
Al-Rafidain Journal of Computer Sciences and Mathematics (RJCM), Vol. 18, No. 1, 2024 (22-29)

22

Software Defect Prediction Using Extreme Gradient Boosting (XGBoost)

with Optimization Hyperparameter

Tariq Najim AL-Hadidi1*, Safwan Omar Hasoon2

1,2Software Department, College of Computer Sciences and Mathematics, University of Mosul, Iraq

Emails: tariq2022hadidi@gmail.com, dr.safwan1971@uomosul.edu.iq

 Article information Abstract

Article history:

Received: 19/8/2023
Accepted: 12/11/2023
Available online: 25/6/2024

Software applications have become an integral part of our daily lives, permeating critical

domains like traffic control, aviation, and self-driving cars. Software defects can lead to

human or material risks. Therefore, ensuring the reliability and quality of software in such

systems presents a significant challenge to software companies. To address this challenge,

many companies have turned to machine learning, leveraging historical project data, to

predict and classify software defects. This study focuses on the classification of software

defect prediction using machine learning techniques, particularly classification methods.

Among the techniques employed is eXtreme Gradient Boosting (XGBoost), a powerful

algorithm for regression and classification analysis based on gradient boosting decision trees

(GBoost). XGBoost offers several hyperparameters that can be fine-tuned to enhance model

performance. The study employs a hyperparameter tuning approach known as grid search,

validated through 10-fold cross-validation. The hyperparameters configured for XGBoost

encompass n_estimators, max_depth, subsample, gamma, colsample_bylevel,

min_child_weight, and learning_rate. The results of this investigation illustrate that utilizing

algorithms with hyperparameter tuning can significantly enhance the XGBoost algorithm's

performance, leading to precise and accurate classification of software defects. This

advancement holds great promise for improving the quality and reliability of software

systems across various critical domains.

Keywords:

Accuracy, eXtreme Gradient Boosting (XGBoost), hyperparameter tuning, precision, software defects

Correspondence:

Author: Tariq Najim AL-Hadidi

Email: tariq2022hadidi@gmail.com

1. Introduction
Machine learning techniques have revolutionized various

domains, and software engineering is no exception. Software

Defect Prediction using Machine Learning (ML) is a

burgeoning field that leverages the capabilities of ML

algorithms to proactively identify potential defects in

software code, helping developers catch and rectify issues

early in the development process. By doing so, it not only

improves software quality but also reduces development time

and costs.[1].

Usually, various software metrics, including McCabe's

metrics, Halstead's metrics, and static code metrics, are

commonly employed to build predictive models. These

metrics are used to analyze software, assess its quality and

characteristics, and aid in enhancing software development,

maintenance, and management processes by establishing

standardized criteria for software evaluation. Consequently,

they are widely used in the majority of software defect

prediction models.[2].

In recent times, numerous machines learning classifiers,

including decision trees and ensemble learning, have been

investigated to enhance software defect prediction prior to the

software testing phase. This involves identifying code sections

likely to be problematic, where errors are likely to occur.

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCM)

www.csmj.mosuljournals.com

mailto:tariq2022hadidi@gmail.com

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCM), Vol. 18, No. 1, 2024 (22-29)

23

Predicting defect-prone code segments can guide more

targeted testing efforts, reducing overall testing costs and

efforts, while enhancing software quality and reliability[2] .

When predicting software defects, it has been found that

ensemble machine learning techniques (such as boosting,

bagging, and stacking) exhibit higher accuracy and reliability

compared to individual classifiers. Optimizing

hyperparameters significantly impacts classifier performance.

Limited studies using optimization techniques have reported

improved prediction performance. Our study aims to address

this gap by conducting an investigation utilizing the XGBoost

technique: a powerful machine learning algorithm widely

recognized and employed across various fields, including

software engineering for defect prediction. XGBoost's

popularity stems from its ability to handle intricate

relationships within data and deliver high predictive

performance. Leveraging other machine learning techniques

for preprocessing the utilized dataset and employing

hyperparameter optimization for fine-tuning further enhances

its effectiveness. Our study seeks to fill this research gap by

utilizing XGBoost and optimizing its hyperparameters for

improved defect prediction performance in software

engineering [3].

