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. INTRODUCTION (HEADING 1)

Many applications of integral equations may be found in
physics, engineering, and mathematics. Yet, analytical
solutions to integral equations either it has no solution or it is
difficult to find a solution to it. Many numerical techniques
have been tested and developed to solve integral equations
precisely because of this [1]. We will focus on two
fundamental categories of integral equations, including the
Volterra integral equation, which has the following equation:

ulx)=fx+21 fo(x, tu(t)dt, .. (1)

and Fredholm integral equation whose equation is as follows

[2]:
b
ulx) = f(x) + /’lf k(x,t)u(t)dt, ..(2)

a
where the to-be-determined unknown function u(x) appears
both within and outside the integral sign. Real-valued
functions are provided for the function f(x) and the kernel
k(x,t), and a parameter is A. Integral equations, whether linear
or non-linear, are used to express all natural, physical,
engineering, and other phenomena. Several of these integral
equations in the method of solution are not directly solvable,
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thus it was from To address issues and find a solution, it is
required to employ approximations, as it is in the technique
(MADM) [3]. The Adomian decomposition technique for
solving differential and integral equations, both linear and non-
linear, has received a lot of attention recently Because it gives
an approximate solution in a sequential manner that is close to
the exact solution.[4]

One of the most recent swarm-based algorithms is the artificial
bee colony (ABC) algorithm. The ABC algorithm mimics a
honey bee swarm's clever foraging behavior. In this study, a
significant of numerical test parameters and outcomes produced
by the modified ADM is improved using the ABC method[5].

2. Some important concepts
We will learn some crucial definitions of the study subject.
2.1.The MAE (Maximum Absolute Error) [6]: The following
formula is used to calculate the MAE.

1Zexace ) — @m Ml = gﬁé{lzexact(y) - omM1}
2.2. MSE (Mean Square Error) [6]
The mean square error is defined as follows:

L1 (Ex(y) — o ())?
n

MSE =
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Where y; isavector, i = 1,2,3,::+, , which is the sum of the
square of the exact solution minus the square of the
approximate solution, and then divided by the number of
iterations n

3.The Modified Decomposition Method (MADM) [7]

The ADM is an iterative technique for solving Volterra integral
equations that offers the answer in an endless series of
elements (1) Determine if the integral equation is of the
Volterra or Fredholm type and whether the inhomogeneous
term f(x) is a polynomial. Nevertheless, assessing the
components is necessary if the function f(x) consists of
binomials, two or more polynomials, trigonometric functions,
hyperbolic functions, etc. It's noteworthy to note that the
decomposition approach, also known as the rate method, relies
heavily on splitting the function f(x) into two term and cannot
be used when the function f(x) has just one part. Keep in mind
that the recurrence relation may be used under the ADM,
up(x) = f(x)

Wera () = 4[5 k(x, Dy ()t k =0 .(3)
where the solution u(x) is expressed by an infinite sum of
components defined

u(x) =Zun(x).

n=0

The function f(x) will be divided into two functions f; (x)
and f,(x), we can set f(x) = f;(x) + f,(x).

We are now introducing a modification in the default formula,
Relation of recurrence We specify to decrease the size of the
computations The component u,(x) is one part of f(x), i.e.,
we may add another portion of f(x) to component u, (x) by
selecting either f;(x) or f,(x).The modified recurrence

relation is therefore introduced using the modified
decomposition method:

up(x) = f1(x),

wy () = f,(0) + A [ kx, t) uo(Ddt (9

X

U (x) =24 J k(x,tu, (t)dt, k = 1.

0
we observe that only the first two components, u,(x)

and u4 (x), are contained in the updated recurrence relation (4)
In relationships of recurrence, other elements uj stay constant.
While the configuration of u,(x) and u, (x). differs only very
little, this variation significantly speeds up convergence of the
solution and decreases the amount of arithmetic effort.
Moreover, limiting the number of words in f; (x) has an impact
on additional components in addition to component u, (x).
uy(x). Several research has supported the conclusion.
Regarding the improved approach in this case, two crucial
points can be made. First, the correct selection of the functions
fi(x) and £, (x) The solution u(x) can be obtained using very
few iterations, sometimes By taking only two ingredients. The
success of this modification depends, On the correct selection
of f1(x) and f,(x). Secondly, If f (x) consists of only one term
The decomposition method can be used in this case, It is worth
noting that the modified decomposition method will it is used
in Volterra and Fredholm integral equations and linear and
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nonlinear equation.

