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The Sine Cosine Algorithm (SCA), a recently discovered population-based optimization 

technique, is used to resolve optimization issues. In this research, the study proposes employing 

the LWSCA (Locally Weighted Sine Cosine Algorithm) as a hybrid approach to enhance the 

performance of the original SCA (Sine Cosine Algorithm) and mitigate its limitations. These 

limitations encompass restricted resolution, slow convergence rates, and difficulties in achieving 

global optimization when dealing with complex, multi-dimensional spaces. The fundamental idea 

underlying LWSCA is to incorporate the SCA algorithm with the locally weighted (LW) 

technique and mutation diagram. The hybridization process has two stages: An algorithm is 

initially changed by altering the fundamental equations to ensure greater effectiveness and 

accuracy. The second point is that when the LW local approach is used to create a new dependent 

site, it increases the randomness during the search process. This, in turn, raises the population 

variance of the optimizer being proposed, ultimately enhancing the overall effectiveness of the 

global search. The putative method's hybrid architecture is anticipated to significantly increase 

the potential for exploration and exploitation. By evaluating SCA's performance against IEEE 

CEC 2017 functions and contrasting it with a variety of different metaheuristic techniques, the 

usefulness of SCA is investigated. According to the experimental data gathered, the LWSCA's 

convergence, exploration, and exploitation tendencies have all greatly improved. According to 

the results, the suggested LWSCA method is a good one that performs better than SCA and other 

rival algorithms in most functions. 
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1. Introduction  
Finding the ideal solution is one of the issues of 

improvement in scientific research that has attracted the 

attention of many scientists, and it was one of the hot spots in 

the issue of absolute judgment on the optimal solution. Post 

intuitive algorithms have become a dominant window 

modeling and optimization tool. The basic work of any 

descriptive algorithm is exploration and exploitation. It's worth 

thinking about because it's simple, doesn't call for difficult 

stages, avoids the need for localized fine-tuning, uses fewer 

parameters, and enables thorough global searches [1]. 

Metaheuristic algorithms based on solutions and descriptive 

Evolutionary algorithms draw their inspiration from the 

mechanisms of natural evolution. They employ mutation 

procedures and crossover operations to retain the most 

promising individuals while discarding the least fit ones within 

a population. This process begins by ensuring that the newly 

generated population surpasses the previous one, much like 
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how genetic algorithms (GA) operate [2]. Additionally, there 

exist behavior-inspired algorithms that mimic the intelligent 

group dynamics found in biological swarms. Examples of such 

algorithms include the Seagull Optimization Algorithm (SOA) 

[3], the Grasshopper Optimization Algorithm (GOA) [4], the 

Firefly Optimization Algorithm (FOA) [5], the Gray Wolf 

Algorithm (GWA) [6], the Ant Lion Optimizer (ALO) [7], the 

Manta-Ray Foraging Optimization (MRFO) [8], the Artificial 

Bee Colony (ABC) [9], Differential Evolution (DE) [10], the 

Salp Swarm Algorithm (SSA) [11], and Particle Swarm 

Optimization (PSO) [12]. For instance, in PSO, each particle 

within the swarm represents a potential solution. In PSO, each 

swarm particle represents a solution. The bird's behavior was 

simulated, swarming in order to update the population until it 

exceeded the stopping criterion and else. Algorithms based on 

the international system usually need fewer parameters and 

operators. Additionally, information in the search field is 

preserved for communication across squadron members [13]. 

As a result, it greatly reduces the algorithm's computational 

scope and complexity, as well as being superior to evolution-

based algorithms and phenomenon-based physics algorithms 

such as Black Hole (BH) [14], Thermal Exchange 

Optimization (TEO) [14], Chemical Reaction Optimization 

(CRO) [15], etc. The optimization of the algorithms also helps 

in choosing the features of the ideal classifier by selecting the 

most relevant data set. It is a data mining technique that 

eliminates redundant and unnecessary data from data sets to 

make them easier to analyze. With the difficulty of mining and 

translating a large amount of data into usable data, feature 

selection (FS) is becoming increasingly important [16]. 

Feature-selection methods can be largely divided into three 

categories: filters, wrappers, and embedded [17]. Despite the 

good advantages of metaheuristic algorithms for dealing with 

optimization problems, their main problem was reaching 

optimal local solutions. Due to the poor balance between the 

exploitation and exploration processes, which reduces the 

speed of convergence in the search process [18], the design of 

new optimization models is a challenge for many complex 

practical applications. 

The sine cosine algorithm (SCA) was a brand-new 

algorithm that Mirjalili unveiled in 2016 [19]. Researchers 

have been attracted to the SCA algorithm because it is 

straightforward and requires fewer parameters. The cosine 

method, like other metaheuristic algorithms, has major 

drawbacks, such as a slow convergence time and the fact that 

it is not sufficient to provide accuracy for every solution. In 

addition, only a few possibilities have been explored. In recent 

years, a variety of methods and algorithms have been 

developed to enhance the original SCA and address its 

drawbacks by taking advantage of the advantages of 

hybridization methods. A revolutionary hybrid feature 

selection method known as SCAGA, which combines the Sine 

Cosine Algorithm (SCA) and genetic algorithm (GA), by 

researchers under the supervision of Laith Abu Alika [20]. 

Also, a new approach known as ARSCA has been proposed as 

an alternative to SCA, aiming to correct the limitations of the 

original algorithm [21], in addition to a number of other works. 