The rest of the paper is organized as follows. Section 2

provides background information on the significance of the

XGBoost algorithm used for software defect prediction.

Section 3 examines prior work in ensemble learning and

hyperparameter tuning for software defect prediction. The

experimental study process is detailed in Section 4. Results

and discussion are presented in Section 5. Finally, Section 6

summarizes the conclusions and outlines potential future

work.

2. Related Work

Researcher Iqbal and others developed a framework for

predicting software defects using clustering classification and

feature selection techniques. The framework includes three

main stages to form a set of different classifiers using

clustering classification techniques, selecting the most

important features using the integrated feature selection

technique, and merging the results of the different classifiers;

Two different dimensions are used in the framework, one:

with feature selection, and the second: without feature

selection, and each dimension used two grouping techniques

with the Random Forest classifier: Bagging and Boosting,

and the framework is evaluated using a set of data sets. The

results showed an improvement in the accuracy of predicting

software defects and a reduction in the number of features

used[4].

Researchers Khuat and Le compared the effectiveness of

combining different sampling methods and ensemble learning

through two learning schemes on an imbalanced software

defects data set, and the results obtained indicated that the

balanced training data set contributes to a significant

improvement in the performance of each of the ensemble

models. And the basic classifiers compared to those that use

the original unbalanced dataset. In the first method: each

basic classifier is trained on a different balanced dataset, while

in the second method, all basic learners are trained on a single

balanced dataset. The methodology consists of three

components: Data balancing, classifier training, and

classification[5].

Researcher Suresh Kumar and others presented a new

model for predicting software defects using an assembly

learning technique, or aggregating Bootstrap or Bagging. The

performance of the model was compared with established

machine learning algorithms such as: decision trees, K-nearest

Neighbor, Support Vector Machine, And others using a

specific data set. The proposed bagging approach has shown

superior performance over other methods in predicting

software defects. The bagging method achieved an accuracy

rate exceeding 95% on multiple data sets, superior to other

models[6].

Researcher Yang and others used various machine

learning techniques, specifically using the stacking learning

approach; This new approach was developed to build better

models and improve evaluation methods, and in addition, the

need for appropriate pre-processing work on software defect

data[7].

Researcher Ibrahim and others used the ELFF dataset,

which is based on 23 open source Java projects in which the

researchers used different ensemble learning algorithms, such

as: AdaBoost, Gradient Boost, Bagging, Random Forest, and

their balanced versions, to build a software defect prediction

model on the ELFF dataset[8].

3. Background of the Research

A final predictive model is constructed through the

integration of a diverse set of machine learning classifiers

using a technique known as ensemble learning in machine

learning. These ensembles possess the capability to explore

complex data patterns necessary for achieving accurate

classification and making relevant decisions. The process of

ensemble learning consists of two fundamental stages:

1. Base Classifier Training: This stage involves

training a set of individual machine learning

classifiers, which are collectively assembled to form

the base classifier ensemble.

2. Creation of the Final Model: This is achieved by

combining the outputs of the base classifiers using

methods such as averaging or voting [9].

When base classifiers employ a single classification algorithm,

the ensemble is classified as homogeneous. Conversely, when

a diverse set of methods is used, it is referred to as

heterogeneous [10].

The focus of this study revolves around the application of

ensemble learning based on trees, which leverages

homogeneous ensembles, culminating in a final predictive

model achieved through the integration of multiple base

classifiers.

In essence, this study focuses on the integration of machine

learning classifiers through homogeneous ensemble learning

methodologies to effectively predict software defects. This

comprehensive approach harnesses various techniques, each

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCM), Vol. 18, No. 1, 2024 (22-29)

24

contributing to enhancing predictive accuracy and mitigating

common challenges in software defect prediction.

