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1. Introduction 
Fluid is a substance that, in the absence of a poignant, 

cannot withstand stress or shear. Real, ideal, turbulent, 

laminar, constant, unstable, incompressible, compressible, 

uniform, and other flow behaviors can be classified [1]. 

Convection of MHD occurs through porous material at 

parallel surface boundaries as a result of precipitation and 

personal interactions in which it is involved [2]. The glass 

cavity stability analysis has been shortened by taking into 

account the structures that may or may not be identified by 

disturbance evolution after linear equations have been 

generated [3]. By smoothly injecting fluid from the opposite 

side of the channel into an upward tunnel with porous 

stockades, a fixed-state 3D MHD fluid flow can be analyzed 

to obtain heat transfer turfs and velocity analytical resolutions 

[4]. We investigated the velocity and thermal sliding of 

calculation remedies for a constant state MHD varied 

constrained boundaries sheet flow and heat transfer over an 

absorbent plate. It was discovered that the MF increases the 

velocity of a gelatinous inflexible fluid, lowering its 

temperature due to the stream's short-term drag [5]. We 

determined the regional Nusselt coefficients and friction with 

the skin factor, as well as non-Newtonian liquid inactive 

point flow and heat transfer across a stretching or shrinking 

slippage in a permeable center [6]. When thermal radiation is 

present, the 2D stable state hydromagnetic sticky fluid flow 

between two identical saucers with an increase in the variable 

suction limitation and the number of Reynolds and a 

relationship between the thermal extraction parameter, a 

decrease in temperature, and the concentration of the fluid was 

shown to exhibit an external transfer effect, a thick suction 

parameter, and a dissipative end result [7]. The effects of the 

equation on wave, heat transfer, and diffusion in a porous 

environment with radiation and MF attendance will be studied 

using a computerized solution[8].[9]discovered an instable 

MHD-free turbulent river over an oblique dish in a 2D direct 

system and used an explicit finite difference algorithm to 

investigate its equilibrium requirements.[10] revealed that a 

flexible framework involving steel sheets, heat argument flux, 

and a boiler allowed for the cyclical transfer of heat and flow 

in the region of oblique ferrites. [11] to properly solve a set of 

partial differential equations that describe the situation using 

linear proximity, investigate how fluid flow occurs in a bridge 

when electromagnetism (EMF) is present. Similarly, we want 

to show how tangible factors influence everything and how 

temperatures vary within the section. [12] investigated how 
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thermal absorption and Dufour influenced the occasional free 

magnetism anatomy of heat transfer via an unrestricted 

vertical impervious surface.The outcome of this investigation 

will be given and truly conveyed in a movable parallel square 

layer for common features with parameter modifications to 

investigate quantitatively transient reciprocal mass and heat 

transfer via mixed air flow[13].The goal of this project is to 

examine the computerized solution to the fluid flow problem 

encountered in inclined and horizontal cavities using the 

ADI.We discovered that the constraints 

𝐷𝑎 , ℛℯ, 𝒫𝓇, 𝐸𝑐 , ℛ𝒶. 𝑎𝑛𝑑 𝜑 had a significant effect on the 

increase and decrease of the fluid inside the cavity, as well as 

the effect of time steps on this equation 

 

2. Mathematical Model and Essential 

Equations 
The two vertical heat-conducting walls in the 

mathematical model represent the inner layers of the two 

glass panels that comprise the glass chamber. These two 

walls are perpendicular to the 𝑦 − 𝑎𝑥𝑖𝑠 and have two 

horizontal heat-insulating walls perpendicular to the 𝑥 − 𝑎𝑥𝑖𝑠 

One of the walls is hot, and its temperature is represented by 

the symbol 𝑇1, while the other is cool, and its temperature is 

represented by the symbol 𝑇0. The length of the connecting 

walls is 𝐿, and the length of the insulating walls is 𝐻 . As 

shown in Figure 1, this cavity is filled with an incompressible 

fluid with a viscosity dispersion. 