In order to advance SCA and encourage a better balance 

between the exploitation and exploration phases, this work 

offers a new locally weighted (LW) method. The SCA can 

enhance its convergence frequency and update the positions of 

its followers through mutation by using the LW technique. This 

is the order in which we tackled the project: Below are some of 

the features that our algorithm offers: We discussed the 

conversion factor used to enhance the accuracy and potential 

for convergence of the algorithm. Furthermore, to enhance 

efficiency and avoid being trapped in local optima, the SCA 

technique includes a novel approach known as local weighted 

(LW). These methods help achieve a balance between 

exploitation and exploration in the SCA algorithm. The 

suggested approach was recently tested to determine its 

effectiveness and how it compares to other well-known 

metaheuristics. This was done through the Evolutionary 

Computational Computing Competition (CEC) benchmarking 

functions, which included CEC 2017. 

 

2. Principles of SCA  
This section provides a comprehensive explanation of the 

SCA optimization algorithm. 

 

2.1. Sine Cosine Algorithm 

An optimization method that acts at the population level is 

the SCA algorithm. It starts by producing a series of random 

answers and works its way towards the best one through 

mathematical calculations involving sine and cosine functions. 

The algorithm adheres to a straightforward mathematical 

paradigm, like other meta-optimization methods. A collection 

of solutions, often referred to as "search agents," are placed at 

random in the search space to start the search process. The 

results of these evaluations are then compared with an objective 

function. The algorithm continues to update the solutions in 

order to generate new ones while keeping track of the best 

solution discovered thus far, which serves as its location. The 

sine and cosine functions, as shown in equations 1 and 2, are 

frequently used as part of the SCA algorithm's optimization 

phase. Up until a predetermined maximum number of 

repetitions, this process is repeated. The following is a 

description of the mathematical model used to update the 

positions in the SCA algorithm [19]:  

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝑟1 × sin(𝑟2) × |𝑟3𝑃𝑖
𝑡 − 𝑋𝑖

𝑡|                            …(1)                                                                

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝑟1 × cos(𝑟2) × |𝑟3𝑃𝑖
𝑡 − 𝑋𝑖

𝑡|                            …(2)                                                                        

Where 𝑋𝑖
𝑡 is the position of the current solution in i −

th dimension at t − th iteration, 𝑟1 , 𝑟2 , 𝑟3 are random numbers, 

𝑃𝑖  is position of the destination point in i − th dimension. These 

two equations can be combined and utilized in the following 

manner. 

𝑋𝑖
𝑡+1 = {

𝑋𝑖
𝑡 + 𝑟1 × 𝑠𝑖𝑛(𝑟2) × |𝑟3𝑃𝑖

𝑡 − 𝑋𝑖
𝑡|,      𝑟4 < 0.5 

𝑋𝑖
𝑡 + 𝑟1 × 𝑐𝑜𝑠(𝑟2) × |𝑟3𝑃𝑖

𝑡 − 𝑋𝑖
𝑡|,    𝑟4 ≥ 0.5

}  …(3)                                                    

where 𝑟4 is a random number in [0,1].  

Let 𝑟1 , 𝑟2 , 𝑟3, and 𝑟4  be variables representing key parameters 

in a stochastic control algorithm (SCA). The parameter 𝑟2  

determines the degree of motion required for the solution to 

approach or move away from the destination. Meanwhile, the 
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parameter 𝑟2 introduces a random weight for the destination, 

allowing for stochastic emphasis (when 𝑟3 > 1) or de-

emphasis (when 𝑟3 < 1) of the destination's impact on 

determining the distance. The variable 𝑟4 is employed to 

randomly alternate between sine and cosine functions in 

Equation (3), with its value ranging [0,1]. 

The equations provided above demonstrate that the 

parameter 𝑟1 plays a crucial role in determining the size of the 

subsequent solution. The solution area can either rotate around 

the current solution area (during the exploration stage) or 

remain within it (during the exploitation stage). In order to 

maintain a balance between the abilities to explore and exploit, 

equations (1)-(3) are dynamically adjusted. As per the 

following equation:  

  𝑟1 = 𝑏 − 𝑡(𝑏 𝑇)⁄            …(4)                                                                                                                  

In the given context, where 𝑡  represents the current 

iteration, 𝑇 represents the maximum number of iterations, and 

𝑏 is a constant that gradually reduces the range of sine and 

cosine functions from 𝑏 to 0 (typically b = 2) throughout the 

iterations, the following paraphrase can be provided: During 

the sequence of iterations, the behavior of the Sine Cosine 

Algorithm (SCA) can be categorized into two modes based on 

the ranges of the sine and cosine functions. When these ranges 

fall within the intervals [1, 2] and [-2, -1] respectively, the SCA 

is said to be in the global space exploration mode. Conversely, 

when the ranges are limited to the interval [-1, 1], the SCA 

operates in the local search space, emphasizing exploitation. 

The pseudocode for the SCA mechanism is displays in 

Algorithm 1 [19]. 

 

Algorithm 1: The Sine Cosine Algorithm. 

1. Begin by creating a group of random agents. 

2. Evaluate the cost function for all agent. 

3. Identify the agent with the best performance based 

on the cost function. 

4. Adjust the values of r1, r2, r3, and r4. 

5. Revise the location of the search agents by 

utilizing equation (3). 

6. If the current iteration (t) is less than the 

maximum allowed iterations (T), return to step 2. 

7. Provide the best solution found thus far as the 

global optimum.  

 

3.  Proposed Algorithm 
In this section, we present the introduction of two 

approaches: the locally weighted approach (LW) and the 

proposed approach. 

 

3.1. Locally weighted technique (LW) 

The locally weighted method, commonly known as "local 

search" is a heuristic method used to resolve challenging 

optimization issues. Using an adjacent solution from the search 

space, it continuously modifies the existing solution. The 

secret to a good local search comes in strategically selecting 

the right neighbors because there are frequently an endless 

number of potential neighbors for a solution. At the conclusion 

of each iteration in the optimization process, the local search 

algorithm (LW) is a suggested algorithm that makes use of this 

local search strategy to improve the present solution, known as 

the "position of solution." The LW local search method's steps 

are outlined in great depth in Algorithm 2 [22]. 