4. Bee colony Algorithm (ABC)
Tasks are carried out by some specialist people in an actual bee
colony. These specialist bees use effective task division and
self-control to strive to optimize the amount of nectar stored in
the cell. The ABC algorithm, or artificial bee colony, a recently
developed optimization technique for modeling food behavior
that replicates a bee colony's foraging behavior, was first
proposed by Karaboga in the year 2005. The ABC algorithm
simulates a honey bee colony with three different types :

1. Worker bees

2. Onlooker bees

3. Scout bees

Worker bees make up half of the colony, while spectator bees

make up the other half. The bees are in charge of making use of

the nectar sources that were found before and after work and
providing the waiting bees (spectator bees) in the hive with
essential information about the locations of the discovered food

sources. Bees that are observers wait in the hive and choose a

food source to exploit depending on the knowledge that the

worker bees have imparted. The scout randomly scans the area
in quest of another food source. This developing intelligence in
bee food may be summed up as follows:

1. The bees start randomly scouting the area in the initial stage
of foraging in search of a food source.

2. After discovering a food source, the bee transforms into a
foraging worker and starts to use the new food supply. The
worker bee then brings the nectar back to the hive and
empties it. It can immediately go back to the detected source
site after releasing the nectar, or it can dance in the dance
area to reveal its to the source location. If its resource is
exhausted, it transforms into a scout and begins seeking at
random for a new source.

3. The location of the source and its importance are chosen by
the spectator bees based on the dances that take place in the
hive and finding sources rich in food.[8]

In the ABC algorithm, the scouts manage the exploration

process while the worker bees and spectator bees carry out the

exploitation process in the search space. A comprehensive code

for the(ABC algorithm) is given below: [5]

Step 1): Make the population of solutions start out
xi,i =1, ...,85N

Step 2): Assess the population

Step 3): cycle=1

Step 4): repea‘tl

Step 5): Using (step 7) to create fresh solutions U (i) for the
employed bees, then assess them

Step 6): Employ the avaricious selection procedure to the
hired bees.

Step7): Determine the pi-values of probability for the
answers provided by (step6)

Step 8): Produce the new solutions U; for the onlookers from
the solutions xi selected depending on p; and evaluate
them

Step 9): Choose the most avaricious candidates for the
spectators.

Step 10): Find the scout's abandoned solution. if one exists,
and replace it with a fresh, randomly generated
solution x; (step 8)

Step 11): Memorize the best solution reached so far

Step 12): cvecle = cyecle + 1

Step 13): until cycle = MCN(Maximum Cycle Number)
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5. Pade approximations (PA):[9]

Due to their extensive use in chemistry, physics,
engineering, and other practical sciences, The topic of
approximations is one of the important topics, especially for
difficult functions in the numerical analysis [10,11]. A specific
and traditional sort of approximation for a rational fraction is
the Pade approximation. In order to compute the numerator
and denominator coefficients using the coefficients of the
Taylor series expansion of a function (x), a function is
expanded as a ratio of two power series[10]. The Pade
approximation is the most accurate rational function of a
specific order to approximate a function [10]. Although
George Freobenius presented the concept and looked into the
characteristics of rational approximations of power series,
Henri Pade is credited with developing the approach
somewhere in about 1890. When functions include poles, the
Pade approximation is typically preferable since rational
functions are better able to express them [10]. When the Taylor
series does not converge, the Pade approximation may still be
applicable since it frequently provides a more accurate
estimate of the function [10]. The Pade approximation is
widely utilized in computer calculations due to these factors.

To give a clear overview of the modified method, we
now introduce the following Examples, in which we apply the
MADM method to linear and nonlinear integral equations
(Volterra and Fredholm) We compare the obtained results with
the bee algorithm(ABC) and Pade approximations (PA)
associated with the examples using Maple 13.

Example 1: Consider the linear Volterra integral equation of
the second kind

u(x) =x+ fgf(t —x)u(t), 0 < x < 1,withtheinitiala = 0,
b=1

and the exact solution is Yg,qc: (x) = sin(x).