3. Boosting

Boosting is a powerful ensemble learning technique in

machine learning. It's used to improve the accuracy and

performance of classification algorithms, and it works by

combining the predictions of multiple weak or base learners

(typically decision trees) to create a strong, accurate

predictive model [11][12][13].

Here's a more detailed explanation of boosting:

1. Ensemble Learning: Boosting is a type of ensemble

learning, where multiple models are combined to

produce a single, robust predictive model. The key

idea is that by combining the strengths of several

weak learners, the ensemble model can achieve

better predictive performance than any individual

model.

2. Weak Learners: Boosting focuses on using weak

learners as base models. Weak learners are

classifiers that perform slightly better than random

guessing, such as simple decision trees with limited

depth. These are often called "stumps" because they

are very shallow trees.

3. Iterative Approach: Boosting is an iterative

process. Initially, each data point is given equal

weight, and a weak learner is trained to minimize the

error. After each iteration, the weights of

misclassified data points are increased so that the

next learner focuses more on the previously

misclassified examples. This process continues until

a predefined number of iterations is reached or until

the model's performance plateaus.

4. Weighted Voting: During prediction, each weak

learner contributes to the final prediction, but their

influence depends on their individual performance.

Weak learners that perform better have more weight

in the final prediction, while those that perform

worse have less influence.

5. Usefulness: Boosting is highly useful in scenarios

where high predictive accuracy is required. It's

widely used in various machine learning

applications, including:

• Classification: Boosting is commonly used

for classification tasks, where it can

significantly improve the accuracy of

models, making it valuable in applications

like spam email detection, image

classification, and medical diagnosis.

• Regression: Boosting techniques can also

be adapted for regression problems, where

the goal is to predict a continuous numeric

value rather than a category.

6. Popular Boosting Algorithms: There are several

popular boosting algorithms, and one of them is

XGBoost (eXtreme Gradient Boosting), which you

mentioned earlier. XGBoost is known for its

efficiency, scalability, and high predictive accuracy.

Other notable boosting algorithms include AdaBoost,

Gradient Boosting, and LightGBM.

7. Hyperparameter Tuning: Like many machine

learning algorithms, boosting algorithms often have

hyperparameters that can be fine-tuned to optimize

performance. Hyperparameter tuning involves

adjusting parameters such as the learning rate,

maximum depth of trees, and the number of iterations

to achieve the best results.

4. Extreme Gradient Boosting (Xgboost)

The XGBoost technique is an advancement of the

gradient boosting method introduced by Dr. Tianqi Chen from

the University of Washington in 2014. Gradient boosting is an

algorithmic approach capable of finding optimal solutions for

a variety of problems, notably in regression, classification, and

ranking. The core concept of this algorithm involves

iteratively adjusting learning parameters to minimize the loss

function (a mechanism for evaluating model performance) [2].

Enhanced Gradient Boosting Decision Trees (GBDTs) harness

the intelligence of aggregated predictions from individual

decision trees to yield improved comprehensive predictions.

The boosting process entails training multiple weak decision

trees in successive steps to enhance prediction. A weak tree

model might exhibit good performance only on a portion of

the training dataset. By judiciously combining multiple weak

learners, an exceptionally robust ensemble model is crafted.

XGBoost is a popular technique for GBDT, demonstrating

superior performance across a range of data science problems

with precision and speed. Its training continues iteratively by

introducing new decision trees that predict the errors of

previous trees, which are then combined with the previous

trees to produce the final prediction, as illustrated in the

following Fig. 1:

Fig. 1. Error Reduction through Progressive Training Using

Extreme Gradient Boosting Algorithm[14].

The XGBoost Algorithm Steps [15]:

Step 1: Calculate Residual (New Objective) Calculate the

residual 𝑅𝑖 for all samples in the target variable 𝑦:

av = average (yi) … (1)

Ri = yi – av … (2)

Where 𝑎𝑣 represents the average of sample values and 𝑅𝑖
represents the residual of samples from the target variable 𝑦.