At the start of each iteration (denoted as t), the proposed 

algorithm optimizes a population (𝑝𝑜𝑝𝑡) consisting of Npop 

positions. Each position is represented by a solution (𝑥𝑖
𝑡 =

(𝑥𝑖,1
𝑡 , 𝑥𝑖,2

𝑡 , … 𝑥𝑖,𝑑𝑖𝑚
𝑡 )), which is refined using the (Sine Cosine 

Algorithm) based on the algorithm's guidelines. The optimized 

solution for a SCA is denoted as 𝑥𝑚𝑖
𝑡  , Subsequently, this 

position is further improved using the LW approach to generate 

a new solution (𝑥𝑛𝑒𝑤𝑖
𝑡) using the following formula: 

 

𝑤𝑒𝑖𝑔ℎ𝑡[𝑗] = 1
(1 + exp (𝑥𝑛𝑒𝑤𝑖

𝑡 − 𝑥[𝑖, 𝑗]))⁄                       …(5)                                                                                 

𝑥𝑛𝑒𝑤𝑖
𝑡 = 𝑥𝑛𝑒𝑤𝑖

𝑡 + 𝑍[𝑗] ∗ (𝑤𝑒𝑖𝑔ℎ𝑡[𝑗] ∗ (𝑥[𝑟1, : ] − 𝑥[𝑟2, : ])) 

(6)                                                       

𝑍 = 0.01 × 𝑎 × 𝛿

𝑏
1

𝛾
⁄  , 𝛿 = (

𝜇(1+𝛾)×𝑠𝑖𝑛(
𝜋𝛾

2
)

𝜇(
1+𝛾

2
)×𝛾×2

(
𝛾−1

2 )
)

1

𝛾

                   …(7)                                                                           

Where 𝑥[𝑟1, : ], 𝑥[𝑟2, : ] are two random locations within the 

population that differ from location 𝑥[𝑖, : ]. Z is levy flight 

distribution [48 from Harris], 𝛾 is constant set equal to 1.5, 

𝑎 & 𝑏 random value in (0,1), 𝑥[𝑟3, : ] and 𝑥[𝑟4, : ] different 

random locations from 𝑥[𝑖, : ]. 
 

3.2. Update the positions 

The SCA algorithm uses an iterative process to carry out a 

randomized exploration of the solution space, just as other 

swarm intelligence optimization techniques do. Although it 

cannot guarantee finding the best answer in one step, adjusting 

the initial values and iteration settings can enhance the 

likelihood of obtaining the optimal solution. SCA can 

effectively balance the ability to explore globally and exploit 

locally because of its quick convergence speed and simple 

structure. The process typically begins by generating an initial 

set of random solutions through a population-based approach. 

These initial, seemingly nonsensical answers will be improved 

once the optimization problem's objective function is evaluated. 

It will default to the local optimal value and ignore the global 

ideal value if the distribution of the agents in the search space 

is overly concentrated, which will decrease the algorithm's 

ability to explore the entire world. On the other hand, if the 

distribution of the agents is excessively dispersed, the 

algorithm's local exploitation will be lessened since the local 

optimal value will be disregarded. Therefore, balancing local 

exploitation and global exploration is a crucial aspect of 

optimization algorithms. The sine-cosine algorithm employs 

the cosine search method for exploitation and the sine search 

method for exploration in order to perform this function. 

SCA is a numerical optimization algorithm that draws 

inspiration from the sine cosine wave-based algorithm and is 

utilized for problem-solving purposes. Although there are some 

advantages to using this algorithm, it's essential to be aware of 

its limitations. The sine-cosine algorithm, in particular, has a 
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few common drawbacks that should be taken into 

consideration, including: 

• The algorithm heavily depends on generating random 

numbers to select potential solutions and determine 

jumps, which leads to a significant reliance on 

chance. As a result, this can lead to unstable outcomes 

and unexpected performance. 

• Having limited exploration capability can hinder 

finding the best possible solutions. SCA may not be 

able to explore the problem space thoroughly, which 

could lead to missing out on reasonable solutions or 

settling for suboptimal ones. It's essential to explore 

the problem space to achieve optimal results 

thoroughly. 

•  One issue with the SCA is its reliance on updating 

solutions through random jumps, which can be 

inefficient. This approach may lead to the 

overlooking of good solutions or arriving at 

unsuitable points in the search space, ultimately 

wasting time and resources. 

• The SCA has a limitation in its adaptability to 

nonlinear problems. Although it is effective in 

solving linear or similar problems, it may face 

difficulties when dealing with nonlinear problems 

with complex relationships between variables. The 

SCA may not be efficient enough to handle these 

complexities. 

These limitations highlight the need for careful consideration 

and evaluation when applying the Sine Cosine Algorithm to 

different problem domains. 

In this work, a new method was proposed that combines local 

search with SCA to find the best solutions and avoid getting 

stuck in local minima. As part of this method, the updated sites 

and solutions were modified (see Figure 1). To begin with, 

every individual in the population undergoes optimization 

(referred to as a "position"). This can be achieved using the 

SCA method, specifically the cosine equation, or by utilizing a 

suggested approach known as the "proposed strategy for 

updating follower positions." Subsequently, the LW technique 

is employed to enhance the outcomes and select the optimum 

position for the given "Position". Within the population, two 

groups exist. The suggested technique is used with SCA to 

achieve the best possible outcome. By combining these 

methodologies, the goal is to avoid local minima and streamline 

the search process to uncover optimal solutions. Algorithm 3 

outlines the specific steps of the suggested technique. 

