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Software applications have become an integral part of our daily lives, permeating critical 

domains like traffic control, aviation, and self-driving cars. Software defects can lead to 

human or material risks. Therefore, ensuring the reliability and quality of software in such 

systems presents a significant challenge to software companies. To address this challenge, 

many companies have turned to machine learning, leveraging historical project data, to 

predict and classify software defects. This study focuses on the classification of software 

defect prediction using machine learning techniques, particularly classification methods. 

Among the techniques employed is eXtreme Gradient Boosting (XGBoost), a powerful 

algorithm for regression and classification analysis based on gradient boosting decision trees 

(GBoost). XGBoost offers several hyperparameters that can be fine-tuned to enhance model 

performance. The study employs a hyperparameter tuning approach known as grid search, 

validated through 10-fold cross-validation. The hyperparameters configured for XGBoost 

encompass n_estimators, max_depth, subsample, gamma, colsample_bylevel, 

min_child_weight, and learning_rate. The results of this investigation illustrate that utilizing 

algorithms with hyperparameter tuning can significantly enhance the XGBoost algorithm's 

performance, leading to precise and accurate classification of software defects. This 

advancement holds great promise for improving the quality and reliability of software 

systems across various critical domains. 
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1. Introduction 
Machine learning techniques have revolutionized various 

domains, and software engineering is no exception. Software 

Defect Prediction using Machine Learning (ML) is a 

burgeoning field that leverages the capabilities of ML 

algorithms to proactively identify potential defects in 

software code, helping developers catch and rectify issues 

early in the development process. By doing so, it not only 

improves software quality but also reduces development time 

and costs.[1]. 

Usually, various software metrics, including McCabe's 

metrics, Halstead's metrics, and static code metrics, are 

commonly employed to build predictive models. These 

metrics are used to analyze software, assess its quality and 

characteristics, and aid in enhancing software development, 

maintenance, and management processes by establishing 

standardized criteria for software evaluation. Consequently, 

they are widely used in the majority of software defect 

prediction models.[2]. 

In recent times, numerous machines learning classifiers, 

including decision trees and ensemble learning, have been 

investigated to enhance software defect prediction prior to the 

software testing phase. This involves identifying code sections 

likely to be problematic, where errors are likely to occur. 
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Predicting defect-prone code segments can guide more 

targeted testing efforts, reducing overall testing costs and 

efforts, while enhancing software quality and reliability[2] . 

When predicting software defects, it has been found that 

ensemble machine learning techniques (such as boosting, 

bagging, and stacking) exhibit higher accuracy and reliability 

compared to individual classifiers. Optimizing 

hyperparameters significantly impacts classifier performance. 

Limited studies using optimization techniques have reported 

improved prediction performance. Our study aims to address 

this gap by conducting an investigation utilizing the XGBoost 

technique: a powerful machine learning algorithm widely 

recognized and employed across various fields, including 

software engineering for defect prediction. XGBoost's 

popularity stems from its ability to handle intricate 

relationships within data and deliver high predictive 

performance. Leveraging other machine learning techniques 

for preprocessing the utilized dataset and employing 

hyperparameter optimization for fine-tuning further enhances 

its effectiveness. Our study seeks to fill this research gap by 

utilizing XGBoost and optimizing its hyperparameters for 

improved defect prediction performance in software 

engineering [3]. 

The rest of the paper is organized as follows. Section 2 

provides background information on the significance of the 

XGBoost algorithm used for software defect prediction. 

Section 3 examines prior work in ensemble learning and 

hyperparameter tuning for software defect prediction. The 

experimental study process is detailed in Section 4. Results 

and discussion are presented in Section 5. Finally, Section 6 

summarizes the conclusions and outlines potential future 

work. 

 

2. Related Work  

Researcher Iqbal and others developed a framework for 

predicting software defects using clustering classification and 

feature selection techniques. The framework includes three 

main stages to form a set of different classifiers using 

clustering classification techniques, selecting the most 

important features using the integrated feature selection 

technique, and merging the results of the different classifiers; 

Two different dimensions are used in the framework, one: 

with feature selection, and the second: without feature 

selection, and each dimension used two grouping techniques 

with the Random Forest classifier: Bagging and Boosting, 

and the framework is evaluated using a set of data sets. The 

results showed an improvement in the accuracy of predicting 

software defects and a reduction in the number of features 

used[4]. 

