Al-Rafidain Journal of Computer Sciences and Mathematics (RJCM)

www.csmj.mosuljournals.com

Semi-h-Open Sets and Semi-h-Continuity in Topological Spaces Barah Mahmood Sulaiman

Department of Mathematics, College of Computer Science and Mathematics, University of Mosul, Iraq Email: barah_mahmood82@uomosul.edu.iq

Article information

Article history: Received :23/11/2023 Accepted :15/1/2024 Available online: 25/6/2024 In this study, we generalized two known open sets, called: *semi*-open and \hbar -open sets to find a new type called *semi*- \hbar -open set. In topological space, we have presented the relationship of several famous open sets to this set. We have also studied the *semi*- \hbar -open continuity in topological space.

Keywords: semi-open, h-open, semi-h-open, semi-h-continuity.

Abstract

Correspondence: Author: Barah Mahmood Sulaiman Email:barah_mahmood82@uomosul.ed u.iq

1. Introduction

In [5], Levin gave the term semi-open for the set \mathcal{A} , in the topological space (\mathcal{X}, τ) and studied its topological properties; it is a term given to the set if \mathcal{A} fulfills the condition $\mathcal{A} \subseteq cl(int(\mathcal{A}))$. Since then, it has been widely explored in several literary works [4, 6, and 10]. Njastad [9] introduced a set if $\mathcal{A} \subseteq \mathcal{X}$ called α -open; and $\mathcal{A} \subseteq$ $int(cl(int(\mathcal{A})))$, since then, this notion has been studied by many authors see [3, 5 and 8]. The concept of the h-open of the set A was introduced by [1]; if $\mathcal{A} \subseteq \mathcal{X}$ and if for every $\mathcal{G} \neq \emptyset, \mathcal{X}$, and $G \in \tau$ such that $\mathcal{A} \subseteq int(\mathcal{A} \cup G)$. Abdullah and etc. [2], introduced and defined the $\hbar\alpha$ -open set and studied their properties.

2. Semi-h-Open Sets

Definition (2.1): For the set $\mathcal{A} \subseteq \mathcal{X}$ in (\mathcal{X}, τ) is *semi-h*-open, if there exists \mathcal{H} set which is *h*-

open such that $\mathcal{H} \subseteq \mathcal{A} \subseteq cl(\mathcal{H})$.

Example (2.2): Let $\mathcal{X} = \{1,2,3\}$, and $\tau = \{\emptyset, \mathcal{X}, \{2\}, \{1,2\}\}$ Then $\tau^{\hbar} = \{\emptyset, \mathcal{X}, \{1\}, \{2\}, \{1,2\}, \{1,3\}\}$ represent \hbar -open

sets $\tau^{sh} = \{\emptyset, \mathcal{X}, \{1\}, \{2\}, \{1, 2\}, \{1, 3\}, \{2, 3\}\}$ represent *semi-h*-open sets.

In this example, the $\tau^{\hbar} \neq \tau^{s\hbar}$ but $\tau^{s\hbar}$ isn't equal to the power set of \mathcal{X} . Clearly that $\tau^{s\hbar}$ of this example isn't T.S. because $\{1,3\} \cap \{2,3\} = \{3\}$ isn't *semi-h*-open set.

Proposition (2.3): A subset \mathcal{A} in (\mathcal{X}, τ) is *semi-h*-open if and only if $\mathcal{A} \subseteq cl(int_{h}(\mathcal{A}))$.

Proof: Let $\mathcal{A} \subseteq cl(int_{\hbar}(\mathcal{A}))$. Then take $\mathcal{H} = int_{\hbar}(\mathcal{A})$. We have $\mathcal{H} \subseteq \mathcal{A} \subseteq cl(\mathcal{H})$. Conversely, let the set \mathcal{A} be an *semi-h*-open, then there exists \mathcal{H} which is \hbar -open, where $\mathcal{H} \subseteq \mathcal{A} \subseteq cl(\mathcal{H})$ we have $\mathcal{H} \subseteq int_{\hbar}(\mathcal{A})$ therefore $cl(\mathcal{H}) \subseteq cl(int_{\hbar}(\mathcal{A}))$, so $\mathcal{A} \subseteq cl(int_{\hbar}(\mathcal{A}))$.

Proposition (2.4): Every open set is *semi-h*-open. **Proof:** Let G be an open subset of (X, τ) , by [1, Theorem 2.1], G is an *h*-open set. So $G \subseteq G \subseteq cl(G)$.

Reverse of the aforementioned proposition is false as given in Example (2.2), $\{1\}$, $\{1,3\}$ and $\{2,3\}$ are *semi-h*-open sets. But it is not open sets.

Proposition (2.5): for all *h*-open set in any T.S. is *semi-h*-open.

Proof: Let \mathcal{H} an h-open subset of (\mathcal{X}, τ) , since $\mathcal{H} \subseteq \mathcal{H} \subseteq cl(\mathcal{H})$. So \mathcal{H} is *semi-h*-open.

Reverse of the aforementioned proposition is incorrect as given in Example (2.2), $\{2,3\}$ is *semi*- \hbar -open but not \hbar -open.

Theorem (2.6): The union of any family of *semi*-h-open sets is *semi*-h-open.

