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ABSTRACT

In this paper, we determine sufficient conditions, distortion properties and radii of
starlikeness and convexity for functions The hypergeometric meromorphic functions
have certain formula in the punctured unit disk which contains in new subclass
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1. Introduction:

LetX denote the class of f (<) , where f(<) is the meromorphic function
normalized
by f(0)=f'(0)-1=0 and defined by:

f(§)=Fral, (1.1)

where (1.1) is analytic in U’ :{§ el and0<|§|<1} =U\{0}, and [ be the set

of complex numbers, (U is called punctured unit disk),[1].

Two of the most important subclasses of meromorphic functions, namely the starlike
and convex functions, but both have very useful analytic characterizations.

Definition 1.1: A function f is said to be convex in U if the image of U under f isa
convex region, i.e."any line segment joining any two points of f(U") lies entirely in
f(us)",

[2].

Definition 1.2: Let U”be the punctured unit disk, if the image of U”under f is starlike
region containing w=0, then the function f is called starlike, i.e. "any line
segment joining any points of f(U") from w=0 liesin U™  [2].

We denote the subclasses starlike and convex of order y,(y =0) inU by =S"(y) and

YK (y) ofZ consisting of all meromorphic functions respectively, the starlike of order
X satisfy the following condition:

1)
R =215/
( f0) ]”’
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the necessary and sufficient condition for a function f to be convex of order ¥ can be

written as follows [3]:
9{_1_: f (;)]V
(<)
The functions f_ () for all m=1,2 are defined

1 & .
fm(§)=z+2am§ , (m=1,2).
k=1
The convolution of f, () and f, (&) defined by :

(500 = 7+ Tauaad"

where the convolution is called the Hadamard product.

Consider the function :
D(w,0:0) _Z ZEW;K+1§ (cel IU,;mel), (1.2)
K+1
Ty+x) |vly+D..(w+x-1) (k=nel;yel),
I'(y) 1 (x =0;p €0 \{0}),
and U, =0" U{O} , (), is called Pochhammer symbol and I"is Gamma function,

[4, 7 and 9].
We note that s 1
Where @(01014):2 2F1(1,ZU,O-;§) ’

0 b o K
o) SO

is the well-known Gaussin hypergeometric function, [5].
For f eXgiven by (1.1), we reintroduce c' f(g“) which is studied by many authors

(see for example [6].
¢ f()=0-t)f({)+tL(-f(L)) =—+Z(1 (x+Dt)a ", (t=0). (1.3)

Now, using the convolution between (1.2) and (1.3), we will introduce a new function
M. _ defined on X by

w *
M, 1(¢)=8(@,0:) ¢ () =2+ 3 Dot - (esD)a s, (£ V)
é/ —1( )I(+1 (14)
There are many studies about the generalized of meromorphic functions and
hypergeometric functions, see [7-11].

For all £eU™ and-1<D <S<1, the function f eXis said to be a member of the
subclass =>°7 (t, ) if it satisfies , see[12].
M, T () +M; ()
DS (M, T (£)'+S (M, T(<)
Remark .1.1. It follows from (1.4) that
¢(M, . T(&) =aM,.,, T($) - (@+) M, T({) .

where (y), =

<1. (1.5)
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2. Distortion Theorems and Coefficient Estimates
Theorem 2.1:Let f be the function defined by (1.4) and satisfies (1.5), then, we have

i EZ;l A= (c+))|[(x+1) - (xD+S)]]a|<S-D, (2.1)

where —-1<D <S<1.
Proof: Suppose that (1.5) holds true, then

4(41 i )'“”(1 (k+ D) K3, é“"lj+:+2(w)"+l(1 (erhac

K+1 K=l K+1

Dé{gl ii )M (- (K+1)t)Ka§_lj+S ;+Zw:(w)K+l

K+1 K=1 (O-) K+1

<1

(1-(x+1)1) a,(g’(]