 

 
 

Below are the main governing equations, which also 

include the equations of Continuity, movement and energy: 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0                                                                           (1) 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦

= −
1

𝜌

𝜕𝑝

𝜕𝑥
+ 𝜐𝛻2𝑢 +

𝜐

𝑘
𝑢

− 𝛽𝑔(𝑇 − 𝑇0) 𝑐𝑜𝑠 𝜑                             (2) 

𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦

= −
1

𝜌

𝜕𝑝

𝜕𝑦
+ 𝜐𝛻2𝑣

+ 𝛽𝑔(𝑇 − 𝑇0) 𝑠𝑖𝑛 𝜑                             (3) 

We may derive equations (2), (3) with regard to 𝑥and 𝑦, and 

then subtract the resulting equations to get- 

𝜕

𝜕𝑡
[
𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
] +

𝜕

𝜕𝑥
[𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
] −

𝜕

𝜕𝑦
[𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
] = 

= 𝜈𝛻2 [
𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
] −

𝜈

𝑘

𝜕𝑢

𝜕𝑦
+ 𝛽𝑔

𝜕𝑇

𝜕𝑥
 𝑠𝑖𝑛 𝜑

+ 𝛽𝑔
𝜕𝑇

𝜕𝑦
 𝑐𝑜𝑠 𝜑  .                                   (4) 

This is known as the general of momentum equation. 

The energy equation is:  

𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

𝑘

𝜌𝐶𝑝

𝛻2𝑇 + 𝜀 [(
𝜕𝑢

𝜕𝑦
)

2

+ (
𝜕𝑣

𝜕𝑥
)

2

]          (5) 

Where 𝑢, 𝑣are the components of velocity in 𝑥, 𝑦 directions 

respectively ,  t is the time and 𝜌, 𝜈, 𝛽, 𝑔, 𝑇, 𝑘, 𝐶𝑝, 𝜀  are the 

density, kinematics viscosity, updraft expansion coefficient, 

gravitational acceleration, temperature, Permeability of 

medium , specific heat at constant pressure, The dispersion 

parameter, concentration respectively.  

With the following boundary conditions, 

𝑇(0, 𝑦) = 𝑇1 

𝑇(𝐿, 𝑦) = 𝑇0 

𝜕𝑇

𝜕𝑦
|

𝑦=0,𝐻

= 0 

𝑢(0, 𝑦) = 𝑣(0, 𝑦) = 0 

𝑢(𝐿, 𝑦) = 𝑣(𝐿, 𝑦) = 0 

𝑢(𝑥, 0) = 𝑣(𝑥, 0) = 0 

𝑢(𝑥, 𝐻) = 𝑣(𝑥, 𝐻) = 0 

 

3. Dimensional Analysis   
 

𝑢∗ =
𝑢

𝑈
       ,    𝑣∗ =

𝑣

𝑈
     ,   𝑥∗ =

𝑥

𝐿
     ,    𝑦∗ =

𝑦

𝐿
   

(6) Fig. 1. Demonstrates a physical model and a 

coordinate system. 
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𝜃 =
𝑇 − 𝑇0

𝑇1 − 𝑇0

     ,   𝑡∗ =
𝑡𝑈

𝐿
  ,           𝑝 = 𝑝∗𝜌𝑈2   

And non- dimensional Parameters [16]:-  

𝑈 =
𝛼

𝐿
√𝑅𝑎𝑃𝑟 = √𝑔𝛽∆𝑇𝐿        

   𝑅𝑎 =
𝜌𝑔𝛽(𝑇1 − 𝑇0)𝐿3

𝜇𝛼
    

  𝑃𝑟 =
𝜈

𝛼
=

𝜇𝐶𝑝

𝑘
   , 𝐷𝑎 =

𝑘

𝐿2
      

     𝐸𝑐 =   
𝑢2

𝐶𝑝∆𝑇
  

     𝑅𝑒 =  
𝐿𝑈

𝜈
         ,          𝜀 =

𝜇

𝜌𝐶𝑝

  

Where 𝑅𝑎 Rayleigh Number, 𝑃𝑟 Prandtel Number, 𝐷𝑎 Darcy 

Number, 𝑅𝑒 Reynolds Number and 𝐸𝑐 Eckert Number. 