Proof: Let's consider a collection $\{\mathcal{A}_i\}_{i \in I}$ of semi*h*-open sets, where each \mathcal{A}_i is semi-*h*-open. For each \mathcal{A}_i , there is an *h*-open set \mathcal{H}_i so that means $\mathcal{H}_i \subseteq \mathcal{A}_i \subseteq cl(\mathcal{H}_i)$. Now, consider the family of *h*-open sets $\{\mathcal{H}_i\}_{i \in I}$. Let $\mathcal{H} = \bigcup_{i \in I} \mathcal{H}_i$. \mathcal{H} is *h*-open. Since $= \bigcup_{i \in I} \mathcal{A}_i$, for any point $z \in \mathcal{U}$, there exists $j \in I$ such that $z \in \mathcal{A}_j$. Since \mathcal{A}_j is semi-*h*-open, we have $\mathcal{A}_j \subseteq cl(\mathcal{H}_j)$, where \mathcal{H}_j is *h*-open. Therefore, $z \in cl(\mathcal{H}_j)$, and consequently, $\mathcal{U} \subseteq \bigcup_{i \in I} cl(\mathcal{H}_i) = cl(\mathcal{H})$. We have shown that $\mathcal{U} = \bigcup_{i \in I} \mathcal{A}_i$ is semi-*h*-open, as there is an *h*-open set \mathcal{H} with $\mathcal{H} \subseteq \mathcal{U} \subseteq cl(\mathcal{H})$.

Remark (2.7): The intersection of *semi-h*-open sets need not be *semi-h*-open as shown in Example (2.2) $\{1,3\} \cap \{2,3\} = \{3\}$ and $\{3\}$ is not *semi-h*-open set.

Proposition (2.8): Every *semi*-open sets are *semih*-open.

Proof: Let S be a *semi*-open subset in (X, τ) , then there exist $G \in \tau$, such that $G \subseteq S \subseteq cl(G)$. Since G is also h-open set by [1. Theorem 2.1] we get that S is a *semi-h*-open set.

Reverse of the aforementioned proposition is incorrect, as in example 2.9.

Example (2.9): Let
$$\mathcal{X} = \{1, 2, 3, 4\}$$
, and

$$\begin{split} \tau &= \{\emptyset, \mathcal{X}, \{4\}, \{3,4\}\} \\ \tau^{s} &= \{\emptyset, \mathcal{X}, \{3,4\}, \{1,4\}, \{2,3,4\}, \\ &\quad \{1,2,4\}, \{2,4\}, \{1,3,4\}, \{4\}\} \\ \tau^{\hbar} &= \{\emptyset, \mathcal{X}, \{3,4\}, \{1,2,3\}, \{3\}, \{4\}\} \\ \tau^{s\hbar} &= \{\emptyset, \mathcal{X}, \{3,4\}, \{1,4\}, \{2,3,4\}, \\ \{1,2,4\}, \{3\}, \{2,4\}, \{1,2,3\}, \{1,3\}, \\ \{1,3,4\}, \{4\}\} \end{split}$$

We see that the *semi-h*-open sets {3}, {1,2,3}, {1,2} are not *semi*-open.

Theorem (2.10): Let \mathcal{A} be a *semi-h*-open set in (\mathcal{X}, τ) if there exists $\mathcal{B} \subseteq \mathcal{X}$, with $\mathcal{A} \subseteq \mathcal{B} \subseteq cl(\mathcal{A})$ we get \mathcal{B} is *semi-h*-open.

Proof: Let $\mathcal{A} \subseteq \mathcal{B}$ be a subset in (\mathcal{X}, τ) , \mathcal{A} is *semi-h*-open set, then there exists $\mathcal{H} \subseteq \mathcal{X}$, \mathcal{H} is *h*-open set with $\mathcal{H} \subseteq \mathcal{A} \subseteq cl(\mathcal{H})$, now by $\mathcal{H} \subseteq \mathcal{A} \subseteq \mathcal{B}$ so $\mathcal{H} \subseteq \mathcal{B}$, also $\mathcal{A} \subseteq cl(\mathcal{H})$ implies $cl(\mathcal{A}) \subseteq cl(\mathcal{H})) = cl(\mathcal{H})$ since $\mathcal{B} \subseteq cl(\mathcal{A})$ so $\mathcal{B} \subseteq cl(\mathcal{H})$, then $\mathcal{H} \subseteq \mathcal{B} \subseteq cl(\mathcal{H})$, so \mathcal{B} is *semi-h*-open.

Example (2.11): Let $\mathcal{X} = \{1, 2, 3, 4\}$,

 $\tau = \{\emptyset, \mathcal{X}, \{2\}, \{2,3,4\}, \{2,3\}, \{1,2,4\}, \{3\}, \{2,4\}\} \\ \tau^{c} = \{\{1,4\}, \{1,2,4\}, \{3\}, \{1\}, \emptyset, \{1,3\}, \{1,3,4\}\} \\ \tau^{\hbar} = \{\{2\}, \{2,3,4\}, \{2,3\}, \{1,2,4\}, \{3\}, \{2,4\}, \mathcal{X}, \emptyset\} \\ \tau^{s\hbar} = \{\{2\}, \{2,3,4\}, \{2,3\}, \{1,2,4\}, \{1,2\}, \\ \{3\}, \{2,4\}, \emptyset, \mathcal{X}, \{1,2,3\}\} \\ \text{We see that } \{2\} \text{ is semi-\hbar-open set } cl(\{2\}) = \\ \{1,2,4\} \text{ and } \{2\} \subseteq \{2,4\} \subseteq cl(\{2\}), \{2\} \subseteq \{1,2\} \subseteq \\ cl(\{2\}). \text{ So } \{2,4\}, \{1,2\} \text{ is semi-\hbar-open.} \end{cases}$

Proposition (2.12): Every α -open set in (\mathcal{X}, τ) is *semi-h*-open.

Proof: Let \mathcal{G} be an α -open subset in (\mathcal{X}, τ) , so $\mathcal{G} \subseteq int(cl(int(\mathcal{G}))) \subseteq cl(int(\mathcal{G}))$ so $int(\mathcal{G}) \subseteq \mathcal{G} \subseteq cl(int(\mathcal{G}))$ since $int(\mathcal{G})$ is h-open set by Proposition (2.4), so \mathcal{G} is *semi-h*-open.