Researchers Khuat and Le compared the effectiveness of 

combining different sampling methods and ensemble learning 

through two learning schemes on an imbalanced software 

defects data set, and the results obtained indicated that the 

balanced training data set contributes to a significant 

improvement in the performance of each of the ensemble 

models. And the basic classifiers compared to those that use 

the original unbalanced dataset. In the first method: each 

basic classifier is trained on a different balanced dataset, while 

in the second method, all basic learners are trained on a single 

balanced dataset. The methodology consists of three 

components: Data balancing, classifier training, and 

classification[5]. 

Researcher Suresh Kumar and others presented a new 

model for predicting software defects using an assembly 

learning technique, or aggregating Bootstrap or Bagging. The 

performance of the model was compared with established 

machine learning algorithms such as: decision trees, K-nearest 

Neighbor, Support Vector Machine, And others using a 

specific data set. The proposed bagging approach has shown 

superior performance over other methods in predicting 

software defects. The bagging method achieved an accuracy 

rate exceeding 95% on multiple data sets, superior to other 

models[6]. 

Researcher Yang and others used various machine 

learning techniques, specifically using the stacking learning 

approach; This new approach was developed to build better 

models and improve evaluation methods, and in addition, the 

need for appropriate pre-processing work on software defect 

data[7]. 

Researcher Ibrahim and others used the ELFF dataset, 

which is based on 23 open source Java projects in which the 

researchers used different ensemble learning algorithms, such 

as: AdaBoost, Gradient Boost, Bagging, Random Forest, and 

their balanced versions, to build a software defect prediction 

model on the ELFF dataset[8]. 

 

3. Background of the Research 

A final predictive model is constructed through the 

integration of a diverse set of machine learning classifiers 

using a technique known as ensemble learning in machine 

learning. These ensembles possess the capability to explore 

complex data patterns necessary for achieving accurate 

classification and making relevant decisions. The process of 

ensemble learning consists of two fundamental stages: 

1. Base Classifier Training: This stage involves 

training a set of individual machine learning 

classifiers, which are collectively assembled to form 

the base classifier ensemble. 

2. Creation of the Final Model: This is achieved by 

combining the outputs of the base classifiers using 

methods such as averaging or voting [9]. 

When base classifiers employ a single classification algorithm, 

the ensemble is classified as homogeneous. Conversely, when 

a diverse set of methods is used, it is referred to as 

heterogeneous [10]. 

The focus of this study revolves around the application of 

ensemble learning based on trees, which leverages 

homogeneous ensembles, culminating in a final predictive 

model achieved through the integration of multiple base 

classifiers. 

In essence, this study focuses on the integration of machine 

learning classifiers through homogeneous ensemble learning 

methodologies to effectively predict software defects. This 

comprehensive approach harnesses various techniques, each 
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contributing to enhancing predictive accuracy and mitigating 

common challenges in software defect prediction. 

 

3. Boosting 

Boosting is a powerful ensemble learning technique in 

machine learning. It's used to improve the accuracy and 

performance of classification algorithms, and it works by 

combining the predictions of multiple weak or base learners 

(typically decision trees) to create a strong, accurate 

predictive model [11][12][13]. 

Here's a more detailed explanation of boosting: 

1. Ensemble Learning: Boosting is a type of ensemble 

learning, where multiple models are combined to 

produce a single, robust predictive model. The key 

idea is that by combining the strengths of several 

weak learners, the ensemble model can achieve 

better predictive performance than any individual 

model. 

2. Weak Learners: Boosting focuses on using weak 

learners as base models. Weak learners are 

classifiers that perform slightly better than random 

guessing, such as simple decision trees with limited 

depth. These are often called "stumps" because they 

are very shallow trees. 

3. Iterative Approach: Boosting is an iterative 

process. Initially, each data point is given equal 

weight, and a weak learner is trained to minimize the 

error. After each iteration, the weights of 

misclassified data points are increased so that the 

next learner focuses more on the previously 

misclassified examples. This process continues until 

a predefined number of iterations is reached or until 

the model's performance plateaus. 

4. Weighted Voting: During prediction, each weak 

learner contributes to the final prediction, but their 

influence depends on their individual performance. 

Weak learners that perform better have more weight 

in the final prediction, while those that perform 

worse have less influence. 

5. Usefulness: Boosting is highly useful in scenarios 

where high predictive accuracy is required. It's 

widely used in various machine learning 

applications, including: 

• Classification: Boosting is commonly used 

for classification tasks, where it can 

significantly improve the accuracy of 

models, making it valuable in applications 

like spam email detection, image 

classification, and medical diagnosis. 