Step 2: Create a New Decision Tree Build an optimal decision

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCM), Vol. 18, No. 1, 2024 (22-29)

25

tree from the feature set 𝑓 and the residual 𝑅𝑖.
Step 3: Calculate New Residual Based on the new errors 𝐷𝑇𝑖,
update the new residual 𝑅𝑖 + 1, which is derived from

learning from the errors (residual 𝑅𝑖) of the previous tree, and

the learning rate 𝛼:

Ri + 1 = av + α × Ri . . . (3)

Where 𝛼= [0.01, 0.1, 0.001,0.3] represents the learning rate.

Step 4: Boosting Repeat steps 2 and 3 until all trees are

trained. For new data samples, XGBoost makes predictions

by sequentially considering steps on all decision trees 𝐷𝑇𝑖.
Fig. 2 illustrates the schematic representation of the XGBoost

algorithm..

Fig. 2. Depicts the schematic representation of the XGBoost

algorithm.

5. Hyperparameter Tuning Dengan Grid Search Cross

Validation

In machine learning techniques, there are several parameter

values expected to enhance model performance, known as

hyperparameters. Hyperparameters are used to optimize

algorithm performance, significantly influencing various

testing models. Hyperparameters are effectively executed by

either manual exploration or predefined limited testing of

hyperparameter sets. The search for hyperparameters can be

done manually or through testing a predefined set of

hyperparameters on specific settings. One of the

hyperparameter techniques that will be applied is Cross-

Validation (CV), which will optimize and estimate the

following hyperparameters to enhance model performance in

classification [16]. Specifically, there are 7 hyperparameters,

as depicted in Table 1 below:

Table 1. Optimal Hyperparameter Values for Best Results
Hyperparameter Uses of Hyperparameters

n_estimators
The number of trees used for the classification

process

max_depth The inner level of the tree

min_child_weight Bobot minimal

eta (learning_rate) Helps streamline steps in model updates

gamma Minimize loss reduction

subsample Instance ratio of the training data

colsample_bylevel Ratio of the training data used to create the tree

6. Evaluation

In general, the performance of a classification algorithm is

evaluated by comparing the expected value of the

classification algorithm with the target value of the test data

variable as actual data. There are several methods to evaluate

the obtained classification model, including accuracy,

precision, and recall. The performance evaluation value of the

XGBoost model is obtained from the confusion matrix. The

confusion matrix is a measurement tool in the form of a

matrix, from which various evaluation values such as

accuracy, precision, and recall are derived.

7. Experimental Study

In this section, we discuss a novel approach to address the

issue of imbalance in the software defect prediction dataset.

The approach involves oversampling the minority class using

oversampling techniques and utilizing data preprocessing to

prepare the data for training an XGBoost model for defect

prediction. This is achieved through optimizing parameter

values using an optimizer, which in turn enhances the model's

performance, ultimately improving testing efficiency. Fig. 3

illustrates the mechanism employed in this study.

Fig. 3. Research Methodology.

1. Data Preprocessing: Predictive defective datasets are

valuable resources in software engineering research,

containing data from previous software projects,

including software metrics and defect information.

Researchers and practitioners utilize these predictive

defect datasets to develop predictive models that

forecast the likelihood of defects occurring in

software units or projects. This is achieved through

the use of machine learning and statistical techniques

to analyze the relationships between software metrics

and defects. These models help identify defect-prone

areas early in the development process, improve

software quality, and reduce error-fixing costs [17].

In this study, (5) datasets from[18]. the NASA MDP

repository will be utilized for open-source predictive

defect analysis. These datasets are publicly available

and include crucial features (software metrics), as

shown in Table 2.