By substituting non-dimensional values (7), into the 

equations (1), (4) and (5) we get: 

𝜕𝑢∗

𝜕𝑥∗
+

𝜕𝑣∗

𝜕𝑦∗
= 0                                                                         (9) 

𝜕

𝜕𝑡∗
[
𝜕𝑣∗

𝜕𝑥∗
−

𝜕𝑢∗

𝜕𝑦∗
] +

𝜕

𝜕𝑥∗
[𝑢∗

𝜕𝑣∗

𝜕𝑥∗
+ 𝑣∗

𝜕𝑣∗

𝜕𝑦∗
]

−
𝜕

𝜕𝑦∗
[𝑢∗

𝜕𝑢∗

𝜕𝑥∗
+ 𝑣∗

𝜕𝑢∗

𝜕𝑦∗
] = 

1

𝑅𝑒
𝛻2 [

𝜕𝑣∗

𝜕𝑥∗
−

𝜕𝑢∗

𝜕𝑦∗
] − 𝐷𝑎−1√

𝑃𝑟

𝑅𝑎

𝜕𝑢∗

𝜕𝑦∗
+

𝛼

𝐿 
√𝑅𝑎 𝑃𝑟

𝜕𝜃

𝜕𝑥∗
 𝑠𝑖𝑛 𝜑 

+
𝛼

𝐿 
√𝑅𝑎 𝑃𝑟

𝜕𝜃

𝜕𝑦∗
 𝑐𝑜𝑠 𝜑 .                                                   (10)     

But 𝑢∗ =
𝜕𝜓

𝜕𝑦∗  and 𝑣∗ = −
𝜕𝜓

𝜕𝑥∗   is stream function [17]. Put 

 𝜉 = 𝛻2𝜓, then equation (10) become: 

 

For the purpose of finding non-dimensional equations of 

equations (1), (4), (5) We will impose some non-dimensional 

values [14, 15]: - 

 

𝜕𝜉

𝜕𝑡∗
 =

1

𝑅𝑒
𝛻2𝜉 + 𝐷𝑎−1√

𝑃𝑟

𝑅𝑎

𝜕2𝜓

𝜕𝑦∗2

−
𝛼

𝐿 
√𝑅𝑎 𝑃𝑟 [

𝜕𝜃

𝜕𝑥∗
 𝑠𝑖𝑛 𝜑

+  
𝜕𝜃

𝜕𝑦∗
 𝑐𝑜𝑠 𝜑]                                          (11) 

𝜕𝜃

𝜕𝑡∗
+ 𝑢∗

𝜕𝜃

𝜕𝑥∗
+ 𝑣∗

𝜕𝜃

𝜕𝑦∗

=
1

√𝑅𝑎 𝑃𝑟
[

𝜕2𝜃

𝜕𝑥∗2 +
𝜕2𝜃

𝜕𝑦∗2]

+
𝑃𝑟 𝐸𝑐

√𝑅𝑎 𝑃𝑟
[(

𝜕𝑢∗

𝜕𝑦∗
)

2

+ (
𝜕𝑣∗

𝜕𝑥∗
)

2

]               (12) 

Let ∅ =
𝑃𝑟 𝐸𝑐

√𝑅𝑎 𝑃𝑟
[(

𝜕𝑢∗

𝜕𝑦∗)
2

+ (
𝜕𝑣∗

𝜕𝑥∗)
2

]   Physical quantities, and 

equation (12) becomes- 

𝜕𝜃

𝜕𝑡∗
+ 𝑢∗

𝜕𝜃

𝜕𝑥∗
+ 𝑣∗

𝜕𝜃

𝜕𝑦∗
=

1

√𝑅𝑎 𝑃𝑟
[
𝜕2𝜃

𝜕𝑥∗
+

𝜕2𝜃

𝜕𝑦∗
] + ∅       (13) 

 

The resulting boundary conditions are: 

𝑢∗ = 𝑣∗ = 0 

𝜃(0, 𝑦∗) = 1 

𝜃(𝐿, 𝑦∗) = 0 

𝜕𝜃

𝜕𝑦∗
|

𝑦∗=0,𝐻

= 0 

𝑢(0, 𝑦∗) = 𝑣(0, 𝑦∗) = 0 

𝑢(𝐿, 𝑦∗) = 𝑣(𝐿, 𝑦∗) = 0 

𝑢(𝑥∗, 0) = 𝑣(𝑥∗, 0) = 0 

𝑢(𝑥∗, 𝐻) = 𝑣(𝑥∗, 𝐻) = 0 

 

4. Method of Solution 
Starting with the last equation (13), the heat equation, and 

working our way down to equation (11), the motion equation, 

we can resolve the network of formulas (9), (11) and (13) with 

the boundary conditions (14) using the ADI finite difference 

technique [18]. 