• Regression: Boosting techniques can also 

be adapted for regression problems, where 

the goal is to predict a continuous numeric 

value rather than a category. 

6. Popular Boosting Algorithms: There are several 

popular boosting algorithms, and one of them is 

XGBoost (eXtreme Gradient Boosting), which you 

mentioned earlier. XGBoost is known for its 

efficiency, scalability, and high predictive accuracy. 

Other notable boosting algorithms include AdaBoost, 

Gradient Boosting, and LightGBM. 

7. Hyperparameter Tuning: Like many machine 

learning algorithms, boosting algorithms often have 

hyperparameters that can be fine-tuned to optimize 

performance. Hyperparameter tuning involves 

adjusting parameters such as the learning rate, 

maximum depth of trees, and the number of iterations 

to achieve the best results. 

 

4. Extreme Gradient Boosting (Xgboost) 

The XGBoost technique is an advancement of the 

gradient boosting method introduced by Dr. Tianqi Chen from 

the University of Washington in 2014. Gradient boosting is an 

algorithmic approach capable of finding optimal solutions for 

a variety of problems, notably in regression, classification, and 

ranking. The core concept of this algorithm involves 

iteratively adjusting learning parameters to minimize the loss 

function (a mechanism for evaluating model performance) [2]. 

Enhanced Gradient Boosting Decision Trees (GBDTs) harness 

the intelligence of aggregated predictions from individual 

decision trees to yield improved comprehensive predictions. 

The boosting process entails training multiple weak decision 

trees in successive steps to enhance prediction. A weak tree 

model might exhibit good performance only on a portion of 

the training dataset. By judiciously combining multiple weak 

learners, an exceptionally robust ensemble model is crafted. 

XGBoost is a popular technique for GBDT, demonstrating 

superior performance across a range of data science problems 

with precision and speed. Its training continues iteratively by 

introducing new decision trees that predict the errors of 

previous trees, which are then combined with the previous 

trees to produce the final prediction, as illustrated in the 

following Fig. 1: 

 
Fig. 1. Error Reduction through Progressive Training Using 

Extreme Gradient Boosting Algorithm[14]. 

 

The XGBoost Algorithm Steps [15]: 

Step 1: Calculate Residual (New Objective) Calculate the 

residual 𝑅𝑖 for all samples in the target variable 𝑦: 

av =  average (yi)     … (1) 

Ri =  yi –  av     … (2) 

Where 𝑎𝑣 represents the average of sample values and 𝑅𝑖 
represents the residual of samples from the target variable 𝑦. 

Step 2: Create a New Decision Tree Build an optimal decision 
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tree from the feature set 𝑓 and the residual 𝑅𝑖. 
Step 3: Calculate New Residual Based on the new errors 𝐷𝑇𝑖, 
update the new residual 𝑅𝑖 + 1, which is derived from 

learning from the errors (residual 𝑅𝑖) of the previous tree, and 

the learning rate 𝛼: 

Ri +  1 =  av +  α ×  Ri      . . . (3) 

Where 𝛼= [0.01, 0.1, 0.001,0.3] represents the learning rate. 

Step 4: Boosting Repeat steps 2 and 3 until all trees are 

trained. For new data samples, XGBoost makes predictions 

by sequentially considering steps on all decision trees 𝐷𝑇𝑖. 
Fig. 2 illustrates the schematic representation of the XGBoost 

algorithm.. 

 
Fig. 2. Depicts the schematic representation of the XGBoost 

algorithm. 

 

5. Hyperparameter Tuning Dengan Grid Search Cross 

Validation 

In machine learning techniques, there are several parameter 

values expected to enhance model performance, known as 

hyperparameters. Hyperparameters are used to optimize 

algorithm performance, significantly influencing various 

testing models. Hyperparameters are effectively executed by 

either manual exploration or predefined limited testing of 

hyperparameter sets. The search for hyperparameters can be 

done manually or through testing a predefined set of 

hyperparameters on specific settings. One of the 

hyperparameter techniques that will be applied is Cross-

Validation (CV), which will optimize and estimate the 

following hyperparameters to enhance model performance in 

classification [16]. Specifically, there are 7 hyperparameters, 

as depicted in Table 1 below: 

 