𝑥𝑛𝑒𝑤𝑖
𝑡 = 𝑋𝑖

𝑡 + 𝑟1 × cos(𝑟2) × |𝑟3𝑃𝑖
𝑡 − 𝑋𝑖

𝑡|                       …(8)                                                                                                                                   

The exclusion method we use to update the current site ensures 

that the update is always for the better and steers clear of poor 

solutions. If the new site obtained is worse than the current site, 

it is ignored and the current one is kept, otherwise it is approved 

and the current site is updated with it, as shown in Algorithm 3. 

 

Algorithm 2: The developed Locally weighted technique. 

        For i = 1 :Npop 

            If random < 0.5 :  

                Randomly choose two particles 𝑥𝑟𝑎𝑛𝑑1
𝑡  and 𝑥𝑟𝑎𝑛𝑑2

𝑡   from 𝑝𝑜𝑝𝑡  

                Calculate 𝑤𝑒𝑖𝑔ℎ𝑡 for particle i by eq. (5) 

                Calculate 𝑡ℎ𝑒 𝑟𝑎𝑛𝑑𝑜𝑚 𝑣𝑎𝑙𝑢𝑒 𝑧 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 Levy flight  for particle i by eq. (7)  

                Calculate the new position 𝑥𝑛𝑒𝑤𝑖
𝑡of particle i by eq. (6) 

            End For  

 

 

3.3 Scenario for LWSCA optimization 

The algorithm depicted in Figure 2.1 combines local search 

and the sine cosine algorithm to efficiently discover optimal 

solutions without getting trapped in local minima. The 

algorithm consists of two primary stages. In the initial phase, 

the "Proposed Strategy for Updating Follower Locations" is 

utilized to enhance the positioning of every individual within 

the group. The most advantageous location is selected once 

the solutions have been optimized using the LW approach. 

The optimal site is then determined through a weight 

equation, and the followers are selected using our proposed 

method that divides the population into two groups. We aim 

to expedite the search process, discover optimal solutions, 

and avoid getting stuck in local minima by combining  

 

 

 

strategies. The algorithm clearly outlines the proposed 

technique. Figure 2.1 presents a visual representation of the 

suggested approach. There are two steps to the process. First, 

each member of the population undergoes optimization using 

either SCA or our proposed approach for updating positions. 

Afterward, to improve the solutions and determine the 

optimal position locations, the local search method is 

employed. 

There are two sets in the population, and the SCA algorithm 

is used to evolve the best position. The suggested technique 

for positions is also employed to expedite the search process 

and prevent getting stuck in local minima. Algorithm 2.3 

outlines the phases of the suggested technique in detail. 
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Starting parameters: N, Tmax, dim, lb, up. create a random

      population of search members, starting positions, 
𝑋𝑖
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. 

The fitness value of starting places should be determined and arranged 

 

Best position = Best solution & Best Fitness = best function value 

 

t =1 

Edit Z by using Eq. (7)   

Fig. 1. Flow chart of the proposed LWSCA. 
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Initialize the population matrix (location)  𝑋𝑖 , 𝑖 = 1,2, . . , 𝑁 

Dimensions and population size include upper and lower 

bounds. 

Compute the fitness value of each location as𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖 , , 𝑖 =
1,2, . . , 𝑁 

Compute the Best location. 

and food location as the ideal location. 

while (stopping condition is not hold) 

           evaluate r1 by Eq. (4) 

           for (all Location)) 

                  if ( 𝑖 ≤ 𝑁 2⁄  ) then 

                        Apply (LW) technique as Algorithm (2)                 

                 else  

                        Appply eq. (8) to compute the new position 

𝑥𝑛𝑒𝑤𝑖
𝑡  

                            

           Compute the value of the fitness of the new location 

as New_Fitness. 

           If (New_Fitness < 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖) 

                𝑋𝑖 = 𝑥𝑛𝑒𝑤𝑖
𝑡 

           End 

           Ubdate the Best Position and Best Fitness 

end 

 

4.   Experimental result and analysis 

In this section, we assess and compare the performance 

of the proposed method with other similar methods by 

conducting experiments on various feature selection 

datasets. All experiments are carried out under identical 

conditions. 

 

4.1.    Benchmark Examination for the IEEE CEC 2017 

There are 29 distinct functions in the IEEE CEC 2017 

benchmark collection. The range [-100, 100] is used to 

determine the search zone for each variable and function in 

each dimension. Each function is fully described in the 

technical article that goes along with it [30]. A summary of 

all 29 functions is also included in the paper as an 

illustration. 

Several algorithms, including CSO, PSO, WOA, BAT, 

HHO, and SCA, are in competition in this test. Table 1 lists 

the parameters that have been chosen for each participant. 

Table 1: Parameter settings. 

For these optimization strategies, the population size and 

total number of members exceed 30 and 2500, respectively. 

The Friedman rank test was used to find the best option [23], 

and it was strongly felt that the LWSCA algorithm was 

superior to the other algorithms. A Wilcoxon site ranking 

test was also conducted at a significant level of 5% to 

consider any statistical discrepancies between the results 

achieved by the LWSCA and those of its competitors. The 

p-value obtained from the Wilcoxon signed-rank test is 

shown in Table 6. The symbol “<0.05” in Table 6 indicates 

whether LWSCA performed significantly better, 

significantly worse, or nearly as good as its peers. The 

average rating in Table 7 shows that LWSCA ranked 

highest, while BAT and CSO ranked last. The LW-SCA 

method outperforms the standard SCA method and other 

techniques. This shows how LWSCA stands out in 

comparison. In addition, as shown in Figures 2,3,4,5, 

LWSCA's new local search function enables it to identify 

the global solution surrounding getting trapped or trapped 

in the local Optima. 

The properties of F1 and F2, two monomorphic functions 

employed in this test to evaluate the algorithm's efficiency 

in utilizing these scalar functions and to examine the 

applicability of the SCA approach, are shown in Table 2. 

