\}, \{1,4\}, \{2,3,4\}},$ {1,2,4},{3},{2,4},{1,2,3},{1,3}, $\{1,3,4\},\{4\}\}\$

We see that the *semi-h*-open sets $\{3\}, \{1,2,3\}, \{1,2\}$ are not *semi*-open.

Theorem (2.10): Let A be a semi- h -open set in $({\mathcal{X}}, \tau)$ if there exists $B \subseteq {\mathcal{X}}$, with ${\mathcal{A}} \subseteq B \subseteq cl({\mathcal{A}})$ we get B is semi- h -open.

Proof: Let $A \subseteq B$ be a subset in (\mathcal{X}, τ) , A is semi- \hbar -open set, then there exists $\mathcal{H} \subseteq \mathcal{X}$, \mathcal{H} is \hbar open set with $\mathcal{H} \subseteq \mathcal{A} \subseteq cl(\mathcal{H})$, now by $\mathcal{H} \subseteq \mathcal{A} \subseteq$ B so $\mathcal{H} \subseteq \mathcal{B}$, also $\mathcal{A} \subseteq cl(\mathcal{H})$ implies $cl(\mathcal{A}) \subseteq$ $cl(cl(H)) = cl(H)$ since $B \subseteq cl(\mathcal{A})$ so $B \subseteq$ $cl(\mathcal{H})$, then $\mathcal{H} \subseteq \mathcal{B} \subseteq cl(\mathcal{H})$, so \mathcal{B} is semi- \hbar open.

Example (2.11): Let $\mathcal{X} = \{1,2,3,4\}$,

 $\tau = {\emptyset, \mathcal{X}, \{2\}, \{2,3,4\}, \{2,3\}, \{1,2,4\}, \{3\}, \{2,4\}}$ $\tau^c = \{\{1,4\},\{1,2,4\},\{3\},\{1\},\emptyset,\{1,3\},\{1,3,4\}\}\$ $\tau^{\hat{n}} = \{\{2\}, \{2,3,4\}, \{2,3\}, \{1,2,4\}, \{3\}, \{2,4\}, \mathcal{X}, \emptyset\}$ $\tau^{sh} = \{\{2\}, \{2,3,4\}, \{2,3\}, \{1,2,4\}, \{1,2\},\$ $\{3\}, \{2,4\}, \emptyset, \mathcal{X}, \{1,2,3\}\}\$ We see that $\{2\}$ is semi-*h*-open set $cl({2}) =$ ${1,2,4}$ and ${2} \subseteq {2,4} \subseteq cl({2})$, ${2} \subseteq {1,2} \subseteq$ $cl({2})$. So ${2,4}, {1,2}$ is semi- h -open.

Proposition (2.12): Every α -open set in (\mathcal{X}, τ) is semi-h-open.

Proof: Let G be an α -open subset in (\mathcal{X}, τ) , so $\mathcal{G} \subseteq$ $int\Big(cl\big(int(\mathcal{G})\big)\Big) \subseteq cl\big(int(\mathcal{G})\big)$ so $int(\mathcal{G}) \subseteq \mathcal{G} \subseteq$ $cl(int(G))$ since $int(G)$ is *h*-open set by Proposition (2.4), so G is semi- h -open.

Reverse of the aforementioned theorem is false, as given in the next example

Example (2.13): Let = {3,2,1}, $\tau = \{\emptyset, \mathcal{X}, \{3\}\}\$ $\tau^{\alpha} = {\emptyset, \mathcal{X}, \{3\}, \{2,3\}, \{1,3\}}$, $\tau^{\hbar} = \{\emptyset, \mathcal{X}, \{3\}, \{1,2\}\}$ $\tau^{sh} = \{\emptyset, \mathcal{X}, \{2,3\}, \{1,2\}, \{3\}, \{1,3\}\}\$ We see that $\{1,2\}$ semi- \hbar -open set but not α -open,

also $\{1,2\}$ is $\hat{\ell}$ -open set but not α -open.

Fig. 1. The relationship of the *semi-h*-open set with some other types of open sets.

The following example show that the converse of all directions isn't true except between α -open and semi-open set.