Table 1. Optimal Hyperparameter Values for Best Results 
Hyperparameter Uses of Hyperparameters 

n_estimators 
The number of trees used for the classification 

process 

max_depth The inner level of the tree 

min_child_weight Bobot minimal 

eta (learning_rate) Helps streamline steps in model updates 

gamma Minimize loss reduction 

subsample Instance ratio of the training data 

colsample_bylevel Ratio of the training data used to create the tree 

 

6. Evaluation 

In general, the performance of a classification algorithm is 

evaluated by comparing the expected value of the 

classification algorithm with the target value of the test data 

variable as actual data. There are several methods to evaluate 

the obtained classification model, including accuracy, 

precision, and recall. The performance evaluation value of the 

XGBoost model is obtained from the confusion matrix. The 

confusion matrix is a measurement tool in the form of a 

matrix, from which various evaluation values such as 

accuracy, precision, and recall are derived. 

 

7. Experimental Study 

In this section, we discuss a novel approach to address the 

issue of imbalance in the software defect prediction dataset. 

The approach involves oversampling the minority class using 

oversampling techniques and utilizing data preprocessing to 

prepare the data for training an XGBoost model for defect 

prediction. This is achieved through optimizing parameter 

values using an optimizer, which in turn enhances the model's 

performance, ultimately improving testing efficiency. Fig. 3 

illustrates the mechanism employed in this study. 

 
Fig. 3. Research Methodology. 

 

1. Data Preprocessing: Predictive defective datasets are 

valuable resources in software engineering research, 

containing data from previous software projects, 

including software metrics and defect information. 

Researchers and practitioners utilize these predictive 

defect datasets to develop predictive models that 

forecast the likelihood of defects occurring in 

software units or projects. This is achieved through 

the use of machine learning and statistical techniques 

to analyze the relationships between software metrics 

and defects. These models help identify defect-prone 

areas early in the development process, improve 

software quality, and reduce error-fixing costs [17]. 

In this study, (5) datasets from[18]. the NASA MDP 

repository will be utilized for open-source predictive 

defect analysis. These datasets are publicly available 

and include crucial features (software metrics), as 

shown in Table 2. 
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Table 2. Overview of NASA MDP repository datasets. 
Defective 

Units 

Non-Defective 

Units 
Instances 

Programming 

Language 
Dataset 

49 449 498 C CM1 

68 9398 9466 C & C++ MC1 

77 1032 1109 C PC1 

178 1380 1458 C PC4 

326 1783 2109 C++ KC1 

 

Data cleaning is a crucial step in machine learning, as 

datasets often contain erroneous, duplicate, or misclassified 

data. Inaccurate data can lead to unreliable results and 

algorithms, rendering them untrustworthy. Therefore, data 

cleaning plays a vital role in algorithm development. It can be 

defined as the process of correcting or removing missing or 

unnecessary values from a dataset before analysis[19]. 

2. Relevant feature engineering is undertaken to 

capture program characteristics and patterns that 

contribute to defect prediction. Consider techniques 

like dimensionality reduction (e.g., Principal 

Component Analysis) to reduce noise and enhance 

feature representation. Data will be partitioned into 

two segments during this stage: training data and 

testing data, facilitating data exchange. 

3. Dataset Balancing: In this stage of preprocessing, 

dataset balancing is performed in machine learning, 

aiming for an even distribution of data across 

classes (defective and non-defective) within the 

dataset. Data imbalance occurs when we have a 

differing number of samples for each class, a 

common issue in the field of machine learning due 

to irregularly balanced classes. Imbalance 

negatively impacts the performance of machine 

learning models, causing them to focus more on 

overrepresented classes while neglecting the 

underrepresented ones. For instance, in defect 

prediction, it is common for most data instances to 

belong to the non-defective class, potentially 

hindering machine learners' performance, as they 

tend to maximize predictive accuracy by 

disregarding the minority class [12]. 

The problem of data imbalance can be mitigated 

through resampling techniques, where samples from 

the training data are either added or removed to 

achieve a more balanced distribution. Often, a 

combination of various methods is employed. Data 

resampling can be performed in several ways, 

including: 

A. Oversampling: This involves increasing the 

number of samples by adding instances of the 

minority class. New instances of the minority class 

are often generated by replicating existing minority 

instances. 

B. Undersampling: This is done by removing 

instances belonging to the majority class, resulting 

in a reduction of the dataset size. Undersampling 

typically involves randomly discarding instances 

from the majority class [12]. 

4. Perform hyperparameter tuning using Cross-

Validation (CV) grid search. 