Furthermore, Figure 2 shows that by including its 

innovative local search capabilities, LWSCA successfully 

finds the global optimal solution and avoids becoming stuck 

in local optima. 

Table 2. Results from 2500 iterations of the LWSCA vs some Algorithms variants on IEEE CEC2017 F1and F2. 
F Cr. CSO PSO WOA BAT HHO SCA LWSCA 

F1 

Avg 4.620E+12 1.130E+12 2.260E+11 3.490E+12 2.070E+12 1.870E+12 1.244E+09 

Std 2.192E+11 4.952E+10 4.472E+09 1.749E+11 7.922E+10 5.719E+10 6.786E+09 

Med 1.779E+12 1.549E+11 1.010E+10 1.325E+12 7.318E+11 5.219E+11 1.717E+05 

F2 

Avg 9.529E+05 4.689E+05 8.409E+05 5.765E+06 3.530E+05 4.085E+05 3.941E+04 

Std 1.585E+06 2.967E+04 6.001E+04 8.978E+06 2.757E+04 2.341E+04 1.278E+04 

Med 3.806E+05 1.616E+05 1.825E+05 5.638E+05 2.003E+05 1.420E+05 3.919E+04 

rank W/T/L 0/0/2 0/0/2 0/0/2 0/0/2 0/0/2 0/0/2 2/0/0 

Algorithm 3:  LWSCA Pseudocode. 

Algorithm  Parameter setting 
CSO Phi , range: 0 

PSO Vmax = 6, wMin = 0.2, wMax = 0.9, c1 = c2 =2 

WOA Convergence constant (a) [0, 2] 

Coefficient (b) 1,  range:2 

BAT Loudness, Pulse rate,  range:0.5, 0.5 
Frequency minimum,  range:0 

Frequency maximum,  range:2 

HHO Beta,  range:1.5 

SCA Convergence constant 𝑟1,  range: [0, 2] 
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According to table3, the algorithm's ability to explore is 

demonstrated by the fact that it successfully finds and 

acquires intriguing solutions. The functions F3 ,F4, F6, F7, 

F8 and F9 used in this investigation have many local 

maxima that increase exponentially with the number of 

dimensions. SCA can solve these reference functions in 

dimensions of 50 and 100.  As a result, with each step up in 

dimension, local maxima in functions F3, F4, F6, F7, F8 and 

F9 significantly expand. Table 3 shows how well SCA 

works in solving these reference functions in 50 and 100 

dimensions, and shows how well exploration and 

exploitation capabilities have improved thanks to the use of 

competitive learning technology based on the LWSCA 

method. Additionally, as shown in Figure 3, LWSCA's new 

local search function enables it to locate the global optimal 

solution and prevent being trapped or gated in local optima. 

 

Table 3. Results from 2500 iterations of the LWSCA vs some Algorithms variants on IEEE CEC2017 F3 to F9. 
F Cr. CSO PSO WOA BAT HHO SCA LWSCA 

F3 Avg 1.942E+05 2.536E+04 4.469E+03 1.381E+05 6.554E+04 3.857E+04 5.389E+02 

Std 1.402E+04 1.296E+03 1.460E+02 1.662E+04 4.230E+03 1.756E+03 5.687E+01 

Med 6.602E+04 4.930E+03 1.123E+03 5.310E+04 2.077E+04 8.607E+03 5.435E+02 

F4 Avg 2.677E+03 1.793E+03 1.732E+03 2.151E+03 1.694E+03 1.970E+03 9.299E+02 

Std 6.610E+01 6.156E+01 7.472E+01 8.061E+01 3.603E+01 3.351E+01 7.480E+01 

Med 1.486E+03 9.729E+02 9.589E+02 1.180E+03 9.484E+02 1.095E+03 9.015E+02 

F5 Avg 7.678E+02 7.041E+02 7.110E+02 7.114E+02 6.937E+02 7.138E+02 7.065E+02 

Std 1.194E+01 8.197E+00 1.568E+01 1.110E+01 6.522E+00 5.907E+00 1.277E+01 

Med 7.734E+02 6.856E+02 7.190E+02 7.118E+02 7.025E+02 6.981E+02 7.092E+02 

F6 Avg 9.061E+03 3.181E+03 3.568E+03 6.129E+03 3.336E+03 3.715E+03 1.714E+03 

Std 2.826E+02 7.016E+01 9.950E+01 4.615E+02 5.799E+01 7.866E+01 9.964E+01 

Med 4.111E+03 1.496E+03 1.780E+03 2.992E+03 1.773E+03 1.714E+03 1.728E+03 

F7 Avg 3.134E+03 2.134E+03 2.094E+03 3.010E+03 2.017E+03 2.339E+03 1.220E+03 

Std 7.072E+01 5.276E+01 5.448E+01 8.518E+01 3.710E+01 3.010E+01 7.824E+01 

Med 1.774E+03 1.246E+03 1.255E+03 1.752E+03 1.200E+03 1.411E+03 1.208E+03 

F8 Avg 1.631E+05 6.715E+04 5.839E+04 3.398E+04 3.209E+04 8.236E+04 1.876E+04 

Std 1.002E+04 3.964E+03 8.005E+03 4.088E+03 1.171E+03 4.033E+03 5.462E+03 

Med 7.268E+04 2.026E+04 2.641E+04 1.621E+04 1.463E+04 2.542E+04 1.754E+04 

F9 Avg 3.342E+04 3.214E+04 2.595E+04 2.674E+04 2.582E+04 3.221E+04 8.513E+03 

Std 5.936E+02 7.082E+02 1.400E+03 1.217E+03 1.303E+03 3.663E+02 7.438E+02 

Med 1.578E+04 1.469E+04 1.196E+04 1.153E+04 1.111E+04 1.506E+04 8.472E+03 

ran

k 

W/T/

L 

0/0/7 0/0/7 0/0/7 0/0/7 1/0/6 0/0/2 6/0/1 

 

 

 

 

                       Cec2017 F1                                                            Cec2017 F2 

Figure 2:     Cec2017 F1 and F2. 
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Incorporating hybrid and compound functions is essential to 

striking the right balance between exploration and 

exploitation and avoiding being caught in local optima. The 

results shown in Table 4 show that the suggested LWSCA 

performs better than other methods while handling hybrid 

functions F10, F11, F12, F13, F14, F15 and F17. 