Example (2.14): Let $X = \{4, 2, 1, 3\}$ and $\tau = {\emptyset, \mathcal{X}, \{4\}, \{1,2,4\}, \{1,4\}, \{2,4\}, \{1,3,4\}}$ $\tau^s = \tau^{\alpha} = \{\emptyset, \mathcal{X}, \{3,4\}, \{2,4\}, \{2,3,4\}, \{1,2,4\},\$ $\{2,4\}, \{1,3,4\}, \{4\}\}$ $\tau^{\hat{n}} = {\emptyset, \mathcal{X}, \{2,4\}, \{1,4\}, \{1,2,4\}, \{1,2\}, \{3\}},$ {1},{1,2,3}, {1,3},{1,3,4},{4}} $\tau^{sh} = {\emptyset, \mathcal{X}, \{3,4\}, \{1,4\}, \{2,3,4\}, \{1,2,4\}},$ {1,2},{3},{2,4},{1}, {1,2,3},{1,3},{1,3,4},{4}}

3. Applications of *Semi-h***-Open Sets**

Definition (3.1): For $A \subseteq \mathcal{X}$ in (\mathcal{X}, τ) . A semi-hlimit point $x \in \mathcal{X}$ of \mathcal{A} is defined by: for every semi-h-open $\mathcal{G} \ni x$; $(\mathcal{G} \cap \mathcal{A}) \setminus \{x\} \neq \emptyset$. The semih-derived set of A is the set containing all of 's semi-h-limit points. $(\mathcal{D}_{sh}(\mathcal{A}))$.

Theorem (3.2): Let (\mathcal{X}, τ_1) and (\mathcal{X}, τ_2) be T.S. such that $\tau_1^{sh} \subseteq \tau_2^{sh}$. $\mathcal{A} \subseteq \mathcal{X}$ and $x \in \mathcal{D}_{sh_2}(\mathcal{A})$, then $x \in \mathcal{D}_{s\hat{\mathcal{H}}_1}(\mathcal{A})$.

Proof: Let $x \in \mathcal{D}_{s\hat{n}_2}(\mathcal{A})$. Then $(\mathcal{G} \cap \mathcal{A}) \setminus \{x\} \neq \emptyset$ for all $\mathcal{G} \in \tau_2^{s\hat{\theta}}$ such that $x \in \mathcal{G}$. But $\tau_1^{s\hat{\theta}} \subseteq \tau_2^{s\hat{\theta}}$, so, in particular, $(\mathcal{G} \cap \mathcal{A}) \setminus \{x\} \neq \emptyset$, $\forall \mathcal{G} \in \tau_1^{s,h}$ s.t. $x \in$ G. Hence, $x \in \mathcal{D}_{sh_1}(\mathcal{A})$.

Reverse of the aforementioned theorem is false, as in example 3.3.

Example (3.3): Let $X = \{3,2,1\}$ with

 $\tau_1 = \{\{1, 2\}, \emptyset, \{3\}, \mathcal{X}\}\$ $\tau_2 = \{ \mathcal{X}, \emptyset, \{3\} \}.$ Then $\tau_1^{sh} = \{\emptyset, \{3\}, \{1, 2\}, \mathcal{X}\}$ and $\tau_2^{s\hbar} = {\emptyset, {\{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \mathcal{X}\}}.$ Hence $\tau_1^{s\hbar} \subseteq$ $\tau_2^{s\hat{\theta}}$. If $\mathcal{A} = \{1,2\}$, $1 \in \mathcal{D}_{s\hat{\theta}_1}(\mathcal{A})$ and $1 \notin$ $\mathcal{D}_{\mathcal{sh}_2}(\mathcal{A}).$

Theorem (3.4): Let $F \subseteq B$ be subsets of (\mathcal{X}, τ) then

(i) $\mathcal{D}_{sh}(F) \subset \mathcal{D}_{sh}(\mathcal{B}).$ (ii) $\mathcal{D}_{sh}(F) \subseteq \mathcal{D}(F)$ (iii) $\mathcal{D}_{\mathcal{S}\hat{\mathcal{H}}}(F) \subseteq \mathcal{D}_{\mathcal{S}}(F)$ (iv) $\mathcal{D}_{s,h}(F) \subseteq \mathcal{D}_{\alpha}(F)$ (v) $\mathcal{D}_{sh}(F \cup B) = \mathcal{D}_{sh}(F) \cup \mathcal{D}_{sh}(B).$ **Proof:** The proof is easy for (i)-(iv). (v) Since $F \subset F \cup \mathcal{B}$ $F \subset F \cup B$ imply $\mathcal{D}_{sh}(F) \subset \mathcal{D}_{sh}(F \cup B)$
 $B \subset F \cup B$ imply $\mathcal{D}_{sh}(B) \subset \mathcal{D}_{sh}(F \cup B)$ $\mathcal{D}_{sh}(\mathcal{B}) \subset \mathcal{D}_{sh}(F \cup \mathcal{B})$ Hence, $\mathcal{D}_{\mathcal{S}\hat{\mathcal{P}}}(F) \cup \mathcal{D}_{\mathcal{S}\hat{\mathcal{P}}}(F) \subset \mathcal{D}_{\mathcal{S}\hat{\mathcal{P}}}(F \cup \mathcal{B})$... (1) Now, Let $x \in \mathcal{D}_{sh}(F \cup \mathcal{B})$. This means that for every semi- h -open set G containing x, $G \cap (F \cup B) \setminus$ ${x} \neq \emptyset$. This leads to that $(\mathcal{G} \cap F) \cup (\mathcal{G} \cap \mathcal{B}) \setminus \{x\} \neq \emptyset$ ∅. Now, consider two cases:

a. If $(G \cap F) \setminus \{x\} \neq \emptyset$, then $x \in \mathcal{D}_{\mathcal{A}h}(F)$. *b*. If $(G \cap B) \setminus \{x\} \neq \emptyset$, then $x \in \mathcal{D}_{s,h}(\mathcal{B})$. In either case, x belongs to $\mathcal{D}_{sh}(F)$ or $\mathcal{D}_{sh}(\mathcal{B})$, so $x \in \mathcal{D}_{\mathcal{S}\hat{\mathcal{B}}}(F) \cup \mathcal{D}_{\mathcal{S}\hat{\mathcal{B}}}(B)$. Hence $\mathcal{D}_{\delta h}(F \cup \mathcal{B}) \subset \mathcal{D}_{\delta h}(F) \cup \mathcal{D}_{\delta h}(\mathcal{B})$...(2). From (1) and (2), we have $\mathcal{D}_{\delta h}(F \cup B) = \mathcal{D}_{\delta h}(F) \cup \mathcal{D}_{\delta h}(B)$

Definition (3.5): Let $W \subseteq \mathcal{X}$ in (\mathcal{X}, τ) . We say that W is semi- h -closed if $\mathcal{D}_{sh}(W) \subset W$.

Example (3.6): Let $X = \{1,2,3\}$ and $\tau = {\emptyset, \mathcal{X}, \{2\}, \{2,3\}, \{3\}, \{1,3\}}$. Then $\tau^{sh} = {\emptyset, {\{3\}, {\{2,3\}, \mathcal{X}, {\{1,3\}, {\{2\}}\}}}$ If $\mathcal{E} = \{1,3\} \subset \mathcal{X}$, then $\mathcal{D}_{\mathcal{S}\hat{\mathcal{P}}}(\mathcal{E}) = \{1\} \subseteq \mathcal{E}$. Hence, $\mathcal E$ is semi- \hbar -closed sets.

Corollary (3.7): A subset $\mathcal{E} \subset (\mathcal{X}, \tau)$ is semi- \hbar closed if and only if \mathcal{E}^c is semi- \hbar -open.

Proof: Suppose that $\mathcal E$ is semi- \hbar -closed. Let $\chi \in$ \mathcal{E}^c that is $x \notin \mathcal{E}$, but \mathcal{E} is semi- \hbar -closed, then there exists semi- h -open \mathcal{G}_x ; $x \in \mathcal{G}_x \subset \mathcal{E}^c$, implies that for all $x \in \mathcal{E}^c$, there exists semi- h -open \mathcal{G}_x ; $x \in$ $\mathcal{G}_x \subset \mathcal{E}^c$. Hence $\mathcal{E}^c = \bigcup_{x \in \mathcal{E}^c} \{\mathcal{G}_x : x \in \mathcal{G}_x\}$ semi-hopen. Hence \mathcal{E}^c is semi- h -open

Conversely, Assume that \mathcal{E}^c is semi- \hbar -open. We need to explain that $\mathcal E$ is semi- \hbar -closed

for $x \in \mathcal{D}_{\leq n}(\mathcal{E})$ with $x \notin \mathcal{E}$, so $x \in \mathcal{D}_{\leq n}(\mathcal{E})$, $x \in$ \mathcal{E}^c . But \mathcal{E}^c is semi- \hbar -open and $\mathcal{E} \cap \mathcal{E}^c = \emptyset$. This implies that for some semi-h-open $\mathcal{G} = \mathcal{E}^c \ni$ $x; (\mathcal{E} \cap \mathcal{E}^c) - \{x\} = \emptyset$. Hence $x \notin \mathcal{D}_{sh}(\mathcal{E})$, a contradiction. So for every $x \in \mathcal{D}_{sh}(\mathcal{E}), x \in \mathcal{E}$

This imply that $\mathcal{D}_{\delta h}(\mathcal{E}) \subset \mathcal{E}$ by Def.(3.5) \mathcal{E} is semi-h-closed.