 

(7) 

(8) 

(14) 
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4.1 Solving of the Heat Equation 

 

𝜃𝑖,𝑗
∗ − 𝜃𝑖,𝑗,𝑛

∆𝜏∗

2

+ 𝑢𝑖.𝑗.𝑛
∗

𝜃𝑖+1,𝑗
∗ − 𝜃𝑖−1,𝑗

∗

2∆𝑥∗
+ 𝑣𝑖.𝑗.𝑛

∗
𝜃𝑖,𝑗+1,𝑛 − 𝜃𝑖,𝑗−1,𝑛

2∆𝑦∗

=
1

√𝑅𝑎 𝑃𝑎 
[
𝜃𝑖+1,𝑗

∗ − 2𝜃𝑖,𝑗
∗ + 𝜃𝑖−1,𝑗

∗

(∆𝑥∗)2

+
𝜃𝑖,𝑗+1,𝑛 − 2𝜃𝑖,𝑗,𝑛 + 𝜃𝑖,𝑗−1,𝑛

(∆𝑦∗)2
]

+ ∅                                                           (15) 

𝜃𝑖,𝑗,𝑛+1 − 𝜃𝑖,𝑗
∗

∆𝜏∗

2

+ 𝑢𝑖.𝑗.𝑛
∗

𝜃𝑖+1,𝑗
∗ − 𝜃𝑖−1,𝑗

∗

2∆𝑥∗

+ 𝑣𝑖.𝑗.𝑛
∗

𝜃𝑖,𝑗+1,𝑛+1 − 𝜃𝑖,𝑗−1,𝑛+1

2∆𝑦∗

=
1

√𝑅𝑎 𝑃𝑎 
[
𝜃𝑖+1,𝑗

∗ − 2𝜃𝑖,𝑗
∗ + 𝜃𝑖−1,𝑗

∗

(∆𝑥∗)2

+
𝜃𝑖,𝑗+1,𝑛+1 − 2𝜃𝑖,𝑗,𝑛+1 + 𝜃𝑖,𝑗−1,𝑛+1

(∆𝑦∗)2
]

+ ∅                                                            (16)  

Equations (15) and (16) can be combined to yield, 

𝐴1𝑖𝜃𝑖−1,𝑗
∗ + 𝐵1𝑖𝜃𝑖,𝑗

∗ +𝐶1𝑖𝜃𝑖+1,𝑗
∗ = 𝐷1𝑖           𝑖 =

0,1,2,3, … … 𝑁                                                                         (17)                

Where 

𝐴1𝑖 = −1 

𝐵1𝑖 =
2𝑓1

𝑓6

 

𝐶1𝑖 =
−𝑓2

𝑓6

 

𝐷1𝑖 =
−𝑓3

𝑓6

𝜃𝑖,𝑗−1,𝑛 +
2𝑓4

𝑓6

𝜃𝑖,𝑗,𝑛 +
𝑓5

𝑓6

𝜃𝑖,𝑗+1,𝑛 +
∅ℎ∗2

𝑓6

       

Followed by  

𝐴2𝑖𝜃𝑖,𝑗−1,𝑛+1 + 𝐵2𝑖𝜃𝑖,𝑗,𝑛+1+ 𝐶2𝑖𝜃𝑖,𝑗+1,𝑛+1 = 𝐷2𝑖         (18)    

Where, 

𝐴2𝑖 = −1 

𝐵2𝑖 =
2𝑓1

𝑓3

 

𝐶2𝑖 =
−𝑓5

𝑓3

 

𝐷2𝑖 =
𝑓6

𝑓3

𝜃𝑖−1,𝑗
∗ +

2𝑓4

𝑓3

𝜃𝑖,𝑗
∗ +

𝑓2

𝑓3

𝜃𝑖+1,𝑗
∗ +

∅ℎ∗2

𝑓3

 

Where,  

  

= [
1

𝜆
+

1

√𝑅𝑎𝑃𝑟
]  , 𝑓2 = [

1

√𝑅𝑎𝑃𝑟
−

ℎ∗

2
𝑢𝑖,𝑗,𝑛

∗ ]   

  𝑓3 = [
1

√𝑅𝑎𝑃𝑟
+

ℎ∗

2
𝑣𝑖,𝑗,𝑛

∗ ] , 𝑓4 = [
1

𝜆
−

1

√𝑅𝑎𝑃𝑟
]  