We gain the following iterations by means of making use of
the MADM:

u’O(x) = 01
ul(x) =X,
3 Ax3
uy(x) = — 6
A%x>
uz(x) = 120

Now, by adding the previous terms we get the next series
2

5 (x) = Z u; (x)

i=0

Leaq
6x X,

when compensating for a value A=1, we get these results:
uO(x) = 0;

ul(x) =X,
X3
uZ(x) = _Zx'

1
$3(x) = — gx3 + x,

and when using the ABC algorithm with the modified method,
we get these results when we substitute the value of 1 =
0.9585

uy(x) =0,

u(x) =x

u,(x) = —0.159750x3 + x,

¢3(x) = —0.159750 x3 + x,

and when using the Pade approximations with the ABC
algorithm with the modified method, we get these results
when we substitute the value of 2 = 0.9585

PA(x) = 0.999999x — 0.159750x3.

Table 1: Numerical results of the MAE for example

x MADM MADM-ABC MADM-ABC-PA
0.0 0.0 0.0 0.0

0.1 8.331349E-08 6.833353E-06 6.833353E-06
0.2 2.664128E-06 5.266920E-05 5.266920E-05
0.3 2.020666E-05 1.665433E-05 1.665433E-04
0.4 8.500897E-05 3.576576E-04 3.576576E-04
05 2.588719E-04 6.057113E-04 6.057113E-04
0.6 6.424733E-04 8.515266E-04 8.515266E-04
0.7 1.384353E-03 9.880627E-04 9.880627E-04
0.8 2.689424E-03 8.519091E-04 8.519091E-04
0.9 4.826909E-03 2.153403E-04 2.153403E-04
1.0 8.137651E-03 1.220984E-03 1.220984E-03

13
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Table 2: The results (MSE

MADM

MADM-ABC

MADM-ABC-PA

9.014299E-06

4.081502E-07

4.081502E-07

Exact

MADM 00000

02

Exact  __

MADM-ABC 00000
MADM-ABC-PA ****

a

Fig 1. Exact solution compared with the proposed method and PA

a. Exact with ( MADM)when A=1.
b. Exact with (MADM-ABC, MADM-PA) when 2=0.9585.

Example 2: Let us consider the following Volterra integral
equation of the second kind

1 1
u(x) = Zx cos(2x) + sin(x) — 2 x

+ fxx cos(t)u(t)dt,x € [0,1]
0

and the exact solution is ug,qc. (x) = 2 sin (x).
We gain the following iterations by means of making use of
the MADM

1
uy(x) = 7 x cos(2x),

i x S5Ax 1
Uy (x) = sin(x) — 1 36 + P A xcos(x)

+1/1'() 2
12 Sin(x) x

1 1 ,
+ 8 Acos(x)® + 6/1 x? sin(x) cos(x)?,
A2x 1

3Ax  Ax 1o 2_1
2 T 4Asm(x)x 4/1xcos(x)+

A2x2 cos(x) sin(x) + % A2 x% cos(x)3 sin(x) —

uy(x) =
E
956 1 1

> 92 G 2 _ 142 2.,3_1 42 4 .3 _
” A% sin(x) x 24/1 cos(x)* x ” A% cos(x)* x
131%x3

o 5 192

o X A% cos(x)? + oo X A% cos(x)*

Now, by adding the previous terms we get the next series

% x Acos(x)? — % A% x cos(x) +

14

b
P3(x) = —=— x32% cos(x)* + ixz/lz cos(x)® sin(x)
3 24 . 144

4392 2 - 2 4
24x A% cos(x)* + Toe x A% cos(x)
13

+ %xz/lz cos(x) sin(x)

N 1 25 . N 13x322
6x cos(x)* sin(x) 192

> x22% sin(x) + 13 x A% cos(x)?
36 192

= 22 c0s(x)® = % Asin(x)
g X Acos(x ¢ X7 Asin(x

b Rcos() — & x4 cosy? + 22
3¢ X ATcos() — 5 x A cos(x e
1 1 + 11xA N 1 )
365 x A cos(x) TR x cos(2x)

_Z+ sin(x),

when compensating for a value A = 1 we get these results:
Uy(x) = 2 x cos(2x),

u (%) = % x% cos(x)?sin(x) + 1—18 x cos(x)® +

% x?sin(x) + % x cos(x) + Z—Z + sin (x)

u,(x) = —$x3 cos(x)* + % x2 cos(x)3 sin(x) —

L 2, 5 4,13, 2 ;
” 936 cos(x)* + el cos(x)* + 5 X cos(x) sin(x) +
13 ) 83 3

BT x2sin(x) + — x cos(x)? + — x cos(x) + =
192 18 192 18 16

¢5(x) = —ix3 cos(x)* + % x? cos(x)3 sin(x) —

L %3 cos(x)? + = x2 cos(x)? sin(x) + — x cos(x)* +
24 6 576

13x3

11 83 11 192

= x2 g 22 2 _ -

2o X sin(x) o7 X cos(x) 2 X cos(x) +

gxz cos(x) sin(x) + % x cos(x)3 + -

1 61x .
2 X cos(2x) — Taa T sin ()