Additionally, Figure 4's results show that the LWSCA 

technique outperforms rival algorithms in handling the 

challenging optimization challenges provided by functions 

F10, F11, F12, F13, F14, F15 and F17. 

 

Table 4. Results from 2500 iterations of the LWSCA vs some Algorithms variants on IEEE CEC2017 F10 to F19. 
F Cr. CSO PSO WOA BAT HHO SCA LWSCA 

F10 Avg 7.992E+05 1.168E+05 1.521E+05 2.214E+06 2.649E+05 1.200E+05 1.272E+03 

Std 1.426E+04 1.191E+03 6.232E+02 8.269E+04 2.679E+03 1.956E+03 3.658E+01 

Med 4.817E+04 4.120E+03 2.677E+03 6.500E+04 1.719E+04 8.579E+03 1.271E+03 

F11 Avg 2.330E+12 2.430E+11 3.298E+10 2.050E+12 1.160E+12 6.430E+11 1.251E+07 

Std 2.132E+11 1.675E+10 3.649E+09 1.911E+11 1.112E+11 2.931E+10 1.291E+07 

Med 8.373E+11 3.448E+10 5.755E+09 6.943E+11 3.967E+11 1.243E+11 7.662E+06 

F12 Avg 7.050E+11 4.485E+10 5.507E+08 5.810E+11 2.980E+11 1.280E+11 1.400E+05 

Std 2.047E+11 3.459E+09 2.499E+08 1.759E+11 1.173E+11 1.563E+10 1.062E+05 

Med 5.895E+11 4.518E+09 1.125E+08 4.848E+11 1.409E+11 3.750E+10 9.491E+04 

F13 Avg 2.689E+08 1.276E+07 1.029E+07 2.436E+08 3.207E+07 3.700E+07 1.230E+05 

Std 9.520E+07 1.201E+06 1.707E+06 1.280E+08 3.166E+07 3.373E+06 8.959E+04 

Med 1.040E+08 6.766E+05 2.127E+06 1.088E+08 1.999E+07 3.737E+06 9.055E+04 

F14 Avg 3.140E+11 2.040E+09 9.488E+07 2.980E+11 1.250E+11 4.045E+10 5.559E+04 

Std 6.306E+10 9.247E+07 4.638E+07 5.835E+10 1.468E+10 2.984E+09 3.883E+04 

Med 1.464E+11 6.167E+07 6.974E+06 9.817E+10 1.708E+10 5.575E+09 4.027E+04 

F15 Avg 3.115E+04 1.185E+04 1.382E+04 2.548E+04 1.856E+04 1.377E+04 4.019E+03 

Std 1.748E+03 6.527E+02 8.221E+02 2.683E+03 1.753E+03 4.389E+02 4.802E+02 

Med 1.087E+04 4.574E+03 5.421E+03 9.522E+03 7.033E+03 5.916E+03 3.977E+03 

F16 Avg 3.547E+07 7.671E+03 9.070E+03 2.913E+07 1.246E+06 3.178E+04 3.712E+03 

Std 1.634E+05 3.704E+02 4.726E+02 3.256E+05 1.085E+03 2.911E+02 4.431E+02 

Med 7.325E+04 3.375E+03 4.113E+03 3.652E+04 4.952E+03 4.716E+03 3.657E+03 

F17 Avg 6.341E+08 1.277E+07 6.782E+06 5.800E+08 4.460E+07 6.887E+07 8.429E+05 

Std 2.342E+08 5.373E+06 1.274E+07 3.567E+08 4.117E+07 1.397E+07 4.307E+05 

Med 3.408E+08 6.203E+06 1.167E+07 3.288E+08 5.392E+07 2.351E+07 8.304E+05 

F18 Avg 3.440E+11 6.097E+09 1.340E+08 2.910E+11 1.260E+11 3.739E+10 3.717E+04 

Std 2.695E+10 2.194E+08 6.049E+07 3.705E+03 8.203E+09 1.666E+09 3.547E+04 

Med 7.234E+10 6.868E+07 1.058E+07 1.752E+04 6.083E+09 3.407E+09 3.194E+04 

F19 Avg 8.150E+03 7.362E+03 6.475E+03 6.527E+03 6.129E+03 7.480E+03 3.526E+03 

Std 2.392E+02 3.241E+02 3.512E+02 3.959E+02 2.806E+02 1.611E+02 3.236E+02 

Med 4.499E+03 3.884E+03 3.813E+03 4.256E+03 3.596E+03 4.007E+03 3.555E+03 

rank W/T/

L 

0/0/10 0/0/10 0/0/10 0/0/10 0/0/10 0/0/10 10/0/0 

                                  Cec2017 F5                              Cec2017 F6                     Cec2017 F3                                     Cec2017 

F4                                                        

 Cec2017 F9                                                                                                            Cec2017 F7                                               Cec2017 

F8                                       

Fig. 3. Cec2017 F3 toF9. 
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The enclosed Table 5 demonstrates the utilization of the 

technique on compound functions, specifically F20 to F29. 