Z @) 1 (e 410 (x +1) 2 Ve

= S D ( )K+l Sl
Z(“)M (1-(x+1t) (kD +S)a "
é/ ( )K+l
Zgi ~(k+D)1) (k+Da %SgD Z;gi ~(k+1)t) (kD +S)a | < 0
N i“")#(l—(ml)t)(ﬁl)akgﬁl —‘S—D+i%(l—(x+l)t)(xD+S)akg’”l <0
=1\0 ) =1\0 )
Z( 'f+1| (k+D)t)[(c+D]a,[|¢**|-S+D- Z( ;K+l| (x+1)t)|(xD +9)a,[|¢**|< 0
K+l =1 (7
when |{|=r1 —>1
ZEW;MW (c+Dt)|[(x+1) - (kD +S)]|a,|<S-D
# =, K+1
Corollary2.1:Let the function f be defined by (1.4). If f eZ>"(t,«), then
(0),..(S-D)
.| < (@), |- (x +DY)|[(x +1) - (xD +S)] (1), 22)
#
The sharp for functions f (£) at the term x has the form:
f(0)=1 (9)18-D) & (), 23)

 @)on]@- (c+ D[(x +1)— (£ D+ 5)]

Corollary2.2: If t=0,S=1and D=-1in Theorem 2.1, then f X satisfying the
following
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condition

Z (W)Ku K.| a,<| <1

K+1
and it is starlike in U". #

Corollary 2.3: For S =1and D =-1 in Theorem 2.1, we have

Ziwim (A= (c+1)t)|xfa,| < 1

and therefore the function M_ _f(¢) is starlike in u.

Corollary 2.4: If t=0,S=1and D=-1in Theorem 2.1, then f X satisfying the

following
condition
Z( )K+1 2|aK|Sl
(U)K+l
and it is convex in U, #

Corollary 2.5: For S =1and D =-1 in Theorem 2.1, we have

Ziw;'ﬁl |(1-(x+1)t)|x*|a,|< 1

and therefore the function M} _f(¢) is convexin U".

The following Theorem is given the distortion property of function in the subclass
=20 (t,x).

Theorem?2.2:The function f defined by (1.4) in the subclass 223 (t,x), then for all

0<|[¢|=r <1, we have

1 (5-D) 1 (5-D)
TR ) E A P o)) 24
and
1 (S-D) 1 (S-D)
7 -0y O sy 29
with equality for
1, (s-D)
O s o ©
Proof: Let f eX? (t,«). Then, Theorem 2.1 readily yields the inequality
(@), S-D
2 (o 0G0l < 29)
For 0<|¢ |=r <1, and making use of (2.6), we have
(@) s x (@) 1 _
|f(§)|—|g| Z( » (1= (x+1)0)||a, | 1< | <F Z( " (1-(x+1)t||a,|
Sl+r 5-D 314_ &I’ (27)

r [(«+)—-(«D+S)] r (2-(S+D))
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and the other side of the inequality in (2.4) can be obtained using similar procedure.
For (2.5), again from Theorem 2.1, it follows that

Z(w)'f+l|(1 (x+1)t) |xla,|< x(5-D)

. (2.8)
1 (0) e [(x+1)—(xD+S)]
Hence
i (w)ml K= l K (S - D)
e S O e N (s
<i+ﬂ (2.9)
“r? (2-(S+D)) '

By similarity, the other side of the inequality follows and the proof is complete.
#
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3. Convexity and Radii of Starlikeness
Theorem3.1:If the function f in the subclass =37 (t, ), then f is meromorphically
starlike of order y 0<y<1)in|d |<1,

1

{(1 [ +1)- (KD+S)]}K+1 (3.)
(k+2-y)(S-D)
The sharp of the function f_ given by (2.3).
Proof:It suffices to prove that
¢ (l\/It f(Q))
o +1| <1-y, 3.2
N5 ‘ x (3.2)

rL=r (S, D,x)=inf

K21

for || < r,, we have

i Jet (1 (e +1)t) cac*

-1
‘C(wa(g)) ‘: ’ al )m -~
et Z Z; O_)K: (1-(x+1)t)ac"
Zw: )M (1I-(x+1)t)a " (x+1)
1B L) s
Z( )K+1|(1 (x+1)t)||a [(x +1)|¢]
= (@), -
—_— = (] — 1)t
ERR M SRl
Z (w—)l(+l |(1—(K+1)t)||a’(|(’(+1)|é/|lc+l
=G )Hé ; , (3.3)
1-— Z(W)K+1|(1 (K+1)t)||a ||§|K+1