Definition (3.8): Let $\mathcal{E} \subseteq \mathcal{X}$ in (\mathcal{X}, τ) , we define the semi- h -closure of $\mathcal E$, denoted by $cl_{sh}(\mathcal E)$ as: $cl_{sh}(\mathcal{E}) = \bigcap \{\mathcal{F} : \mathcal{F} \text{ is semi-}\mathit{h}\text{-closed and }\mathcal{E} \subseteq \mathcal{F}\}.$

Remark (3.9):

- (1) Since $\mathcal{E} \subset \mathcal{F}$, for every semi- $\mathcal{h}\text{-closed }\mathcal{F}$ containing $\mathcal E$. Thus, $cl_{\mathcal A}(E)$ is the smallest closed set containing \mathcal{E} .
- (2) If $\mathcal E$ is itself closed, then $cl_{sh}(\mathcal E) = \mathcal E$.

Theorem (3.10): Let $W \subseteq \mathcal{X}$ in (\mathcal{X}, τ) . Then $cl_{sh}(W) = W \cup \mathcal{D}_{sh}(\mathcal{E})$

Proof: We have $W \subset cl_{sh}(W)$ and $\mathcal{D}_{sh}(W) \subset$ $cl_{sh}(W)$ implies that $\bigcup_{sh}(W) \subset cl_{sh}(W)$..(1)

Now, Let $x \in cl_{sh}(W)$. There are two cases: If $x \in$ W, so $x \in cl_{sh}(W)$, since $W \subseteq cl_{sh}(W)$. Otherwise if x not in $\mathcal E$, then x is a limit point of W (because $cl_{sh}(W)$ includes all limit points of W). Hence, $x \in \mathcal{D}_{sh}(W)$, and $x \in W \cup \mathcal{D}_{sh}(W)$. This proves $cl_{sh}(W) \subseteq W \cup \mathcal{D}_{sh}(W) \dots (2)$. From (1) and (2) we get $cl_{sh}(W) = W \cup \mathcal{D}_{sh}(W)$.

Proposition (3.11): Let $\mathcal{A} \subseteq \mathcal{B}$ be sets in (\mathcal{X}, τ) , then

(i) $\mathcal{A} \subset cl_{\mathfrak{sh}}(\mathcal{A}).$ (ii) $cl_{sh}(\mathcal{A}) \subset cl_{sh}(\mathcal{B})$. (iii) $cl_{sh}(A \cup B) = cl_{sh}(A) \cup cl_{sh}(B)$. (iv) $cl_{sh}(\mathcal{A}) \subseteq cl(\mathcal{A})$ (v) $cl_{sh}(\mathcal{A}) \subseteq cl_s(\mathcal{A})$ (vi) $cl_{sh}(A) \subseteq cl_h(A)$ $(vii)cl_{sh}(A) \subseteq cl_{\alpha}(A)$ **Proof: (i)-(ii)** The proofs are easy.

(iv) Let A be a semi- h -open set and let $x \in$ $cl_{sh}(\mathcal{A})$. By the definition of semi- h -closure, x is in every semi- \hbar -closed set containing \mathcal{A} . Now, let consider the closure set $cl(A)$. By definition of $cl(A)$ and since every semi- h -closed set is also closed, it follow that $cl_{sh}(\mathcal{A})$ is a closed set containing A, so x is also in $cl(A)$. Thus, we have shown that $cl_{sh}(\mathcal{A}) \subseteq cl(\mathcal{A})$, as desired. **(v)-(vii)** By similar to the above way.

The converse of (iv)-(vii) in the Reverse of the aforementioned proposition is not valid as in next example

Example (3.12): Let $X = \{1, 2, 3\}$ and $\tau = {\emptyset, \mathcal{X}, \{2\}, \{1,2\}}$ $\tau^s = \tau^{\alpha} = {\emptyset, \mathcal{X}, \{2\}, \{2,3\}, \{1,2\}\}$ $\tau^{\hbar} = {\emptyset, \mathcal{X}, \{1,2\}, \{2\}, \{1\}, \{1,3\}}$ $\tau^{sh} = {\emptyset, \mathcal{X}, \{1,3\}, \{1,2\}, \{2,3\}, \{2\}, \{1\}}$