The outcomes reveal that the proposed LWSCA algorithm 

outperforms other algorithms in these functions F20, F21, 

F22, F23, F24, F25, F28, and F29. Additionally, the results 

depicted in Figure 5 provide further evidence that the SCA 

approach is more effective than alternative methods in 

resolving challenging optimization problems posed by the 

F20, F21, F22, F23, F24, F25, F28, and F29 functions. 

 

 

        Cec2017 F10                                   Cec2017 F11                               Cec2017 F12                                         Cec2017 

F13                                                        

      Cec2017 F14                                      Cec2017 F15                               Cec2017 F16                                        Cec2017 

F17                                                        

           Cec2017 F18                                     Cec2017 

F19                                                                         

Fig. 4. Cec2017 F10 toF19. 
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Table 5. Results from 2500 iterations of the LWSCA vs some Algorithms variants on IEEE CEC2017 F20 to F29. 
F Cr. CSO PSO WOA BAT HHO SCA LWSCA 

F20 Avg 5.221E+03 3.889E+03 4.235E+03 4.984E+03 4.576E+03 4.048E+03 2.928E+03 

Std 1.339E+02 4.596E+01 1.013E+02 1.187E+02 8.516E+01 4.460E+01 1.186E+02 

Med 3.413E+03 2.819E+03 2.953E+03 3.143E+03 3.014E+03 2.903E+03 2.923E+03 

F21 Avg 3.570E+04 3.444E+04 2.934E+04 2.901E+04 2.881E+04 3.462E+04 1.032E+04 

Std 6.786E+02 1.745E+03 1.324E+03 1.065E+03 1.208E+03 4.319E+02 9.087E+02 

Med 1.746E+04 1.639E+04 1.348E+04 1.387E+04 1.333E+04 1.674E+04 1.021E+04 

F22 Avg 7.841E+03 4.883E+03 5.034E+03 6.516E+03 6.155E+03 5.047E+03 3.965E+03 

Std 3.582E+02 8.097E+01 1.883E+02 3.379E+02 2.132E+02 7.492E+01 3.106E+02 

Med 4.972E+03 3.451E+03 3.751E+03 4.520E+03 4.207E+03 3.578E+03 3.949E+03 

F23 Avg 1.358E+04 6.537E+03 6.260E+03 1.032E+04 9.445E+03 6.884E+03 4.196E+03 

Std 5.384E+02 7.984E+01 1.723E+02 3.107E+02 2.405E+02 6.064E+01 2.899E+02 

Med 5.434E+03 3.653E+03 3.773E+03 4.876E+03 4.486E+03 3.768E+03 4.196E+03 

F24 Avg 7.226E+04 1.180E+04 5.585E+03 4.748E+04 1.972E+04 1.795E+04 3.068E+03 

Std 6.108E+03 6.977E+02 1.335E+02 5.804E+03 9.735E+02 7.762E+02 4.205E+01 

Med 3.259E+04 5.652E+03 3.462E+03 2.438E+04 1.011E+04 7.134E+03 3.077E+03 

F25 Avg 7.546E+04 2.923E+04 3.408E+04 6.918E+04 4.500E+04 3.764E+04 1.202E+04 

Std 2.820E+03 7.221E+02 1.215E+03 2.631E+03 7.011E+02 4.847E+02 1.019E+03 

Med 2.562E+04 1.081E+04 1.417E+04 2.126E+04 1.479E+04 1.277E+04 1.237E+04 

F26 Avg 1.535E+04 6.511E+03 5.236E+03 3.200E+03 1.208E+04 7.791E+03 4.610E+03 

Std 1.113E+03 1.867E+02 4.691E+02 6.390E-05 9.094E+02 1.743E+02 5.815E+02 

Med 8.130E+03 4.684E+03 4.151E+03 3.200E+03 6.339E+03 4.608E+03 4.533E+03 

F27 Avg 5.591E+04 1.334E+04 7.187E+03 3.300E+03 2.330E+04 2.254E+04 3.339E+03 

Std 2.195E+03 5.386E+02 2.741E+02 3.671E-05 8.839E+02 6.693E+02 6.075E+01 

Med 1.847E+04 5.717E+03 4.245E+03 3.300E+03 9.849E+03 7.295E+03 3.320E+03 

F28 Avg 3.164E+06 1.537E+04 1.650E+04 3.323E+06 1.641E+05 2.357E+04 5.639E+03 

Std 1.062E+06 8.103E+02 9.872E+02 5.647E+05 2.448E+04 8.454E+02 4.884E+02 

Med 2.641E+05 7.157E+03 8.264E+03 1.831E+05 1.969E+04 7.943E+03 5.596E+03 

F29 Avg 5.250E+11 2.074E+10 2.898E+09 4.480E+11 2.120E+11 7.870E+10 8.920E+06 

Std 4.397E+10 5.753E+08 3.097E+08 4.420E+10 7.920E+09 1.983E+09 6.028E+06 

Med 9.897E+10 7.147E+08 5.299E+08 8.507E+10 9.554E+09 6.234E+09 6.886E+06 

rank W/T/
L 

0/0/10 0/0/10 0/0/10 2/0/8 0/0/10 0/0/10 8/0/2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Cec2017 F20                                 Cec2017 F21                            Cec2017 F22                                          Cec2017 

F23                                                

 Cec2017 F24                                  Cec2017 F25                            Cec2017 F26                                          Cec2017 

F27                                                        

            Cec2017 F28                                  Cec2017 

F29                                      

Fig. 5. Cec2017 F20 toF29. 
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Table 6. Wilcoxon rank − sum of the LWS𝐶A vs. another algorithms on CEC2017. 
Fun CSO PSO WOA BAT HHO SCA 