Reverse of the aforementioned theorem is false, as given in the next example

Example (2.13): Let = {3,2,1}, $\tau = \{\emptyset, \mathcal{X}, \{3\}\}\$ $\tau^{\alpha} = \{\emptyset, \mathcal{X}, \{3\}, \{2,3\}, \{1,3\}\},\$ $\tau^{\hbar} = \{\emptyset, \mathcal{X}, \{3\}, \{1,2\}\}\$ $\tau^{sh} = \{\emptyset, \mathcal{X}, \{2,3\}, \{1,2\}, \{3\}, \{1,3\}\}\$ We see that {1,2} *semi-h*-open set but not α -open, also {1,2} is *h*-open set but not α -open.

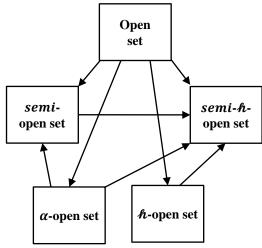


Fig. 1. The relationship of the *semi-h*-open set with some other types of open sets.

The following example show that the converse of all directions isn't true except between α -open and *semi*-open set.

Example (2.14): Let $\mathcal{X} = \{4, 2, 1, 3\}$ and $\tau = \{\emptyset, \mathcal{X}, \{4\}, \{1, 2, 4\}, \{1, 4\}, \{2, 4\}, \{1, 3, 4\}\}$ $\tau^{s} = \tau^{\alpha} = \{\emptyset, \mathcal{X}, \{3, 4\}, \{2, 4\}, \{2, 3, 4\}, \{1, 2, 4\}, \{2, 4\}, \{1, 3, 4\}, \{4\}\}$ $\tau^{\hbar} = \{\emptyset, \mathcal{X}, \{2, 4\}, \{1, 4\}, \{1, 2, 4\}, \{1, 2\}, \{3\}, \{1\}, \{1, 2, 3\}, \{1, 3\}, \{1, 3, 4\}, \{4\}\}$ $\tau^{s\hbar} = \{\emptyset, \mathcal{X}, \{3, 4\}, \{1, 4\}, \{2, 3, 4\}, \{1, 2, 4\}, \{1, 2\}, \{3\}, \{2, 4\}, \{1, 4\}, \{2, 3, 4\}, \{1, 2, 4\}, \{1, 2\}, \{3\}, \{2, 4\}, \{1\}, \{1, 2, 3\}, \{1, 3\}, \{1, 3, 4\}, \{4\}\}$

3. Applications of Semi-h-Open Sets

Definition (3.1): For $\mathcal{A} \subseteq \mathcal{X}$ in (\mathcal{X}, τ) . A semi- \hbar limit point $x \in \mathcal{X}$ of \mathcal{A} is defined by: for every semi- \hbar -open $\mathcal{G} \ni x$; $(\mathcal{G} \cap \mathcal{A}) \setminus \{x\} \neq \emptyset$. The semih-derived set of \mathcal{A} is the set containing all of 's semi- \hbar -limit points. $(\mathcal{D}_{sh}(\mathcal{A}))$.

Theorem (3.2): Let (\mathcal{X}, τ_1) and (\mathcal{X}, τ_2) be T.S. such that $\tau_1^{sh} \subseteq \tau_2^{sh}$. $\mathcal{A} \subseteq \mathcal{X}$ and $x \in \mathcal{D}_{sh_2}(\mathcal{A})$, then $x \in \mathcal{D}_{sh_1}(\mathcal{A})$.

Proof: Let $x \in \mathcal{D}_{sh_2}(\mathcal{A})$. Then $(\mathcal{G} \cap \mathcal{A}) \setminus \{x\} \neq \emptyset$ for all $\mathcal{G} \in \tau_2^{sh}$ such that $x \in \mathcal{G}$. But $\tau_1^{sh} \subseteq \tau_2^{sh}$, so, in particular, $(\mathcal{G} \cap \mathcal{A}) \setminus \{x\} \neq \emptyset$, $\forall \mathcal{G} \in \tau_1^{sh}$ s.t. $x \in \mathcal{G}$. Hence, $x \in \mathcal{D}_{sh_1}(\mathcal{A})$.

Reverse of the aforementioned theorem is false, as in example 3.3.

Example (3.3): Let $X = \{3,2,1\}$ with

$$\begin{split} \tau_{1} &= \{\{1,2\}, \emptyset, \{3\}, \mathcal{X}\} \\ \tau_{2} &= \{\mathcal{X}, \emptyset, \{3\}\}. \text{ Then} \\ \tau_{1}^{sh} &= \{\emptyset, \{3\}, \{1,2\}, \mathcal{X}\} \text{ and} \\ \tau_{2}^{sh} &= \{\emptyset, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \mathcal{X}\}. \text{ Hence } \tau_{1}^{sh} \subseteq \\ \tau_{2}^{sh}. \text{ If } \mathcal{A} &= \{1,2\}, \quad 1 \in \mathcal{D}_{sh_{1}}(\mathcal{A}) \text{ and } 1 \notin \\ \mathcal{D}_{sh_{2}}(\mathcal{A}). \end{split}$$