and when using ABC algorithm with the modified method
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we get these results when we substitute the value of
A=1.15942
uy(x) = i x cos (2x)
u; (x) = 0.193236 x? cos(x)? sin(x)
+ 0.064412 x cos(x)?
+ 0.096618 x?2 sin(x)
+ 0.966183 x cos(x) — 0.411030 x
+ sin (x)
u,(x) = —0.056010 x3 cos(x)* +
0.046675 x2 cos(x)3 sin(x) — 0.056010 x3 cos(x)? +
0.011668 x cos(x)* + 0.182034x2 cos(x) sin(x) +
0.091017x3 — 0.476557 x? sin(x) —
0.488692 x cos(x)? — 0.476557 x cos(x) + 0.953580 x
¢3(x) = — 0.056010 x3 cos(x)* +

0.046675 x2 cos(x)3 sin(x) — 0.056010 x3cos(x)? +
0.193236 x% cos x? sin(x) + 0.011166 x cos(x)* +
0.182034 x? cos(x) sin(x) + 0.091017 x3 —
0.379938 x% sin(x) — 0.379938 x cos(x) + 1/

4 x cos (2x) + 0.542550 x + sin(x)

and when using pade approximations with the (ABC)
algorithm with the modified method, we get this resul when
we substitute the value of A = 1.15942
PA(x) = (x + 0.431023 x3 — 0.020134x°
—0.010612 x” + 0.009554 x%) / (1
+0.517980 x2 + 0.14606 x*
+ 0.004411 x® + 0.000539 x19)

Table 3: Numerical results of the MAE for example 2

x MADM MADM-ABC MADM-ABC-PA
0.0 0.0 0.0 0.0
0.1 9.341979E-07 7.841861E-05 7.841861E-05
0.2 2.957605E-05 5.966956E-04 5.966956E-04
0.3 2.205357E-04 1.845311E-03 1.845311E-03
0.4 9.051863E-04 3.834608E-03 3.834608E-03
0.5 2.666852E-03 6.202951E-03 6.202951E-03
0.6 6.343726E-03 8.185733E-03 8.185733E-03
0.7 1.296446E-02 8.665894E-03 8.665894E-03
0.8 2.360836E-02 6.319615E-03 6.319618E-03
0.9 3.919419E-02 1.433501E-04 1.433140E-04
1.0 6.021824E-02 1.166599E-02 1.166571E-02

Table 4: The results (MSE)
MADM MADM-ABC MADM-ABC-PA

5.396434E-04

3.410051E-05

3.409993E-05

Exact

MADM 00000

L3

0z

Exact o

MADM-ABC 0000
MADM-ABC-PA ****

a

Fig 2. Exact solution compared with the proposed method and PA

a. Exact with (MADM) when A=1
b. Exact with (MADM-ABC, MADM-PA) when 1 =
1.15942

Example 3: Let us consider the following Volterra integral
equation of the second kind

X
u(x) = —x> + 5x3 +f tu(t)dt,
0
and the exact solution is ygqc: (x) = 5x3.

We gain the following iterations by means of making use of
the MADM

Up(x) = —x°

15

1
uy(x) = 5x3 -3 Ax7

u,(x) = —é A2 x% + x5

Now, by adding the previous terms we get the next series
2

$3(x) = Z u; (x)

i=0
= —é x° A2 —% x7 14+ x%21— x5+ 5x3

when compensating for a value 4 = 1 We get these results:
up(x) = —x°

u(x) = —% x” + 5x3
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u, (x) —%xg + x5

Ps3(x) = —%x‘" —% x7 + 5x3

and when using ABC algorithm with the modified method
we get these results when we substitute the value of A=1.2
Up(x) = —x°

u; (x) = —0.171428x7 + 5x3

u,(x) = —0.022857x° + 1.2x°

¢3(x) = —0.022857x° — 0.171428x7 + 0.2x° + 5x3
And when using Pade approximations with the ABC
algorithm with the modified method, we get these results
when we substitute the value of A=1.2

PA(x) = (5x3 — 2.768171x5) / (1 — 0.593634x2 +

0.058031x* — 0.018102x°)