𝑓5 = [
1

√𝑅𝑎𝑃𝑟
−

ℎ∗

2
𝑣𝑖,𝑗,𝑛

∗   ]  ,   𝑓6 = [
1

√𝑅𝑎𝑃𝑟
+

ℎ∗

2
𝑢𝑖,𝑗,𝑛

∗ ]    

 
4.2 Solving of the General Motion Equation 

𝜉𝑖,𝑗
∗ −𝜉𝑖,𝑗,𝑛

𝛥𝜏∗

2

=
1

𝑅𝑒
[

𝜉𝑖+1,𝑗
∗ −2𝜉𝑖,𝑗

∗ +𝜉𝑖−1,𝑗
∗

(𝛥𝑥∗)2 +
𝜉𝑖.𝑗+1,𝑛−2𝜉𝑖.𝑗,𝑛+𝜉𝑖.𝑗−1,𝑛

(𝛥𝑦∗)2 ] +

𝐷𝑎−1√
𝑃𝑟

𝑅𝑎
[

𝜓𝑖,𝑗+1,𝑛−2𝜓𝑖,𝑗,𝑛+𝜓𝑖,𝑗−1,𝑛

(𝛥𝑦∗)2 ] +

𝛼

𝐿
√𝑅𝑎𝑃𝑟 [

𝜃𝑖+1,𝑗
∗ −𝜃𝑖−1,𝑗

∗

2𝛥𝑥∗ 𝑠𝑖𝑛 𝜑 +

𝜃𝑖,𝑗+1,𝑛−𝜃𝑖,𝑗−1,𝑛

2𝛥𝑦∗ 𝑐𝑜𝑠 𝜑]                                                                   (19)  

𝜉𝑖,𝑗,𝑛+1 − 𝜉𝑖,𝑗
∗

∆𝜏∗

2

=
1

𝑅𝑒
[
𝜉𝑖+1,𝑗

∗ − 2𝜉𝑖,𝑗
∗ + 𝜉𝑖−1,𝑗

∗

(𝛥𝑥∗)2

+
𝜉𝑖.𝑗+1,𝑛+1 − 2𝜉𝑖.𝑗,𝑛+1 + 𝜉𝑖.𝑗−1,𝑛+1

(𝛥𝑦∗)2
]

+ 𝐷𝑎−1√
𝑃𝑟

𝑅𝑎
[
𝜓𝑖,𝑗+1,𝑛+1 − 2𝜓𝑖,𝑗,𝑛+1 + 𝜓𝑖,𝑗−1,𝑛+1

(𝛥𝑦∗)2
]

+
𝛼

𝐿
√𝑅𝑎𝑃𝑟 [

𝜃𝑖+1,𝑗
∗ − 𝜃𝑖−1,𝑗

∗

2𝛥𝑥∗
𝑠𝑖𝑛 𝜑

+
𝜃𝑖,𝑗+1,𝑛+1 − 𝜃𝑖,𝑗−1,𝑛+1

2𝛥𝑦∗
𝑐𝑜𝑠 𝜑]                                               (20) 

Equations (19) and (20) can be reduced to give: 

𝐴3𝑖𝜉𝑖−1,𝑗
∗ + 𝐵3𝑖𝜉𝑖,𝑗

∗ +𝐶3𝑖𝜉𝑖+1,𝑗
∗ = 𝐷3𝑖                       𝑖

= 0,1,2,3, … . 𝑁                                                                              (21) 



Al-Rafidain Journal of Computer Sciences and Mathematics (RJCM), Vol. 18, No. 1, 2024 (84-91) 
 

88  

Where,  

𝐴3𝑖 = −1 

𝐵3𝑖 =
𝑓1

𝑓2

 

𝐶3𝑖 = −1 

 

𝐷3𝑖 = 𝜉𝑖,𝑗−1,𝑛 + (
𝑓3

𝑓2

) 𝜉𝑖,𝑗,𝑛 + 𝜉𝑖,𝑗+1,𝑛

+
𝜆

2
𝐷𝑎−1√

𝑃𝑟

𝑅𝑎
[𝜓𝑖,𝑗+1,𝑛 − 2𝜓𝑖,𝑗,𝑛

+ 𝜓𝑖,𝑗−1,𝑛]

+
𝛼𝜆ℎ∗

4𝐿
√𝑅𝑎𝑃𝑟[(𝜃𝑖+1,𝑗

∗ − 𝜃𝑖−1,𝑗
∗ ) 𝑠𝑖𝑛 𝜑

+ (𝜃𝑖,𝑗+1,𝑛 − 𝜃𝑖,𝑗−1,𝑛) 𝑐𝑜𝑠 𝜑] 