Let $A = \{2,3\}$, then $cl(\mathcal{A}) = cl_{\mathcal{S}}(\mathcal{A}) = cl_{\alpha}(\mathcal{A}) =$ \mathcal{X} and $cl_{sh}(\mathcal{A}) = \{2,3\}$. Clearly $cl(\mathcal{A}) =$ $cl_{\delta}(\mathcal{A}) = cl_{\hat{\mathcal{H}}}(\mathcal{A}) \nsubseteq cl_{\delta}(\mathcal{A}).$ Also let $\mathcal{B} =$ {1}, then $cl_{\hat{A}}(\mathcal{B}) = \{1,3\}$ and $cl_{\hat{S}\hat{A}}(\mathcal{B}) = \{1\}.$ Clearly $cl_{\hat{A}}(\mathcal{B}) \nsubseteq cl_{\hat{S}\hat{B}}(\mathcal{B}).$

Definition (3.13): Let $\mathcal{E} \subseteq \mathcal{X}$ in (\mathcal{X}, τ) , we define the semi- h -interior of a set $\mathcal E$, denoted by $int_{s\hbar}(\mathcal E)$ as int_{sh} $(\mathcal{E}) = \bigcup \{\mathcal{G} : \mathcal{G} \text{ is semi-}n\text{-open and } \mathcal{G} \subseteq \mathcal{E}\}.$

Proposition (3.14): Let $\mathcal{A} \subseteq \mathcal{X}$ in (\mathcal{X}, τ) , then

- (i) $int_{\delta h}(\mathcal{A})$ is the largest semi- h -open set in \mathcal{A} (ii) $int_{s\hbar}(\mathcal{A}) \subset \mathcal{A}$ (iii) $int(\mathcal{A}) \subseteq int_{\mathcal{A}}(\mathcal{A})$
- $(iv) int_s(\mathcal{A}) \subseteq int_{sh}(\mathcal{A})$
- (v) $int_{\mathcal{A}}(\mathcal{A}) \subseteq int_{\mathcal{A}}(\mathcal{A})$
- (vi) $int_{\alpha}(\mathcal{A}) \subseteq int_{sh}(\mathcal{A})$

Proof: By definition (3.13) we get the proofs of (i) and (ii).

(iii) Let A be a semi- h -open set and let $x \in$ $int(\mathcal{A})$, meaning there exists an open set U such that $x \in U \subseteq A$. Now, consider the semi- h -interior set $int_{\delta h}(\mathcal{A})$, which is the union of for all semi- h open sets in $\mathcal A$. Since $\mathcal U$ is an open set containing x , it is also an *semi-h*-open set. Therefore, \mathcal{U} is one of the *semi-h*-open sets contained in \mathcal{A} , and $x \in$ $int_{\mathcal{A}}(\mathcal{A})$. Since x was an arbitrary point in $int(\mathcal{A})$. Thus, we have proved that $int(\mathcal{A}) \subseteq$ $int_{sh}(A)$.

(iv)-(vi) By similar to the above way.

Reverse of the Proposition (3.14) (ii)-(vi) need not be valid as in Example 3.12, Let $\mathcal{A} = \{2,3\}$, then $int(\mathcal{A}) = int_{\mathcal{A}}(\mathcal{A}) = \{2\}$ and $int_{\mathcal{A}}(\mathcal{A}) = \{2,3\}.$ Clearly, $int_{\mathcal{A}}(\mathcal{A}) \nsubseteq int(\mathcal{A}) = int_{\mathcal{A}}(\mathcal{A})$. Also let $B = \{1,3\}$, then $(B) = int_s(B) = \emptyset$ and $int_{\mathbb{R}}(B) = \{1,3\}.$ Clearly, $int_{\mathbb{R}}(A) \nsubseteq$ $int_{\alpha}(\mathcal{B}) = int_{s}(\mathcal{B}).$

Theorem (3.15): Let $\mathcal{A} \subseteq \mathcal{B}$ be sets in (\mathcal{X}, τ) . Then

(i) $int_{s,h}(\mathcal{A}) \subset int_{s,h}(\mathcal{B})$ (ii) $int_{s\hbar} (int_{s\hbar} (A)) = int_{s\hbar} (A)$ **Proof:** The proofs are easy.

4. Semi-h-Continuous Functions and Semi-h-Homeomorphism

Definition (4.1): For $S: (\mathcal{X}, \tau) \to (\mathcal{Y}, \sigma)$ is a function, if $S^{-1}(\mathcal{G}) \in \tau^{s\hat{\theta}}$ for every $\mathcal{G} \in \sigma$, then \mathcal{S} is called a $\text{semi-}\hbar$ -continuous function.