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCM), Vol. 18, No. 1, 2024 (22-29)

26

Table 2. Overview of NASA MDP repository datasets.
Defective

Units

Non-Defective

Units
Instances

Programming

Language
Dataset

49 449 498 C CM1

68 9398 9466 C & C++ MC1

77 1032 1109 C PC1

178 1380 1458 C PC4

326 1783 2109 C++ KC1

Data cleaning is a crucial step in machine learning, as

datasets often contain erroneous, duplicate, or misclassified

data. Inaccurate data can lead to unreliable results and

algorithms, rendering them untrustworthy. Therefore, data

cleaning plays a vital role in algorithm development. It can be

defined as the process of correcting or removing missing or

unnecessary values from a dataset before analysis[19].

2. Relevant feature engineering is undertaken to

capture program characteristics and patterns that

contribute to defect prediction. Consider techniques

like dimensionality reduction (e.g., Principal

Component Analysis) to reduce noise and enhance

feature representation. Data will be partitioned into

two segments during this stage: training data and

testing data, facilitating data exchange.

3. Dataset Balancing: In this stage of preprocessing,

dataset balancing is performed in machine learning,

aiming for an even distribution of data across

classes (defective and non-defective) within the

dataset. Data imbalance occurs when we have a

differing number of samples for each class, a

common issue in the field of machine learning due

to irregularly balanced classes. Imbalance

negatively impacts the performance of machine

learning models, causing them to focus more on

overrepresented classes while neglecting the

underrepresented ones. For instance, in defect

prediction, it is common for most data instances to

belong to the non-defective class, potentially

hindering machine learners' performance, as they

tend to maximize predictive accuracy by

disregarding the minority class [12].

The problem of data imbalance can be mitigated

through resampling techniques, where samples from

the training data are either added or removed to

achieve a more balanced distribution. Often, a

combination of various methods is employed. Data

resampling can be performed in several ways,

including:

A. Oversampling: This involves increasing the

number of samples by adding instances of the

minority class. New instances of the minority class

are often generated by replicating existing minority

instances.

B. Undersampling: This is done by removing

instances belonging to the majority class, resulting

in a reduction of the dataset size. Undersampling

typically involves randomly discarding instances

from the majority class [12].

4. Perform hyperparameter tuning using Cross-

Validation (CV) grid search.

5. Applying XGBoost: In this stage, the XGBoost

algorithm is applied to the data under study.

Simulations of classification using XGBoost are

conducted with reduced quantities of data. The stages

to be executed are as follows:

6. Train the XGBoost model using the training data.

7. Conduct prediction using the pre-trained XGBoost

model.

8. The model must be evaluated using two metrics, as

they have been a fundamental requirement to

determine its proper functioning. AUC, accuracy,

precision, ROC curve, and F1-score are all evaluation

metrics. To start, the definition of the confusion

matrix is given, as shown in Fig. 4 and Table 1:

Interpretation of Results and Conclusions.

Fig. 4. Confusion Matrix.

8. The Confusion Matrix and Evaluation Metrics

The Confusion Matrix is a table that displays the results

of classification predictions. It summarizes the correct and

incorrect predictions by comparing them with the actual

values. It consists of four categories based on the comparison

of predicted values and actual values, which are described as

True Positive (TP), True Negative (TN), False Positive (FP),

and False Negative (FN) ([20]).

1. True Positive (TP): It represents the correctly

predicted positive instances of a software defect. In

other words, when a defect is present, and the

prediction correctly identifies it as a defect.

2. True Negative (TN): It represents the correctly

predicted negative instances of a software defect. In

other words, when no defect is present, and the

prediction correctly identifies it as not a defect.

3. False Positive (FP): It represents the incorrectly

predicted positive instances of a software defect. In

other words, when no defect is present, but the

prediction incorrectly identifies it as a defect.

4. False Negative (FN): It represents the incorrectly

predicted negative instances of a software defect. In

other words, when a defect is present, but the

prediction incorrectly identifies it as not a defect.[21].

