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ABSTRACT 

This paper investigated a modified integral transform method used to solve heat 

equation in cylindrical coordinate, this modification method has been obtained based on 

   integral transform (x-coordinate), we expand    integral transform (x-coordinate) to 

    integral transform (x,y,z,t-coordiantes) and convert it to cylindrical coordinate 

denoted by      integral transform (r,θ,z,t-coordinates). Finally we used      integral 

transform to solve heat equation in cylindrical coordinate. 
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1. Introduction: 

      Heat transfer topic have great importance in several problems of industrial and 

environmental. In advance, in energy production and transformation applications, In this 

field there is no single application that does not include the effects of heat transfer In a 

way or another. It have a wide participation of power from conventional fossil fuels, 

sources of nuclear or the use of geothermal energy sources [9]. Many science fields and 

engineering confrontation linear or non-linear partial differential equations describing 

the physical phenomena. Many of methods (for instance, exact and approximate 

methods) can be used to solve differential equations. Often ,of difficulty to solve these 

equations analytically. Such equations can be solved by integral transforms like Fourier 

and Laplace transforms  and the importance of Fourier and Laplace transforms lies in 

their ability to get algebraic equations from differential equations [3]. In general several 

researchers used integral transform method to solve heat equation such as: 

Kamel Al-Khaled solve heat equation by using finite Fourier Transform [4]. Xiao-

Jun Yang found the solution of one dimensional heat-diffusion equation in cartesian 

coordinate by depending on a new integral transform operator [11]. Also Xiao-Jun Yang 

used new integral transform for solve a steady heat transfer problem [12]. Ranjit 

R.Dhunde and G.L.Waghmare used double Laplace Transform to solve one dimensional 

heat equation in cartesian coordinate [7]. Hamood Ur Rehman, Muzammal Iftikhar, 

Shoaib Saleem, Muhammad Younis and Abdul Mueed used Quadruple Laplace 

Transform to solve heat equation in cartesian coordinate [3]. V. S. Kulkarni, K. C. 

Deshmukh and P. H.Munjankar used finite hankel transform to solve steady state 

temperature of the cylinder satisfies the heat conduction equation(r,z,t coordinate) [10]. 

Also the solution of steady state heat equation(r,θ,t coordinate) was found by using 

mellin transform [1]. Also the solution of one dimension heat equation in cylindrical 

coordinate got by Laplace Transform [6]. 
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2. Modified Integral Transform Method 

   integral transform method given by [5]: 
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the above transform extended to     transform: 
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put     transform in the fourth dimension: 
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by use                          convert the above integral transform to 

cylindrical coordinate [2]: 
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whereas     denoted to cylindrical coordinate of     transform .In the next step, we use 

    which is modified integral transform method to solve heat equation in cylindrical 

coordinate. Also      inverse is denoted by     
   and defined by: 
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3. Apply     integral transform to solve heat equation 

The expression of heat equation in cylindrical coordinate is [8]: 
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ρ : fluid density 

   : fluid specific heat 

k : fluid thermal conductivity 

with boundary and initial conditions: 
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We take      to equation (1): 
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Now we must find: 
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by integrate twice with respect to r we get: 
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similarly: 
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substituting (3), (4), (5), (6) and (7) in (2) we get: 
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arrange the above equation: 
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multiply both sides of the above equation by (
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take     
   to the above equation: 
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the above equation reduce to: 
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it is clear that: 
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constant. 
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rewrite the equation (8) gives: 
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from boundary condition:  
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after substituting in (9) and simplicity we get: 
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Which is the solution of the heat equation in cylindrical coordinate. 

4. Conclusion 

In this paper, we extend   transform to     transform which is converted to the 

cylindrical coordinate denoted by       transform.      transform has an advantage 

compare with hankel transform, millen transform and quadruple Laplace transform 

because of      transform solve heat equation in cylindrical coordinate (r,θ,z,t-

coordinates) which is partial differential equation with variable coefficients and hankel 

transform solve heat equation in cylindrical coordinate (r,z,t-coordinates) [10], millen 

transform solve heat equation in cylindrical coordinate (r,θ,t-coordinates) [1], quadruple 

Laplace transform solve heat equation in cartesian coordinate (x,y,z,t-coordinates) which 

is partial differential equation with constant coefficients [3]. 
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