Theorem (3.4): Let $F \subseteq \mathcal{B}$ be subsets of (\mathcal{X}, τ) then

(i) $\mathcal{D}_{sh}(F) \subset \mathcal{D}_{sh}(\mathcal{B}).$ (ii) $\mathcal{D}_{\mathfrak{sh}}(F) \subseteq \mathcal{D}(F)$ (iii) $\mathcal{D}_{\mathfrak{sh}}(F) \subseteq \mathcal{D}_{\mathfrak{s}}(F)$ (iv) $\mathcal{D}_{sh}(F) \subseteq \mathcal{D}_{\alpha}(F)$ (v) $\mathcal{D}_{sh}(F \cup \mathcal{B}) = \mathcal{D}_{sh}(F) \cup \mathcal{D}_{sh}(\mathcal{B}).$ **Proof:** The proof is easy for (i)-(iv). Since (v) $\begin{array}{l} F \subset F \cup \mathcal{B} \\ \mathcal{B} \subset F \cup \mathcal{B} \end{array} \} \text{ imply } \begin{array}{l} \mathcal{D}_{s\hbar}(F) \subset \mathcal{D}_{s\hbar}(F \cup \mathcal{B}) \\ \mathcal{D}_{s\hbar}(\mathcal{B}) \subset \mathcal{D}_{s\hbar}(F \cup \mathcal{B}) \end{array}$ Hence, $\mathcal{D}_{\mathfrak{sh}}(F) \cup \mathcal{D}_{\mathfrak{sh}}(\mathcal{B}) \subset \mathcal{D}_{\mathfrak{sh}}(F \cup \mathcal{B}) \ \dots (1)$ Now, Let $x \in \mathcal{D}_{sh}(F \cup \mathcal{B})$. This means that for every semi-h-open set G containing $x, G \cap (F \cup B) \setminus$ $\{x\} \neq \emptyset$. This leads to that $(\mathcal{G} \cap F) \cup (\mathcal{G} \cap \mathcal{B}) \setminus \{x\} \neq \emptyset$ Ø. Now, consider two cases:

a. If $(\mathcal{G} \cap F) \setminus \{x\} \neq \emptyset$, then $x \in \mathcal{D}_{s\hbar}(F)$. b. If $(\mathcal{G} \cap \mathcal{B}) \setminus \{x\} \neq \emptyset$, then $x \in \mathcal{D}_{s\hbar}(\mathcal{B})$. In either case, x belongs to $\mathcal{D}_{s\hbar}(F)$ or $\mathcal{D}_{s\hbar}(\mathcal{B})$, so $x \in \mathcal{D}_{s\hbar}(F) \cup \mathcal{D}_{s\hbar}(\mathcal{B})$. Hence $\mathcal{D}_{s\hbar}(F \cup \mathcal{B}) \subset \mathcal{D}_{s\hbar}(F) \cup \mathcal{D}_{s\hbar}(\mathcal{B}) \dots (2)$. From (1) and (2), we have $\mathcal{D}_{s\hbar}(F \cup \mathcal{B}) = \mathcal{D}_{s\hbar}(F) \cup \mathcal{D}_{s\hbar}(\mathcal{B})$

Definition (3.5): Let $W \subseteq \mathcal{X}$ in (\mathcal{X}, τ) . We say that W is *semi-h*-closed if $\mathcal{D}_{sh}(W) \subset W$.

Example (3.6): Let $\mathcal{X} = \{1,2,3\}$ and $\tau = \{\emptyset, \mathcal{X}, \{2\}, \{2,3\}, \{3\}, \{1,3\}\}$. Then $\tau^{sh} = \{\emptyset, \{3\}, \{2,3\}, \mathcal{X}, \{1,3\}, \{2\}\}$ If $\mathcal{E} = \{1,3\} \subset \mathcal{X}$, then $\mathcal{D}_{sh}(\mathcal{E}) = \{1\} \subseteq \mathcal{E}$. Hence, \mathcal{E} is *semi-h*-closed sets.

Corollary (3.7): A subset $\mathcal{E} \subset (\mathcal{X}, \tau)$ is semi- \hbar -closed if and only if \mathcal{E}^c is semi- \hbar -open.

Proof: Suppose that \mathcal{E} is *semi-h*-closed. Let $x \in \mathcal{E}^c$ that is $x \notin \mathcal{E}$, but \mathcal{E} is *semi-h*-closed, then there exists *semi-h-open* \mathcal{G}_x ; $x \in \mathcal{G}_x \subset \mathcal{E}^c$, implies that for all $x \in \mathcal{E}^c$, there exists *semi-h-open* \mathcal{G}_x ; $x \in \mathcal{G}_x \subset \mathcal{E}^c$. Hence $\mathcal{E}^c = \bigcup_{x \in \mathcal{E}^c} \{\mathcal{G}_x : x \in \mathcal{G}_x\}$ *semi-h-open d* open. Hence \mathcal{E}^c is *semi-h-open*

Conversely, Assume that \mathcal{E}^c is *semi-h*-open. We need to explain that \mathcal{E} is *semi-h*-closed

for $x \in \mathcal{D}_{sh}(\mathcal{E})$ with $x \notin \mathcal{E}$, so $x \in \mathcal{D}_{sh}(\mathcal{E})$, $x \in \mathcal{E}^c$. But \mathcal{E}^c is *semi-h*-open and $\mathcal{E} \cap \mathcal{E}^c = \emptyset$. This implies that for some *semi-h-open* $\mathcal{G} = \mathcal{E}^c \ni x$; $(\mathcal{E} \cap \mathcal{E}^c) - \{x\} = \emptyset$. Hence $x \notin \mathcal{D}_{sh}(\mathcal{E})$, a contradiction. So for every $x \in \mathcal{D}_{sh}(\mathcal{E})$, $x \in \mathcal{E}$

This imply that $\mathcal{D}_{sh}(\mathcal{E}) \subset \mathcal{E}$ by Def.(3.5) \mathcal{E} is *semi-h*-closed.