Example (4.2): Let $X = \{3,2,1\} = \mathcal{Y}$, and $\tau = {\emptyset, \mathcal{X}, \{1\}, \{3\}, \{1,2\}, \{1,3\}\},\$ $\tau^{sh} = {\emptyset, \mathcal{X}, \{1\}, \{3\}, \{1,2\}, \{1,3\}}$ and $\sigma = {\emptyset, \mathcal{Y}, \{1, 3\}}$. Clearly, if $\mathcal{S}: (\mathcal{X}, \tau) \to (\mathcal{Y}, \sigma)$ is the identity function, then S is a semi- \hbar continuous.

Theorem (4.3): Any continuous function is semi- $\n *h*-continuous.$

Proof. Let a continuous function be $S: (\mathcal{X}, \tau) \to$ $(1, \sigma)$ and $\zeta \in \sigma$. Since, *S* is continuous, then $S^{-1}(G) \in \tau$. By Proposition (2.4) every open set is semi- h -open, therefore $S^{-1}(G)$ is semi- h -open set in X . So, S is semi- h -continuous.

Reverse of the aforementioned theorem is not valid as seen in example 4.4.

Example (4.4): Let $\mathcal{X} = \{c, \mathcal{b}, \mathcal{a}\}$ and $\mathcal{Y} = \{1,2,3\}, \tau = \{\{\mathcal{b}\}, \mathcal{X}, \emptyset\},\$ $\tau^{sh} = \{\{a, c\}, \{\emptyset\}, \{\emptyset, c\}, \mathcal{X}\},\$ $\sigma = {\emptyset, \{1\}, \mathcal{Y}, \{1,2\}}.$ The function $S: (\mathcal{X}, \tau) \to (\mathcal{Y}, \sigma)$ define as $S(a)$ = $2, \mathcal{S}(\mathcal{B}) = 1, \mathcal{S}(\mathcal{C}) = 3$. *S* is semi-*h*-continuous, but δ isn't continuous.

Theorem (4.5): Every \hat{n} -continuous function is semi-h-continuous.

Proof. The proof is easy.

Reverse of the aforementioned theorem is not valid as seen in example 4.6.

Example (4.6): Let $\mathcal{X} = \{c, \mathcal{b}, \mathcal{a}\}$ and $\mathcal{Y} = \{1,2,3\}, \tau = \{\mathcal{X}, \emptyset, \{\emptyset\}\},\$

 $\tau^{\hat{n}} = {\{\{\hat{\sigma}\}, \{\alpha, c\}, \emptyset, \mathcal{X}\}}$ and $\tau^{sh} = \{\{a, c\}, \{a, b\}, \{b\}, \mathcal{X}, \emptyset, \{b, c\}\},\$ $\sigma = {\emptyset, \mathcal{Y}, \{1\}, \{1,2\}\}.$ We define a function $S: (\mathcal{X}, \tau) \rightarrow (\mathcal{Y}, \sigma)$ as $S(a) = 2, S(b) = 1, S(c) =$ 3. S is semi- h -continuous, but δ isn't h continuous.

Theorem (4.7): Every *semi*-continuous function is semi-h-continuous.

Proof. The proof is easy.

Reverse of the aforementioned theorem need not be valid as given in example 4.8.

Example (4.8): Let $\mathcal{X} = \{c, \phi, a\}$ and $\mathcal{Y} = \{1,2,3\}, \tau = \{\{a,c\}, \mathcal{X}, \emptyset\},\$ $\tau^s = \{\{a, c\}, \mathcal{X}, \emptyset, \}$ and $\tau^{sh} = \{ \{a, \vartheta\}, \emptyset, \chi, \{\vartheta\}, \{\vartheta, c\}, \{a\}, \{c\}, \{a, c\} \},$ $\sigma = {\emptyset, \mathcal{Y}, \{1\}, \{1,2\}\}.$ We define a function $S: (\mathcal{X}, \tau) \rightarrow (\mathcal{Y}, \sigma)$ as $S(a) = 1, S(b) = 2, S(c) =$ 3. S is semi- h -continuous, but S isn't semicontinuous.

Theorem (4.9): Every α -continuous function is semi-h-continuous.

Proof. The proof is easy.

Reverse of the aforementioned theorem not valid as in example 4.10.