5. Applying XGBoost: In this stage, the XGBoost 

algorithm is applied to the data under study. 

Simulations of classification using XGBoost are 

conducted with reduced quantities of data. The stages 

to be executed are as follows: 

6. Train the XGBoost model using the training data. 

7. Conduct prediction using the pre-trained XGBoost 

model. 

8. The model must be evaluated using two metrics, as 

they have been a fundamental requirement to 

determine its proper functioning. AUC, accuracy, 

precision, ROC curve, and F1-score are all evaluation 

metrics. To start, the definition of the confusion 

matrix is given, as shown in Fig. 4 and Table 1: 

Interpretation of Results and Conclusions. 

 

 
Fig. 4. Confusion Matrix. 

 

8. The Confusion Matrix and Evaluation Metrics 

The Confusion Matrix is a table that displays the results 

of classification predictions. It summarizes the correct and 

incorrect predictions by comparing them with the actual 

values. It consists of four categories based on the comparison 

of predicted values and actual values, which are described as 

True Positive (TP), True Negative (TN), False Positive (FP), 

and False Negative (FN) ([20]).  

1. True Positive (TP): It represents the correctly 

predicted positive instances of a software defect. In 

other words, when a defect is present, and the 

prediction correctly identifies it as a defect. 

2. True Negative (TN): It represents the correctly 

predicted negative instances of a software defect. In 

other words, when no defect is present, and the 

prediction correctly identifies it as not a defect. 

3. False Positive (FP): It represents the incorrectly 

predicted positive instances of a software defect. In 

other words, when no defect is present, but the 

prediction incorrectly identifies it as a defect. 

4. False Negative (FN): It represents the incorrectly 

predicted negative instances of a software defect. In 

other words, when a defect is present, but the 

prediction incorrectly identifies it as not a defect.[21]. 
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and evaluation metrics 

1. Accuracy: Accuracy is the total number of correct 

predictions divided by the total number of 

predictions made on the dataset. The best accuracy is 

1, while the worst is 0. It can be calculated using the 

formula (1): 

Accuracy =
TP + TN

TP + FP + TN + FN
    (1  

2. Precision: Precision is the ratio of true positive 

predictions (TP) to the total number of positive 

predictions. The best precision is 1, and the worst is 

0. It can be calculated using formula (2): 

precession =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
   (2) 

3. Recall: Recall, also known as sensitivity or true 

positive rate, is the ratio of true positive predictions 

(TP) to the total number of actual positives (TP + 

FN). It can be calculated using formula (3): 

Recall =
TP

TP + FN
   (3) 

4. F1-Score: The F1-score is the harmonic mean of 

precision and recall, providing a balance between the 

two metrics. It can be calculated using formula (4): 

F1 − score = 2 ∗
precession ∗ Recall

precession + Recall
 

 

9. Results And Discussion 

The performance results of the XGBoost algorithm using 

default parameter values are presented using performance 

metrics such as accuracy, precision, recall, and F1-score in 

the tables below. 

Table 3 illustrates the classification results of the defect 

prediction dataset without hyperparameter tuning. The 

XGBoost method is applied to classify the defect prediction 

dataset. The first step is to remove unwanted variables in the 

study. Subsequently, missing and outlier values in the data 

are identified. During the modeling phase, the dataset is 

divided into training and testing data. The training data 

constitutes 80% of the total dataset, while the testing data 

accounts for the remaining 20%. 

In this study, two experiments are conducted. The first 

experiment involves classification using XGBoost without 

hyperparameter tuning, and the second experiment involves 

classification using XGBoost with hyperparameter tuning 

through the grid search method. The classification is 

performed using the XGBoost algorithm with the assistance 

of the XGBoost library in Python. 

In the classification experiments without hyperparameter 

tuning, 80% of the training data is used to train the XGBoost 

model. The testing data is then used to measure the 

performance of the resulting model in terms of accuracy, 

precision, and recall. The performance results of the 

XGBoost model without hyperparameter tuning can be 

observed. 

The outcomes of these experiments provide insights into the 

effectiveness of the XGBoost algorithm in defect prediction 

tasks, both with and without hyperparameter tuning. The 

evaluation metrics will help assess the model's performance 

and guide the discussion of its implications and conclusions. 

 

Table 3. Performance Results of XGBoost Algorithm Using 

Default Parameters 
Datasets Accuracy Precision Recall F1-score 

PC1 0.933 0.927 0.942 0.934 

PC4 0.938 0.920 0.961 0.94 

KC1 74330.  560.7  7280.  7420.  