Definition (3.8): Let $\mathcal{E} \subseteq \mathcal{X}$ in (\mathcal{X}, τ) , we define the *semi-h*-closure of \mathcal{E} , denoted by $cl_{sh}(\mathcal{E})$ as: $cl_{sh}(\mathcal{E}) = \bigcap \{\mathcal{F}: \mathcal{F} \text{ is semi-h-closed and } \mathcal{E} \subseteq \mathcal{F} \}.$

Remark (3.9):

- (1) Since $\mathcal{E} \subset \mathcal{F}$, for every *semi-h-closed* \mathcal{F} containing \mathcal{E} . Thus, $cl_{sh}(\mathcal{E})$ is the smallest closed set containing \mathcal{E} .
- (2) If \mathcal{E} is itself closed, then $cl_{sh}(\mathcal{E}) = \mathcal{E}$.

Theorem (3.10): Let $W \subseteq \mathcal{X}$ in (\mathcal{X}, τ) . Then $cl_{sh}(W) = W \cup \mathcal{D}_{sh}(\mathcal{E})$

Proof: We have $W \subset cl_{sh}(W)$ and $\mathcal{D}_{sh}(W) \subset cl_{sh}(W)$ implies that $\bigcup \mathcal{D}_{sh}(W) \subset cl_{sh}(W)$...(1) Now, Let $x \in cl_{sh}(W)$. There are two cases: If $x \in W$, so $x \in cl_{sh}(W)$, since $W \subseteq cl_{sh}(W)$. Otherwise if x not in \mathcal{E} , then x is a limit point of W(because $cl_{sh}(W)$ includes all limit points of W). Hence, $x \in \mathcal{D}_{sh}(W)$, and $x \in W \cup \mathcal{D}_{sh}(W)$. This proves $cl_{sh}(W) \subseteq W \cup \mathcal{D}_{sh}(W)$...(2). From (1) and (2) we get $cl_{sh}(W) = W \cup \mathcal{D}_{sh}(W)$.

Proposition (3.11): Let $\mathcal{A} \subseteq \mathcal{B}$ be sets in (\mathcal{X}, τ) , then

(i) $\mathcal{A} \subset cl_{sh}(\mathcal{A})$. (ii) $cl_{sh}(\mathcal{A}) \subset cl_{sh}(\mathcal{B})$. (iii) $cl_{sh}(\mathcal{A} \cup \mathcal{B}) = cl_{sh}(\mathcal{A}) \cup cl_{sh}(\mathcal{B})$. (iv) $cl_{sh}(\mathcal{A}) \subseteq cl(\mathcal{A})$ (v) $cl_{sh}(\mathcal{A}) \subseteq cl_{s}(\mathcal{A})$ (vi) $cl_{sh}(\mathcal{A}) \subseteq cl_{s}(\mathcal{A})$ (vii) $cl_{sh}(\mathcal{A}) \subseteq cl_{\alpha}(\mathcal{A})$ **Proof: (i)-(ii)** The proofs are easy.

(iv) Let \mathcal{A} be a *semi-h*-open set and let $x \in cl_{sh}(\mathcal{A})$. By the definition of *semi-h*-closure, x is in every *semi-h*-closed set containing \mathcal{A} . Now, let consider the closure set $cl(\mathcal{A})$. By definition of $cl(\mathcal{A})$ and since every *semi-h*-closed set is also closed, it follow that $cl_{sh}(\mathcal{A})$ is a closed set

containing \mathcal{A} , so x is also in $cl(\mathcal{A})$. Thus, we have shown that $cl_{sh}(\mathcal{A}) \subseteq cl(\mathcal{A})$, as desired. (v)-(vii) By similar to the above way.

The converse of (iv)-(vii) in the Reverse of the aforementioned proposition is not valid as in next example

Example (3.12): Let $\mathcal{X} = \{1, 2, 3\}$ and $\tau = \{\emptyset, \mathcal{X}, \{2\}, \{1, 2\}\}$ $\tau^{s} = \tau^{\alpha} = \{\emptyset, \mathcal{X}, \{2\}, \{2, 3\}, \{1, 2\}\}$ $\tau^{\hbar} = \{\emptyset, \mathcal{X}, \{1, 2\}, \{2\}, \{1\}, \{1, 3\}\}$ $\tau^{s\hbar} = \{\emptyset, \mathcal{X}, \{1, 3\}, \{1, 2\}, \{2, 3\}, \{2\}, \{1\}\}$

Let $\mathcal{A} = \{2,3\}$, then $cl(\mathcal{A}) = cl_s(\mathcal{A}) = cl_\alpha(\mathcal{A}) = \mathcal{X}$ and $cl_{s\hbar}(\mathcal{A}) = \{2,3\}$. Clearly $cl(\mathcal{A}) = cl_s(\mathcal{A}) = cl_{\hbar}(\mathcal{A}) \notin cl_{sl}(\mathcal{A})$. Also let $\mathcal{B} = \{1\}$, then $cl_{\hbar}(\mathcal{B}) = \{1,3\}$ and $cl_{s\hbar}(\mathcal{B}) = \{1\}$. Clearly $cl_{\hbar}(\mathcal{B}) \notin cl_{s\hbar}(\mathcal{B})$.