Hence, (3.3) holds true if

ziw;;ﬁlKl (K+1)t)||a |(K+1)|§|K+1S (1_1)( Z K+1|(1 (K‘-i-l)t)”a ||éf|l€+1]

rc+1

(3.4)
or
(ZD') +1 wil (K+2 l)
< )(1-(x +1)t — <1
z( )-GOl
(W)Kﬂ |(1 (K+1)t)||a ||§|K+1M <1, for x>1 (3.5)

( )K+l
with the aid of (2.2) and (3.5) is true if, for all zczl,
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(W)K+1 |(1-(K‘+1)t) |[(K+1)—(KD+S)]

(@) x+1('<+2 x) . (o)

K+l 1 % 1 < K+l ) 36
o (g 2 - @9)
Solving (3.6) for|¢|, we obtaln

|g|g{(l—;c)[(ml)—(zcD+S)]}f«+l, o 37)
(k+2- ) (S-D)

#

Theorem3.2:The function f which defined by (1.4) in the subclass ZZZ (t,x), then f
is meromorphically convex of order y (0<y<1)in|{ |<r,, where
1
f,=1,(S,D K')—Inf{(l_l)[(,(-’-l)_(’(D+S)]}K+l (3.8)
k21 k(k+2—-y)(S-D)
The sharp of the function at «, i.e. f_is given by (2.3).
Proof:From proof of Theorem 3.1, we can show that

C(ML_ Q)
oo 2|<(1- 2), 3.9
ML_TQ) ‘<( 7) (39)

for|¢|<r,, with the aid of Theorem 2.1. Thus, we have the assertion of Theorem 3.2.

4. Convex Linear Combinations
The next results involves a linear combination of several functions of the type (2.3).
Theorem 4.1. Let

1
f, (&) == 4.1
) : (4.1)

and

f/( (é’):£+ (O-)K+l(S_D)
¢ (@) |- +DH[(x+1)-(xD+S)]
Then feX¥®(t,«) if and only if it can be expressed in the form

" (k>1). (4.2)

=0 () (43)
where 77, >0and i’h =1
Proof. From (4.1;,_(4.2) and (4.3), it is easily seen that
_N 1.5 (0),1(S-D)7, ‘
R T Ty o W (P e o) AN
since
5 (@) |A—(x + DYk +1) (s D-S)] - 7, (6),..(S-D)
p (0),..(S-D) (@)1 |@— (x +DY[(x+1) ~(x D~S)]
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=im =1-n <1,

x=1
it follows from Theorem 2.1 that the function f eZ5? (t,x).

Conversely, let us suppose that f eX]° (t, ) . Since

|a |< (). (S-D)

< , (k>1).
(@) 2| (1= (x+1)1)|[(x +1) ~(xD+S)]

Setting
(@)= (x+1)1)|[(x +1) —(x D+S)]

= (0). (S-D)

770 :1_277;«’
k=1

, (k21)

and

it follows that f () =im f ().

k=0

#

Theorem 4.2. The subclass = (t, ) is closed under convex linear combinations.
Proof.Suppose that the functions f, (&) and f, () defined by

L= 72l v12Ley) @5)
are in the subclass =5 (t, k).
Setting

f(O=u1,(Q) +1-1) 1), (0<u<l).  (46)

We find from (4.5) that

fO=7+ Zf"’;“ (A-(c+)0)| wa, +(1-m)a,}¢* (0<usLicel). @)

In view of Theorem 2.1, we have

Ziwi,ﬁl(l (k+1)t) [(x+1)—(xD+S)(ua,, +(1-w)a,,)

—ﬂz(w)“” (1-(k+)D)[(k+1)~(xD+5)a,,

( )K'+l
+(1_ (W)K+l _ _
,U)Z—(l (x+1))[(x+1)-(xD+3)]a,,
=1 \O K+l
<u(S—-D)+(1-u)(5-D)=(S-D).
Which shows that f e=° (t,«) . #
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