MC1 0.975 0.952 0.998 0.975 

CM1 8880.  440.8  9380.  8880.  

 

While Table 4 illustrates the performance results of the 

XGBoost algorithm for each dataset, achieved by tuning the 

hyperparameters of the XGBoost algorithm. 

 

Table 4. Presents the performance results of the XGBoost 

algorithm using the tuning of the hyperparameters to achieve 

the best values. 

Datasets Accuracy Precision Recall F1-score 

PC1 0.963 0.921 0.985 0.95 

PC4 0.961 0.933 0.995 0.963 

KC1 0.795 0.816 0.784 0.8 

MC1 0.992 0.984 1 0.991 

CM1 0.938 0.922 0.953 0.951 

 

From Fig. 5, it can be observed that the accuracy or the 

percentage that defines the similarity between the predicted 

results of software defect prediction using the XGBoost 

algorithm with the actual measured test data has led to the 

classification being conducted using the XGBoost algorithm 

with the process of hyperparameter tuning, which involves 

optimizing the parameters. This is beneficial for enhancing the 

model's performance in classification. There are 7 parameters 

that are expected to improve the model's performance in 

classification using the XGBoost method. The 

hyperparameters tuning is performed on these 7 parameters 

using the grid search method. The grid search method is 

considered an accurate approach because when determining 

the best hyperparameters, each parameter is explored by 

specifying its prediction value type first. The optimal 

configuration for the hyperparameter of the grid search is 

determined based on the highest value of cross-validated 

accuracy for the hyperparameter candidate. The results of the 

best hyperparameter values are as follows: 

 

Table 5. Optimal Hyperparameter Tuning for XGBoost 

Algorithm. 

Hyperparameter 

Grid 

Search Values 

Best 

Hyperparameter 

Values 

n_estimator 400, 300, 200, 100 1000 

max_depth 8, 7, 6, 5, 4 6 

min_child_weight 0, 1, 2, 3, 4, 5, 6, 7 7 

eta  (learning_rate) 0,3, 0,2, 0,1, 0,05,  0,025 0.3 

gamma 0, 0,1, 0,2, 0,3, 0,4, 1,  1,5 ,2 2 

subsample 1, 0,75, 0,5, 0,15 1 

colsample_bylevel 0.1, 0.2, 0.25, 1.0 1 
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It is possible to observe the best parameters and their 

corresponding values that can enhance the performance of the 

XGBoost algorithm in Table 5. Then, this optimal 

hyperparameter configuration is utilized to retrain the 

XGBoost model using the entire training dataset. 

Subsequently, the XGBoost model with tuned 

hyperparameters is evaluated using the test data to measure 

its performance in terms of accuracy, precision, and recall. 

Regarding the performance results obtained from the 

XGBoost model with tuned hyperparameters, they are 

presented in graphical form in Fig. 5. It can be noted that the 

XGBoost model with tuned hyperparameters demonstrates 

significant improvement. These studies also provide evidence 

that the pre-training hyperparameter tuning process can 

enhance algorithm performance, especially for classification 

techniques. 

From the description above, it can be concluded that 

hyperparameter tuning is recommended as a crucial step 

before classification, as both studies indicate its positive 

impact on algorithm performance. 

 
Fig. 5. Accuracy values before and after tune 

Hyperparameters. 

 

 
Fig. 6. Precision values before and after tune 

Hyperparameters. 

 
Fig. 7. Recall values before and after tune Hyperparameters 

 
Fig. 8. F1-score values before and after tune Hyperparameters 

 

10. Conclusion 

Based on the research findings from the discussion, it can 

be deduced that the classification results using the XGBoost 

method with default parameters on the software defect 

prediction dataset have yielded a model considered to be 

very good. The model's accuracy, as indicated in Table 3, 

can be classified as falling within the category of good 

classification. As for the second experiment involving 

optimization techniques, specifically the process of 

hyperparameter tuning using 7 hyperparameters through 

cross-validation, the results of hyperparameter tuning 

resulted in a model accuracy as presented in Table 4, with 

classification outcomes falling into the "good" classification 

category. With these outcomes, it has been demonstrated 

that hyperparameter tuning is the optimal solution if you aim 

to enhance the performance of the XGBoost algorithm in 

classification tasks. Adopting other methods to adjust 

parameters and balance data. Parallel data collection and 

hyperparameter optimization are important steps for 

developing accurate prediction models. 
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