Definition (3.13): Let $\mathcal{E} \subseteq \mathcal{X}$ in (\mathcal{X}, τ) , we define the *semi-h*-interior of a set \mathcal{E} , denoted by $int_{sh}(\mathcal{E})$ as $int_{sh}(\mathcal{E}) = \bigcup \{ \mathcal{G} : \mathcal{G} \text{ is semi-h-open and } \mathcal{G} \subseteq \mathcal{E} \}.$

Proposition (3.14): Let $\mathcal{A} \subseteq \mathcal{X}$ in (\mathcal{X}, τ) , then

- (i) $int_{sh}(\mathcal{A})$ is the largest semi-h-open set in \mathcal{A} (ii) $int_{sh}(\mathcal{A}) \subset \mathcal{A}$ (iii) $int(\mathcal{A}) \subseteq int_{sh}(\mathcal{A})$
- (iv) $int_s(\mathcal{A}) \subseteq int_{sh}(\mathcal{A})$
- (v) $int_{\mathfrak{s}}(\mathcal{A}) \subseteq int_{\mathfrak{s}\mathfrak{h}}(\mathcal{A})$ (v) $int_{\mathfrak{h}}(\mathcal{A}) \subseteq int_{\mathfrak{s}\mathfrak{h}}(\mathcal{A})$
- (v) $int_{h}(\mathcal{S}t) \cong int_{sh}(\mathcal{S}t)$ (vi) $int_{a}(\mathcal{A}) \subseteq int_{sh}(\mathcal{A})$

Proof: By definition (3.13) we get the proofs of (i) and (ii).

(iii) Let \mathcal{A} be a *semi-h*-open set and let $x \in int(\mathcal{A})$, meaning there exists an open set \mathcal{U} such that $x \in \mathcal{U} \subseteq \mathcal{A}$. Now, consider the semi-*h*-interior set $int_{sh}(\mathcal{A})$, which is the union of for all *semi-h*-open sets in \mathcal{A} . Since \mathcal{U} is an open set containing x, it is also an *semi-h*-open set. Therefore, \mathcal{U} is one of the *semi-h*-open sets contained in \mathcal{A} , and $x \in int_{sh}(\mathcal{A})$. Since x was an arbitrary point in $int(\mathcal{A})$. Thus, we have proved that $int(\mathcal{A}) \subseteq int_{sh}(\mathcal{A})$.

(iv)-(vi) By similar to the above way.

Reverse of the Proposition (3.14) (ii)-(vi) need not be valid as in Example 3.12, Let $\mathcal{A} = \{2,3\}$, then $int(\mathcal{A}) = int_{\hbar}(\mathcal{A}) = \{2\}$ and $int_{s\hbar}(\mathcal{A}) = \{2,3\}$. Clearly, $int_{s\hbar}(\mathcal{A}) \not\equiv int(\mathcal{A}) = int_{\hbar}(\mathcal{A})$. Also let $\begin{array}{ll} \mathcal{B} = \{1,3\}, \text{ then } & int_{\alpha}(\mathcal{B}) = int_{s}(\mathcal{B}) = \emptyset & \text{ and } \\ int_{sh}(\mathcal{B}) = \{1,3\}, & \text{Clearly}, & int_{sh}(\mathcal{A}) \notin \\ int_{\alpha}(\mathcal{B}) = int_{s}(\mathcal{B}). \end{array}$

Theorem (3.15): Let $\mathcal{A} \subseteq \mathcal{B}$ be sets in (\mathcal{X}, τ) . Then

(i) int_{sh}(A) ⊂ int_{sh}(B)
(ii) int_{sh}(int_{sh}(A)) = int_{sh}(A)
Proof: The proofs are easy.

4. Semi-h-Continuous Functions and Semi-h-Homeomorphism

Definition (4.1): For $S: (\mathcal{X}, \tau) \to (\mathcal{Y}, \sigma)$ is a function, if $S^{-1}(\mathcal{G}) \in \tau^{sh}$ for every $\mathcal{G} \in \sigma$, then S is called a *semi-h*-continuous function.

Example (4.2): Let $\mathcal{X} = \{3,2,1\} = \mathcal{Y}$, and $\tau = \{\emptyset, \mathcal{X}, \{1\}, \{3\}, \{1,2\}, \{1,3\}\}, \tau^{sh} = \{\emptyset, \mathcal{X}, \{1\}, \{3\}, \{1,2\}, \{1,3\}\}$ and $\sigma = \{\emptyset, \mathcal{Y}, \{1,3\}\}$. Clearly, if $\mathcal{S}: (\mathcal{X}, \tau) \to (\mathcal{Y}, \sigma)$ is the identity function, then \mathcal{S} is a *semi-h*-continuous.

Theorem (4.3): Any continuous function is *semi*- \hbar -continuous.

Proof. Let a continuous function be $S: (\mathcal{X}, \tau) \to (\mathcal{Y}, \sigma)$ and $\mathcal{G} \in \sigma$. Since, S is continuous, then $S^{-1}(\mathcal{G}) \in \tau$. By Proposition (2.4) every open set is *semi-h*-open, therefore $S^{-1}(\mathcal{G})$ is *semi-h*-open set in \mathcal{X} . So, S is *semi-h*-continuous.

Reverse of the aforementioned theorem is not valid as seen in example 4.4.

Example (4.4): Let $\mathcal{X} = \{c, b, a\}$ and $\mathcal{Y} = \{1,2,3\}, \tau = \{\{b\}, \mathcal{X}, \phi\}, \tau^{sh} = \{\{a,c\}, \{b\}, \{b,c\}, \mathcal{X}\}, \sigma = \{\phi, \{1\}, \mathcal{Y}, \{1,2\}\}.$ The function $\mathcal{S}: (\mathcal{X}, \tau) \to (\mathcal{Y}, \sigma)$ define as $\mathcal{S}(a) = 2, \mathcal{S}(b) = 1, \mathcal{S}(c) = 3. \mathcal{S}$ is *semi-h*-continuous, but \mathcal{S} isn't continuous.

Theorem (4.5): Every *h*-continuous function is *semi-h*-continuous.

Proof. The proof is easy.

Reverse of the aforementioned theorem is not valid as seen in example 4.6.