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCM), Vol. 18, No. 1, 2024 (22-29)

27

and evaluation metrics

1. Accuracy: Accuracy is the total number of correct

predictions divided by the total number of

predictions made on the dataset. The best accuracy is

1, while the worst is 0. It can be calculated using the

formula (1):

Accuracy =
TP + TN

TP + FP + TN + FN
 (1

2. Precision: Precision is the ratio of true positive

predictions (TP) to the total number of positive

predictions. The best precision is 1, and the worst is

0. It can be calculated using formula (2):

precession =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2)

3. Recall: Recall, also known as sensitivity or true

positive rate, is the ratio of true positive predictions

(TP) to the total number of actual positives (TP +

FN). It can be calculated using formula (3):

Recall =
TP

TP + FN
 (3)

4. F1-Score: The F1-score is the harmonic mean of

precision and recall, providing a balance between the

two metrics. It can be calculated using formula (4):

F1 − score = 2 ∗
precession ∗ Recall

precession + Recall

9. Results And Discussion

The performance results of the XGBoost algorithm using

default parameter values are presented using performance

metrics such as accuracy, precision, recall, and F1-score in

the tables below.

Table 3 illustrates the classification results of the defect

prediction dataset without hyperparameter tuning. The

XGBoost method is applied to classify the defect prediction

dataset. The first step is to remove unwanted variables in the

study. Subsequently, missing and outlier values in the data

are identified. During the modeling phase, the dataset is

divided into training and testing data. The training data

constitutes 80% of the total dataset, while the testing data

accounts for the remaining 20%.

In this study, two experiments are conducted. The first

experiment involves classification using XGBoost without

hyperparameter tuning, and the second experiment involves

classification using XGBoost with hyperparameter tuning

through the grid search method. The classification is

performed using the XGBoost algorithm with the assistance

of the XGBoost library in Python.

In the classification experiments without hyperparameter

tuning, 80% of the training data is used to train the XGBoost

model. The testing data is then used to measure the

performance of the resulting model in terms of accuracy,

precision, and recall. The performance results of the

XGBoost model without hyperparameter tuning can be

observed.

The outcomes of these experiments provide insights into the

effectiveness of the XGBoost algorithm in defect prediction

tasks, both with and without hyperparameter tuning. The

evaluation metrics will help assess the model's performance

and guide the discussion of its implications and conclusions.

Table 3. Performance Results of XGBoost Algorithm Using

Default Parameters
Datasets Accuracy Precision Recall F1-score

PC1 0.933 0.927 0.942 0.934

PC4 0.938 0.920 0.961 0.94

KC1 74330. 560.7 7280. 7420.

MC1 0.975 0.952 0.998 0.975

CM1 8880. 440.8 9380. 8880.

While Table 4 illustrates the performance results of the

XGBoost algorithm for each dataset, achieved by tuning the

hyperparameters of the XGBoost algorithm.

Table 4. Presents the performance results of the XGBoost

algorithm using the tuning of the hyperparameters to achieve

the best values.

Datasets Accuracy Precision Recall F1-score

PC1 0.963 0.921 0.985 0.95

PC4 0.961 0.933 0.995 0.963

KC1 0.795 0.816 0.784 0.8

MC1 0.992 0.984 1 0.991

CM1 0.938 0.922 0.953 0.951

From Fig. 5, it can be observed that the accuracy or the

percentage that defines the similarity between the predicted

results of software defect prediction using the XGBoost

algorithm with the actual measured test data has led to the

classification being conducted using the XGBoost algorithm

with the process of hyperparameter tuning, which involves

optimizing the parameters. This is beneficial for enhancing the

model's performance in classification. There are 7 parameters

that are expected to improve the model's performance in

classification using the XGBoost method. The

hyperparameters tuning is performed on these 7 parameters

using the grid search method. The grid search method is

considered an accurate approach because when determining

the best hyperparameters, each parameter is explored by

specifying its prediction value type first. The optimal

configuration for the hyperparameter of the grid search is

determined based on the highest value of cross-validated

accuracy for the hyperparameter candidate. The results of the

best hyperparameter values are as follows:

Table 5. Optimal Hyperparameter Tuning for XGBoost

Algorithm.