Followed by  

𝐴4𝑖𝜉𝑖,𝑗−1,𝑛+1 + 𝐵4𝑖𝜉𝑖,𝑗,𝑛+1+𝐶4𝑖𝜉𝑖,𝑗+1,𝑛+1 = 𝐷4𝑖            (22)  

Where, 

𝐴4𝑖 = −1 

𝐵4𝑖 =
𝑓1

𝑓2

 

𝐶4𝑖 = −1 

𝐷4𝑖 = 𝜉𝑖−1,𝑗
∗ +

𝑓3

𝑓2

𝜉𝑖,𝑗
∗ + 𝜉𝑖+1,𝑗

∗

+
𝜆

2
𝐷𝑎−1√

𝑃𝑟

𝑅𝑎
[𝜓𝑖,𝑗+1,𝑛+1 − 2𝜓𝑖,𝑗,𝑛+1

+ 𝜓𝑖,𝑗−1,𝑛+1]

+
𝛼𝜆ℎ∗

4𝐿
√𝑅𝑎𝑃𝑟[(𝜃𝑖+1,𝑗

∗ − 𝜃𝑖−1,𝑗
∗ ) 𝑠𝑖𝑛 𝜑

+ (𝜃𝑖,𝑗+1,𝑛 − 𝜃𝑖,𝑗−1,𝑛+1) 𝑐𝑜𝑠 𝜑] 

Where, 

𝑓1 = 1 +
𝜆

𝑅𝑒
      , 𝑓2 =

𝜆

2𝑅𝑒
         ,      𝑓3 = 1 −

𝜆

𝑅𝑒
       

The coefficients 𝑢∗ and 𝑣∗are considered constants in the 

computation for each time step [19]. There is a three-diagonal 

form produced by both equations (motion and heat). Using the 

Gaussian elimination procedure, every element is given in 

[20]. 

5. Conclusion 
The ADI method, which we used to solve the governing 

equations completely without decreasing or changing, is the 

most significant accomplishment of this work. Based on the 

results, we conclude that all equations can be solved to a 

stable state after a number of iterations, and at different angles 

0, 30, and 90, the ADI method, as shown in the figures, is the 

most important achievement. 

 

1. Increases the time step in the energy equation, 

causes a shift away from stability, as shown in Fig. 

2 and Fig. 3.  

2. Fig. 4 and Fig. 7 show that as the Prandtl number in 

the energy and motion equation decreases, we get 

closer to stability at various points in time. 

3. As shown in Fig. 5 and Fig. 8, increasing the 

Rayleigh number in motion and energy equations 

accelerates reaching stability.  

4. In energy equation, the more the Eckert number, the 

further we move away from stability as Fig. 6. 

5. In the equation of motion, the greater angle, the 

further away we are from stability at the same point 

in time as in Fig. 9. 

6. As the angle of inclination and the Prandtl number 

decrease, achieving stability accelerates as shown in 

Fig. 10. 

7. In the equation of motion, we notice that increasing 

the Reynold, Rayleigh numbers and inclination 

angle leads to a move away from stability as shown 

in Fig. 11 and Fig. 12.  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Temperature behavior inside the channel. 
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Fig. 3. Variation of temperature profile when dtau= (0.001, 

0.005, 0.01). 

Fig. 4. Temperature profile variation for different value of 

𝑷𝒓 = (𝟎. 𝟏, 𝟎. 𝟓, 𝟏). 

 

Fig. 5. Temperature Variance for different value of 𝑹𝒂 =
(𝟏𝟎𝟎, 𝟐𝟎𝟎, 𝟑𝟎𝟎). 

 

Fig. 6. Temperature variance for different value of 

𝑬𝒄 = (𝟏𝟎𝟎, 𝟓𝟎𝟎, 𝟏𝟎𝟎𝟎). 

Fig. 7. Distinction of speed shape for several values of 

𝑷𝒓 = (𝟏𝟎, 𝟓𝟎, 𝟏𝟎𝟎) 

Fig. 8. change of velocity distribution for distinct 

𝑹𝒂 = (𝟏𝟎𝟎, 𝟓𝟎𝟎, 𝟏𝟎𝟎𝟎) 
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