Example (4.6): Let $\mathcal{X} = \{c, b, a\}$ and $\mathcal{Y} = \{1, 2, 3\}, \tau = \{\mathcal{X}, \phi, \{b\}\},\$

 $\tau^{\hbar} = \{\{\&\}, \{a, c\}, \emptyset, X\} \text{ and} \\ \tau^{s\hbar} = \{\{a, c\}, \{a, b\}, \{\&\}, X, \emptyset, \{\&, c\}\}, \\ \sigma = \{\emptyset, \mathcal{Y}, \{1\}, \{1, 2\}\}. \text{ We define a function} \\ \mathcal{S}: (X, \tau) \to (\mathcal{Y}, \sigma) \text{ as } \mathcal{S}(a) = 2, \mathcal{S}(\&) = 1, \mathcal{S}(c) = \\ 3. \quad \mathcal{S} \text{ is } semi-\hbar\text{-continuous, but } \mathcal{S} \text{ isn't } \hbar\text{-continuous.} \end{cases}$

Theorem (4.7): Every *semi*-continuous function is *semi-h*-continuous.

Proof. The proof is easy.

Reverse of the aforementioned theorem need not be valid as given in example 4.8.

Example (4.8): Let $\mathcal{X} = \{c, b, a\}$ and $\mathcal{Y} = \{1,2,3\}, \tau = \{\{a,c\}, \mathcal{X}, \phi\}, \tau^s = \{\{a,c\}, \mathcal{X}, \phi\}, and$ $\tau^{sh} = \{\{a,b\}, \phi, \mathcal{X}, \{b\}, \{b,c\}, \{a\}, \{c\}, \{a,c\}\}, \sigma = \{\phi, \mathcal{Y}, \{1\}, \{1,2\}\}.$ We define a function $\mathcal{S}: (\mathcal{X}, \tau) \to (\mathcal{Y}, \sigma)$ as $\mathcal{S}(a) = 1, \mathcal{S}(b) = 2, \mathcal{S}(c) = 3$. \mathcal{S} is semi-h-continuous, but \mathcal{S} isn't semicontinuous.

Theorem (4.9): Every α -continuous function is *semi-h*-continuous.

Proof. The proof is easy.

Reverse of the aforementioned theorem not valid as in example 4.10.

Example (4.10): Let $\mathcal{X} = \{c, b, a\}$ and $\mathcal{Y} = \{1, 2, 3\}, \tau = \{\mathcal{X}, \{b, c\}, \phi\},$ $\tau^{\alpha} = \{\phi, \mathcal{X}, \{b, c\}\}$ and $\tau^{sh} = \{\{b\}, \{a\}, \phi, \{a, c\}, \{c\}, \{a, b\},$ $\mathcal{X}, \{b, c\}\},$ $\sigma = \{\phi, \mathcal{Y}, \{1\}, \{1, 2\}\}.$ We define a function $\mathcal{S}: (\mathcal{X}, \tau) \rightarrow (\mathcal{Y}, \sigma)$ as $\mathcal{S}(a) = 1, \mathcal{S}(b) = 2, s(c) =$

3. S is *semi-h*-continuous, but S isn't α -continuous.

Theorem (4.11): If $g: (\mathcal{X}, \tau) \to (\mathcal{Y}, \sigma)$ is semi- \hbar continuous and $\mathcal{S}: (\mathcal{Y}, \sigma) \to (\mathcal{Z}, \vartheta)$ is continuous, then $\mathcal{S} \circ g: (\mathcal{X}, \tau) \to (\mathcal{Z}, \vartheta)$ is semi- \hbar -continuous.

Proof: For $g: (\mathcal{X}, \tau) \to (\mathcal{Y}, \sigma)$ is semi- \hbar continuous and $f: (\mathcal{Y}, \sigma) \to (\mathcal{Z}, \vartheta)$ be continuous. Let $\mathcal{G} \in \vartheta$. Since, \mathcal{S} is continuous, then $\mathcal{S}^{-1}(\mathcal{G}) \in \sigma$. Since, g is semi- \hbar -continuous, so $g^{-1}((\mathcal{S}^{-1}(\mathcal{G})) = (\mathcal{S} \circ g)^{-1}(\mathcal{G})$ is semi- \hbar -open set in \mathcal{X} . We get, $\mathcal{S} \circ g: (\mathcal{X}, \tau) \to (\mathcal{Z}, \vartheta)$ is semi- \hbar continuous. **Definition** (4.12): Let $\mathcal{S}: (\mathcal{X}, \tau) \to (\mathcal{Y}, \sigma)$ be mapping if $\mathcal{S}(\mathcal{G}) \in \sigma^{sh}$ for every $\mathcal{G} \in \tau$, then \mathcal{S} is called *semi-h*-open function.

Example (4.13): Let $\mathcal{S}: (\mathcal{X}, \tau) \to (\mathcal{Y}, \sigma)$ be an identity function, where $\mathcal{X} = \mathcal{Y} = \{1, 2, 3\}$, and $\tau = \{\emptyset, \mathcal{X}, \{2, 3\}\}, \sigma = \{\emptyset, \mathcal{Y}, \{1\}\}, \sigma^{sh} = \{\emptyset, \mathcal{Y}, \{1\}, \{1, 2\}, \{1, 3\}, \{2, 3\}\}$. Clearly, the function \mathcal{S} is *semi-h*-open.

Theorem (4.14): Any open function is also *semi*- \hbar -open.

Proof. The proof is clear.

Example (4.15): In Example (4.13), the identity function $\mathcal{S}: (\mathcal{X}, \tau) \to (\mathcal{Y}, \sigma)$ is *semi-h*-open but not open.

Theorem (4.16): Every h-open function is *semi*-h-open.

Proof. The proof is easy.

Reverse of the aforementioned theorem is not valid, as seen in the example 4.17.