1 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 

2 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 

3 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 

4 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 

5 < 0.05 < 0.05 < 0.05 0.210614 < 0.05 < 0.05 

6 < 0.05 < 0.05 < 0.05 < 0.05 0.163971 0.570291 

7 < 0.05 < 0.05 < 0.05 < 0.05 0.894837 < 0.05 

8 < 0.05 0.432254 < 0.05 0.110934 < 0.05 < 0.05 

9 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 

10 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 

11 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 

12 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 

13 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 

14 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 

15 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 

16 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 

17 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 

18 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 

19 < 0.05 < 0.05 < 0.05 < 0.05 0.931838 < 0.05 

20 < 0.05 < 0.05 0.488917 < 0.05 < 0.05 0.591599 

21 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 

22 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 

23 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 

24 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 

25 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 

26 < 0.05 0.956593 < 0.05 < 0.05 < 0.05 0.968987 

27 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 

28 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 

29 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 

 

 

Table 7. Friedman test result of the LWSSA vs another algorithms on CEC2017. 
Fun CSO PSO WOA BAT HHO SCA LWSCA 

1 6.965517 3 1.965517 6.034483 4.965517 4.034483 1.034483 

2 6.206897 3.413793 3.827586 6.586207 4.37931 2.586207 1 

3 6.62069 3.034483 2 6.37931 5 3.965517 1 

4 7 2.931034 2.896552 5.827586 2.482759 4.931034 1.931034 

5 7 1.137931 4.862069 4.655172 3.413793 2.862069 4.068966 

6 6.931034 1.034483 4.068966 6.068966 3.862069 2.896552 3.137931 

7 6.62069 3 2.965517 6.37931 1.827586 4.931034 2.275862 

8 7 3.655172 4.965517 2.344828 1.827586 5.068966 3.137931 

9 6.724138 5.206897 3.241379 2.931034 2.862069 6 1.034483 

10 6.310345 2.931034 2.068966 6.586207 5.034483 4.068966 1 

11 6.793103 3 2 6.103448 5.068966 4.034483 1 

12 6.517241 3 2 6.37931 5.068966 4.034483 1 

13 6.37931 2.310345 3.103448 6.310345 5 3.862069 1.034483 

14 6.758621 2.896552 2.103448 6.206897 4.862069 4.172414 1 

15 6.586207 1.793103 3.137931 6.103448 5.034483 3.827586 1.517241 

16 6.62069 1.482759 3 6.344828 4.310345 4.344828 1.896552 

17 6.344828 2.448276 2.931034 6.551724 4.896552 3.793103 1.034483 

18 7 3.896552 3.172414 1.172414 5.551724 5.37931 1.827586 

19 6.517241 3.586207 3.344828 5.586207 2.172414 4.62069 2.172414 

20 6.896552 1.310345 3.448276 5.62069 4.586207 2.827586 3.310345 

21 6.827586 5.137931 2.931034 3.344828 2.793103 5.827586 1.137931 

22 6.62069 1.172414 2.931034 6.103448 4.896552 2.310345 3.965517 

23 6.793103 1.448276 2.310345 5.931034 4.931034 2.482759 4.103448 

24 6.793103 3.068966 2 6.206897 5 3.931034 1 

25 6.931034 1.172414 3.827586 6.068966 4.793103 3 2.206897 

26 6.793103 3.689655 2.827586 1 6.137931 3.62069 3.931034 

27 7 4 3 1.103448 6 5 1.896552 

28 6.448276 2.206897 3.517241 6.37931 5.172414 3.241379 1.034483 

29 6.62069 2.689655 2.310345 6.37931 4.793103 4.206897 1 

Avg. 6.711058 2.74673 2.991677 5.265161 4.369798 3.995244 1.920333 

Rank 7 2 3 6 5 4 1 
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4.2    LWSCA Computational Complexity  

We shall step-by-step investigate the computational 

complexity of LWSCA with N as the population size, D as 

the issue dimension, and L as the maximum number of 

iterations. The worst-case computation time can be calculated 

as follows. During the initialization stage, LWSCA 

undergoes two processes. The first is random initialization, 

which has the same computational complexity as the original 

SCA, O(N × D). The second is obtaining the optimal solution, 

which also has a computational complexity of O(N), similar 

to the original SSA. Therefore, in the initialization stage, the 

computational complexity of LWSCA is O(N × D + N). In 

each iteration stage, the agent's position is first updated based 

on Equation (1) or Equation (9), resulting in a computational 

complexity of O(N × D). Then, the location of each agent is 

further updated using the LW strategy, which has a 

computational complexity of O(N). Hence, in each iteration, 

the computational complexity of LWSCA is O(N × D + N). 

Consequently, the overall computational complexity of the 

original LWSCA is O(L × N × D + L × N), which can be 

simplified as O(L × N × N × (D + 1)). 

 

5. Conclusion and future works 

In this paper, we introduce a novel algorithm that 

combines the Sine Cosine Algorithm (SCA) with a locally 

weighted (LW) strategy to improve the utilization of 

conventional algorithms. We assess the performance of this 

hybrid algorithm by comparing it to five other feature 

selection methods: CSO, PSO, WOA, BAT, and HHO. We 

define various parameters, including the maximum value of 

the objective function, deviation, best performance, average 

performance, subjective assessment, and aesthetic time. By 

examining how the algorithm converges, we conclude that it 

excels at maintaining a balance between exploitation and 

exploration. Empirical numerical and statistical results 

demonstrate that this hybrid approach outperforms its 

competitors in terms of convergence speed. These findings 

suggest that it presents viable solutions and could serve as an 

alternative method for improving the efficiency of real-world 

tasks, particularly those of a complex nature. To widen its 

applicability across various domains, future research could 

explore its use with diverse datasets. For instance, it might 

find application in analyzing data from pocket turbine tests. 

Additionally, it could be worthwhile to investigate this 

optimization algorithm (AOA) alongside other established 

optimization techniques that have traditionally addressed 

integral selection problems. 
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