Hyperparameter

Grid

Search Values

Best

Hyperparameter

Values

n_estimator 400, 300, 200, 100 1000

max_depth 8, 7, 6, 5, 4 6

min_child_weight 0, 1, 2, 3, 4, 5, 6, 7 7

eta (learning_rate) 0,3, 0,2, 0,1, 0,05, 0,025 0.3

gamma 0, 0,1, 0,2, 0,3, 0,4, 1, 1,5 ,2 2

subsample 1, 0,75, 0,5, 0,15 1

colsample_bylevel 0.1, 0.2, 0.25, 1.0 1

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCM), Vol. 18, No. 1, 2024 (22-29)

28

It is possible to observe the best parameters and their

corresponding values that can enhance the performance of the

XGBoost algorithm in Table 5. Then, this optimal

hyperparameter configuration is utilized to retrain the

XGBoost model using the entire training dataset.

Subsequently, the XGBoost model with tuned

hyperparameters is evaluated using the test data to measure

its performance in terms of accuracy, precision, and recall.

Regarding the performance results obtained from the

XGBoost model with tuned hyperparameters, they are

presented in graphical form in Fig. 5. It can be noted that the

XGBoost model with tuned hyperparameters demonstrates

significant improvement. These studies also provide evidence

that the pre-training hyperparameter tuning process can

enhance algorithm performance, especially for classification

techniques.

From the description above, it can be concluded that

hyperparameter tuning is recommended as a crucial step

before classification, as both studies indicate its positive

impact on algorithm performance.

Fig. 5. Accuracy values before and after tune

Hyperparameters.

Fig. 6. Precision values before and after tune

Hyperparameters.

Fig. 7. Recall values before and after tune Hyperparameters

Fig. 8. F1-score values before and after tune Hyperparameters

10. Conclusion

Based on the research findings from the discussion, it can

be deduced that the classification results using the XGBoost

method with default parameters on the software defect

prediction dataset have yielded a model considered to be

very good. The model's accuracy, as indicated in Table 3,

can be classified as falling within the category of good

classification. As for the second experiment involving

optimization techniques, specifically the process of

hyperparameter tuning using 7 hyperparameters through

cross-validation, the results of hyperparameter tuning

resulted in a model accuracy as presented in Table 4, with

classification outcomes falling into the "good" classification

category. With these outcomes, it has been demonstrated

that hyperparameter tuning is the optimal solution if you aim

to enhance the performance of the XGBoost algorithm in

classification tasks. Adopting other methods to adjust

parameters and balance data. Parallel data collection and

hyperparameter optimization are important steps for

developing accurate prediction models.

Acknowledgement

The authors would express they’re thanks to the College of

Computer Science and Mathematics, University of Mosul,

for supporting this research.

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCM), Vol. 18, No. 1, 2024 (22-29)

29

References

[1] T. Menzies, R. Krishna, and D. Pryor, “e Promise Repository of

Empirical So ware Engineering Data. hp,” openscience. us/repo.

North Carolina State Univ. Dep. Comput. Sci., 2015.
[2] T. Zhang, Q. Du, J. Xu, J. Li, and X. Li, “Software defect prediction

and localization with attention-based models and ensemble

learning,” Proc. - Asia-Pacific Softw. Eng. Conf. APSEC, vol.
2020-Decem, pp. 81–90, 2020, doi:

10.1109/APSEC51365.2020.00016.

[3] H. Yang and M. Li, “Software defect prediction based on smote-
tomek and xgBoost,” in International Conference on Bio-Inspired

Computing: Theories and Applications, 2021, pp. 12–31.

[4] A. Iqbal, S. Aftab, I. Ullah, M. S. Bashir, and M. A. Saeed, “A
feature selection based ensemble classification framework for

software defect prediction,” Int. J. Mod. Educ. Comput. Sci., vol.