Table 5: Numerical results of the MAE for example 3

x MADM MADM-ABC MADM-ABC-PA
0.0 0.0 0.0 0.0
01 1.430158E-08 1.982834E-06 1.982834E-06
02 1.836698E-06 6.179401E-05 6.179400E-05
03 3.155528E-05 4.480586E-04 4.480583E-04
0.4 2.382181E-04 1.761139E-03 1.761125E-03
05 1.147073E-03 4.866071E-03 4.865802E-03
0.6 4.159049E-03 1.052274E-02 1.051957E-02
0.7 1.240543E-02 1.857375E-02 1.854714E-02
08 3.208975E-02 2.651698E-02 2.634135E-02
0.9 7.447766E-02 2.724892E-02 2.626853E-02
1.0 1.587301E-01 5.714285E-03 8.055726E-04
Table 6: The results (MSE)
MADM MADM-ABC MADM-ABC-PA
2.904045E-03 1.782731E-04 1.696538E-04

Exact

. MADM

000000

Exact ____ _

000000

********

MADM-ABC

MADM-ABC-PA

L] 02 Y] 06 [

a

a. Exact with (MADM) when A=1
b. Exact with (MADM-ABC, MADM-PA) when A=1.2

xample 4: Let us consider the following Fredholm equation
of the second kind

T 1
= - — — 2 - @
u(x) x—7 + fo T Fu(D? dt

and the exact solution is Yg, g0 (x) = x.
We gain the following iterations by means of making use of
the MADM

,0<x<1

T
uo(x) = _Zl

uy(x) = x + 0.433195 A,
u,(x)

—0.607300 10%° + 0.170115 103°4

—1.2732 .
73239 Aln —0.1000000 1031 4 0.170115 103°2
Now, by adding the previous terms we get the next series

16

b

Fig 3. Exact solution compared with the proposed method and PA
2

B3 = ) i)
i=0
+0.170115 103°4 — 0.607300 103°

= 1273239 11n +0.170115 103°4 — 0.1000000 1031
+x + 0.433195 1 — 0.785398,

when compensating for a value A = 1. The iterations are:

uy(x) = Y

uy(x) = x + 0.433195,

u,(x) = —1.273239 In(0.526802),

thus, the approximate solution is

¢s(x) = x — 0.463854,

and when using ABC algorithm with the modified method
we get these results when we substitute the value of 1 =
0.6667
uO(x) = - Z ]
u, (x) = x + 0.288811,
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u,(x) = —0.8488681n(0.557064),

¢3(x) = x + 0.000064,

and when using the pade approximations with the ABC
algorithm with the modified method, we get this result when

we substitute the value of 1 = 0.6667

PA(x) = 0.000064 + x.

Table 7: Numerical results of the MAE for example

x MADM

MADM-ABC

MADM-ABC-PA

0.0 | 4.638540E-02

6.400919E-05

6.400919E-05

0.1 | 4.638540E-02

6.400919E-05

6.400919E-05

0.2 | 4.638540E-02

6.400919E-05

6.400919E-05

0.3 | 4.638540E-02

6.400919E-05

6.400919E-05

0.4 | 4.638540E-02

6.400919E-05

6.400919E-05

0.5 | 4.638540E-02

6.400919E-05

6.400919E-05

0.6 | 4.638540E-02

6.400919E-05

6.400919E-05

0.7 | 4.638540E-02

6.400919E-05

6.400919E-05

0.8 | 4.638540E-02

6.400919E-05

6.400919E-05

0.9 | 4.638540E-02

6.400919E-05

6.400919E-05

1.0 | 4.638540E-02

6.400919E-05

6.400919E-05

Table 8: The results (MSE)

MADM

MADM-ABC

MADM-ABC-PA

2.151605E-02

4.097176E-09

4.097176E-09

Exact
=]  MADMOOOOO

Exact

MADM-ABC

0000
EE 223

MADM-ABC-PA

a

1] 1 0

(¥

[ 06 (Y] 1

b

Fig 4. Exact solution compared with the proposed method and PA

a. Exact with (MADM) when A=1
b. Exact with (MADM-ABC, MADM-PA) 2=0.6667

Conclusion

In this manuscript, the MADM was hybridized with the bee
algorithm, by taking the analytical series from the MADM
and then finding the best value A using the ABC algorithm.
The hybrid method proved efficient by comparing the
results obtained with the solution exact, we also made
another improvement to the method using the PA and
finding numerical results MSE and MAE, as well as
drawing using the MAPLE program.
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