Example (4.17): Let $\mathcal{S}: (\mathcal{X}, \tau) \to (\mathcal{Y}, \sigma)$ be the identity function, where $\mathcal{X} = \{3, 2, 1\} = \mathcal{Y}$, and $\tau = \{\emptyset, \mathcal{X}, \{1,3\}\}, \sigma = \{\emptyset, \mathcal{Y}, \{1\}\}, \sigma^{sh} = \{\emptyset, \mathcal{Y}, \{1\}, \{1,2\}, \{1,3\}, \{2,3\}\}, \sigma^{h} = \{\emptyset, \mathcal{Y}, \{1\}, \{2,3\}\}.$ Clearly, \mathcal{S} is *semi-h*-open but not *h*-open.

Theorem (4.18): Every *semi*-open function is also *semi-h*-open.

Proof. The proof is easy.

Reverse of the aforementioned theorem need not be valid as in example 4.19.

Example (4.19): Let $S: (\mathcal{X}, \tau) \to (\mathcal{Y}, \sigma)$ be the identity function, where $\mathcal{X} = \mathcal{Y} = \{1, 2, 3\}$, and $\tau = \{\emptyset, \mathcal{X}, \{2, 3\}\}, \sigma = \{\emptyset, \mathcal{Y}, \{1\}\}, \sigma^{sh} = \{\emptyset, \mathcal{Y}, \{1\}, \{1, 2\}, \{1, 3\}, \{2, 3\}\}, \sigma^s = \{\emptyset, \mathcal{Y}, \{1\}, \{1, 2\}, \{1, 3\}\}.$

Clearly, the function S is *semi-h*-open but not *semi*-open.

Theorem (4.20): Every α -open function is *semi*- \hbar -open.

Proof. The proof is easy.

Reverse of the aforementioned theorem is incorrect as in example 4.21.

Example (4.21): Let $\mathcal{S}: (\mathcal{X}, \tau) \to (\mathcal{Y}, \sigma)$ be an identity function, where $\mathcal{X} = \{3, 2, 1\} = \mathcal{Y}$, $\tau = \{\emptyset, \mathcal{X}, \{2, 3\}\}, \sigma = \{\emptyset, \mathcal{Y}, \{1\}\}, \sigma^{sh} = \{\emptyset, \mathcal{Y}, \{1\}, \{1, 2\}, \{1, 3\}, \{2, 3\}\}$ and $\sigma^{\alpha} = \{\emptyset, \mathcal{Y}, \{1\}, \{1, 2\}, \{1, 3\}\}.$ Clearly, the function \mathcal{S} is *semi-h*-open however, it is not. α -open.

Theorem (4.22): If $S: (X, \tau) \to (Y, \sigma)$ is open and $g: (Y, \sigma) \to (Z, \vartheta)$ is *semi-h*-open, then $g \circ S: (X, \tau) \to (Z, \vartheta)$ is *semi-h*-open. **Proof.** Clear

Definition (4.23): Let bijective function $S: (\mathcal{X}, \tau) \rightarrow (\mathcal{Y}, \sigma)$ A function S is considered a semi-h-homeomorphism when it is both semi-h-continuous and semi-h-open.

Theorem (4.24): For $S: (\mathcal{X}, \tau) \to (\mathcal{Y}, \sigma)$ is homeomorphism, we get S is *semi-h*-homeomorphism.

Proof: By Theorem (4.3), we get that every continuous mapping is semi-h-continuous. Furthermore, it can be deduced from Theorem (4.14) that every open mapping is also semi-h-open. Also, S is bijective then, S is *semi-h*-homeomorphism.

The converse of the above theorem is incorrect as in example (4.25).

Example (4.25): Let $S: (X, \tau) \to (Y, \sigma)$ be the identity function, with $X = \{1, 2, 3\} = Y$, for $\tau = \{X, \emptyset, \{1, 3\}\}, \tau^{sh} = \{\emptyset, X, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}\}, \sigma = \{\emptyset, Y, \{2, 3\}\}$ and $\sigma^{sh} = \{\emptyset, Y, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}.$ Clearly, S is *semi-h*-homeomorphism, but it isn't

Clearly, S is *semi-h*-homeomorphism, but it isn't homeomorphism.

References

- F.H. Abbas, "On *h*-open sets and *h*-continuous functions", Boletim da Sociedade Paranaense de Matemática, 2021, 41, 1-9.
- [2] B.S. Abdullah, S.W. Askandar & R.N. Balo, "hα-Open Sets in Topological Spaces", *Journal of Education and Science*, 2022, 31(9), 91-98.
- [3] D. Andrijević, "Some properties of the topology of α-sets", Matematički Vesnik, 1984, 36, 1-10.
- [4] D. Andrijević, "Semi-preopen sets", *Matematički Vesnik*, 1986, 38, 24-32.
- [5] M. Caldas, "A note on some applications of α-open sets", *International Journal of Mathematics and Mathematical Sciences*, 2003, 125-130.
- [6] S.G. Crossley, & S.K. Hildebrand, "Semi-Topological Properties", *Fundamenta Mathematicae*, 1972, (74), 233-254.
- [7] N. Levine, "Semi-Open Sets and Semi-Continuity in Topological Spaces", *The American Mathematical Monthly*, 1963, 70(1), 36-41.

- [8] A.S. Mashhour, I.A. Hasanein, & S.N. El-Deeb, " α -continuous and α open mappings", Acta Mathematica Hungarica, 1983, 41(3-4), 213-218.
- [9] O. Njåstad, "On Some Classes of Nearly Open Sets", Pacific journal *of mathematics*, 1965, 15(3), 961-970. [10] J.P. Penot, & M. Théra, "Semi-continuous mappings in general
- topology", Archiv der Mathematik, 1982, 38(1), 158-166.