11, no. 9, p. 54, 2019.
[5] T. T. Khuat and M. H. Le, “Evaluation of sampling-based ensembles

of classifiers on imbalanced data for software defect prediction

problems,” SN Comput. Sci., vol. 1, no. 2, p. 108, 2020.

[6] P. Suresh Kumar, H. S. Behera, J. Nayak, and B. Naik, “Bootstrap

aggregation ensemble learning-based reliable approach for

software defect prediction by using characterized code feature,”
Innov. Syst. Softw. Eng., vol. 17, no. 4, pp. 355–379, 2021.

[7] Z. Yang, C. Jin, Y. Zhang, J. Wang, B. Yuan, and H. Li, “Software

Defect Prediction: An Ensemble Learning Approach,” in Journal
of Physics: Conference Series, 2022, vol. 2171, no. 1, p. 12008.

[8] A. M. Ibrahim, H. Abdelsalam, and I. A. T. F. Taj-Eddin, “Software

Defects Prediction At Method Level Using Ensemble Learning
Techniques,” Int. J. Intell. Comput. Inf. Sci., vol. 23, no. 2, pp. 28–

49, 2023.

[9] X. Dong, Z. Yu, W. Cao, Y. Shi, and Q. Ma, “A survey on ensemble
learning,” Front. Comput. Sci., vol. 14, pp. 241–258, 2020.

[10] S. R. Safavian and D. Landgrebe, “A survey of decision tree

classifier methodology,” IEEE Trans. Syst. Man. Cybern., vol. 21,
no. 3, pp. 660–674, 1991.

[11] Y. Freund, “Boosting a weak learning algorithm by majority,” Inf.

Comput., vol. 121, no. 2, pp. 256–285, 1995.
[12] F. S. De Menezes, G. R. Liska, M. A. Cirillo, and M. J. F. Vivanco,

“Data classification with binary response through the Boosting

algorithm and logistic regression,” Expert Syst. Appl., vol. 69, pp.
62–73, 2017.

[13] M.-J. Kim, D.-K. Kang, and H. B. Kim, “Geometric mean based

boosting algorithm with over-sampling to resolve data imbalance
problem for bankruptcy prediction,” Expert Syst. Appl., vol. 42, no.

3, pp. 1074–1082, 2015.

[14] “XGBoost vs LightGBM: How Are They Different.”
https://neptune.ai/blog/xgboost-vs-lightgbm (accessed Sep. 06,

2023).

[15] S. M. Kasongo and Y. Sun, “Performance Analysis of Intrusion
Detection Systems Using a Feature Selection Method on the

UNSW-NB15 Dataset,” J. Big Data, vol. 7, no. 1, p. 105, 2020,
doi: 10.1186/s40537-020-00379-6.

[16] S. Putatunda and K. Rama, “A comparative analysis of hyperopt as

against other approaches for hyper-parameter optimization of
XGBoost,” in Proceedings of the 2018 international conference on

signal processing and machine learning, 2018, pp. 6–10.

[17] Nitin, K. Kumar, and S. S. Rathore, “Analyzing ensemble methods

for software fault prediction,” in Advances in Communication and

Computational Technology: Select Proceedings of ICACCT 2019,

2021, pp. 1253–1267.
[18] “PROMISE Software Engineering Repository.” Accessed: Aug. 21,

2023. [Online]. Available:

http://promise.site.uottawa.ca/SERepository/
[19] V. Kumar and C. Khosla, “Data Cleaning-A thorough analysis and

survey on unstructured data,” in 2018 8th International Conference

on Cloud Computing, Data Science & Engineering (Confluence),
2018, pp. 305–309.

[20] A. K. Santra and C. J. Christy, “Genetic algorithm and confusion

matrix for document clustering,” Int. J. Comput. Sci. Issues, vol. 9,
no. 1, p. 322, 2012.

[21] Ž. Vujović, “Classification model evaluation metrics,” Int. J. Adv.
Comput. Sci. Appl., vol. 12, no. 6, pp. 599–606, 2021.