Example (4.10): Let $\mathcal{X} = \{c, \mathcal{b}, a\}$ and $\mathcal{Y} = \{1,2,3\}, \tau = \{\mathcal{X}, \{\mathcal{b}, c\}, \emptyset\}$ $\tau^{\alpha} = {\emptyset, \mathcal{X}, {\emptyset, c}}$ and $\tau^{sh} = \{\{\mathcal{b}\}, \{a\}, \emptyset, \{a, c\}, \{c\}, \{a, \mathcal{b}\}\}$, $\mathcal{X}, {\{\vartheta, c\}},$ $\sigma = {\emptyset, \mathcal{Y}, \{1\}, \{1,2\}\}.$ We define a function $S: (\mathcal{X}, \tau) \rightarrow (\mathcal{Y}, \sigma)$ as $S(a) = 1, S(b) = 2, s(c) =$

3. *S* is *semi-h*-continuous, but $S \sin^2 t \alpha$ continuous.

Theorem (4.11): If $g: (\mathcal{X}, \tau) \to (\mathcal{Y}, \sigma)$ is semi-hcontinuous and $S: (\mathcal{Y}, \sigma) \to (\mathcal{Z}, \vartheta)$ is continuous, then $S \circ q: (\mathcal{X}, \tau) \to (\mathcal{Z}, \vartheta)$ is semi- \hbar -continuous.

Proof: For $g: (\mathcal{X}, \tau) \to (\mathcal{Y}, \sigma)$ is semi-hcontinuous and $f: (y, \sigma) \to (z, \vartheta)$ be continuous. Let $\mathcal{G} \in \vartheta$. Since, \mathcal{S} is continuous, then $\mathcal{S}^{-1}(\mathcal{G}) \in \sigma$. Since, g is $\text{semi-}\hbar$ -continuous, so $g^{-1}((\mathcal{S}^{-1}(\mathcal{G})) = (\mathcal{S} \circ g)^{-1}(\mathcal{G})$ is semi- h -open set in X. We get, $S \circ q: (\mathcal{X}, \tau) \to (\mathcal{Z}, \vartheta)$ is semi- h continuous.

Definition (4.12): Let $S: (\mathcal{X}, \tau) \to (\mathcal{Y}, \sigma)$ be mapping if $S(G) \in \sigma^{sh}$ for every $G \in \tau$, then S is called $semi-A$ -open function.

Example (4.13): Let $S: (\mathcal{X}, \tau) \to (\mathcal{Y}, \sigma)$ be an identity function, where $\mathcal{X} = \mathcal{Y} = \{1, 2, 3\}$, and $\tau = {\emptyset, \mathcal{X}, \{2, 3\}}, \sigma = {\emptyset, \mathcal{Y}, \{1\}},$ $\sigma^{sh} = \{\emptyset, \mathcal{Y}, \{1\}, \{1,2\}, \{1,3\}, \{2,3\}\}.$ Clearly, the function δ is semi- \hbar -open.

Theorem (4.14): Any open function is also semi h -open.

Proof. The proof is clear.

Example (4.15): In Example (4.13), the identity function $S: (\mathcal{X}, \tau) \to (\mathcal{Y}, \sigma)$ is semi- $\hat{\theta}$ -open but not open.

Theorem (4.16): Every h -open function is semi- \hbar -open.

Proof. The proof is easy.

Reverse of the aforementioned theorem is not valid, as seen in the example 4.17.

Example (4.17): Let $S: (\mathcal{X}, \tau) \to (\mathcal{Y}, \sigma)$ be the identity function, where $\mathcal{X} = \{3, 2, 1\} = \mathcal{Y}$, and $\tau = {\emptyset, \mathcal{X}, \{1,3\}\}, \sigma = {\emptyset, \mathcal{Y}, \{1\}\},\$ $\sigma^{sh} = \{\emptyset, \mathcal{Y}, \{1\}, \{1,2\}, \{1,3\}, \{2,3\}\},\$ $\sigma^{\hbar} = \{\emptyset, \mathcal{Y}, \{1\}, \{2,3\}\}.$ Clearly, S is semi- h -open but not h -open.

Theorem (4.18): Every *semi*-open function is also semi-h-open.

Proof. The proof is easy.

Reverse of the aforementioned theorem need not be valid as in example 4.19.

Example (4.19): Let $S: (\mathcal{X}, \tau) \to (\mathcal{Y}, \sigma)$ be the identity function, where $\mathcal{X} = \mathcal{Y} = \{1, 2, 3\}$, and $\tau = {\emptyset, \mathcal{X}, \{2, 3\}}, \sigma = {\emptyset, \mathcal{Y}, \{1\}},$ $\sigma^{sh} = \{\emptyset, \mathcal{Y}, \{1\}, \{1,2\}, \{1,3\}, \{2,3\}\},\$ $\sigma^s = \{\emptyset, \mathcal{Y}, \{1\}, \{1,2\}, \{1,3\}\}.$

Clearly, the function δ is semi- \hbar -open but not semi-open.

Theorem (4.20): Every α -open function is semi h -open.

Proof. The proof is easy.

Reverse of the aforementioned theorem is incorrect as in example 4.21.

Example (4.21): Let $S: (\mathcal{X}, \tau) \to (\mathcal{Y}, \sigma)$ be an identity function, where $\mathcal{X} = \{3, 2, 1\} = \mathcal{Y}$, $\tau = {\emptyset, \mathcal{X}, \{2, 3\}}, \sigma = {\emptyset, \mathcal{Y}, \{1\}},$ $\sigma^{sh} = \{\emptyset, \mathcal{Y}, \{1\}, \{1,2\}, \{1,3\}, \{2,3\}\}\$ and $\sigma^{\alpha} = \{\emptyset, \mathcal{Y}, \{1\}, \{1,2\}, \{1,3\}\}.$ Clearly, the function S is semi- h -open however, it is not. α -open.

Theorem (4.22): If $S: (\mathcal{X}, \tau) \to (\mathcal{Y}, \sigma)$ is open and $g: (y, \sigma) \rightarrow (z, \vartheta)$ is semi- \hbar -open, then $g \circ$ $S: (\mathcal{X}, \tau) \rightarrow (\mathcal{Z}, \vartheta)$ is semi- \hbar -open. **Proof.** Clear

Definition (4.23): Let bijective function $S: (\mathcal{X}, \tau) \to (\mathcal{Y}, \sigma)$ A function S is considered a semi-h-homeomorphism when it is both semi-hcontinuous and semi-h-open.

Theorem (4.24): For $S: (\mathcal{X}, \tau) \to (\mathcal{Y}, \sigma)$ is homeomorphism, we get δ is semi- \hbar homeomorphism.

Proof: By Theorem (4.3), we get that every continuous mapping is semi-h-continuous. Furthermore, it can be deduced from Theorem (4.14) that every open mapping is also semi-h-open. Also, S is bijective then, S is semi- h homeomorphism.

The converse of the above theorem is incorrect as in example (4.25).

Example (4.25): Let $S: (\mathcal{X}, \tau) \to (\mathcal{Y}, \sigma)$ be the identity function, with $\mathcal{X} = \{1, 2, 3\} = \mathcal{Y}$, for $\tau = {\mathcal{X}}, \emptyset, \{1, 3\}, \tau^{sh} = {\emptyset}, \mathcal{X}, \{1\}, \{2\}, \{3\}, \{1, 2\},$ $\{1, 3\}, \{2, 3\}, \sigma = \{\emptyset, \mathcal{Y}, \{2, 3\}\}\$ and $\sigma^{sh} = {\emptyset, \mathcal{Y}, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}}.$ Clearly, S is semi- h -homeomorphism, but it isn't homeomorphism.

References

- [1] F.H. Abbas, "On \hbar -open sets and \hbar -continuous functions", *Boletim da Sociedade Paranaense de Matemática*, 2021, 41, 1-9.
- [2] B.S. Abdullah, S.W. Askandar & R.N. Balo, " $h\alpha$ -Open Sets in Topological Spaces", *Journal of Education and Science*, 2022, 31(9), 91-98.
- [3] D. Andrijević, "Some properties of the topology of α-sets", *Matematički Vesnik*, 1984, 36, 1-10.
- [4] D. Andrijević, "Semi-preopen sets", *Matematički Vesnik*, 1986, *38*, 24- 32.
- [5] M. Caldas, "A note on some applications of α-open sets", *International Journal of Mathematics and Mathematical Sciences*, 2003, 125-130.
- [6] S.G. Crossley, & S.K. Hildebrand, "Semi-Topological Properties", *Fundamenta Mathematicae*, 1972, (74), 233-254.
- [7] N. Levine, "Semi-Open Sets and Semi-Continuity in Topological Spaces", *The American Mathematical Monthly*, 1963, 70(1), 36-41.
- [8] A.S. Mashhour, I.A. Hasanein, & S.N. El-Deeb, "α-continuous and αopen mappings", *Acta Mathematica Hungarica*, 1983, 41(3-4), 213- 218.
- [9] O. Njåstad, "On Some Classes of Nearly Open Sets", *Pacific journal of mathematics*, 1965, 15(3), 961-970.
- [10] J.P. Penot, & M. Théra, "Semi-continuous mappings in general topology", *Archiv der Mathematik*, 1982, 38(1), 158-166.