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1. INTRODUCTION

In this research paper, we consider finite simple connected

graphs. For undefined concepts and notations on the theory of
graphs, we refer the reader to [5].
Topological indices are graph invariants that play important
roles for studying and analyzing the physicochemical
properties of molecules. Some of the most worthy types of
topological indices of graphs are distance-based topological
indices, degree-based topological indices, and spectrum-
based topological indices. The Wiener index is the first
studied topological index. For more details on the concept of
topological indices of graphs, we refer the reader to [1, 4, 6,
7,8,11,12].

The concept of restricted detour distance was first
proposed in 1993 by Chartrand, Johns and Tian [6]. For
standard graph theory and acquired the restricted detour
polynomial and restricted detour index of certain graphs see
[2, 3,9, 10]. Specifically, let u and v be two distinct vertices
in a connected graph G. The (standard) distance dg;(u,v)
from a vertex u to a vertex v in a graph G is the smallest
length of a u — v path in G[5]. An induced u — v path of
length D*(u,v) is called a restricted detour path. The
restricted detour distance between two vertices u and v of a
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graph G is the length of a longest u — v path P for the induced
condition (V(P)) = P and indicated D*(u,v). The restricted
detour polynomial depends on restricted detour distance and is
denoted by D*(G,x) and defined by D*(G,x)=
Yrun 2 @), where the summation is taken over all
unordered pairs (u, v) of a distinct vertices u and v of G. The
index is also based on the restricted detour distance and
denoted by dd*(G) and is defined by
dd*(G) = Yquw D¢ (u, v), where the summation is taken over
all unordered pairs u, v of vertices of G[10].

Also, dd*(6) = == D" (G; %) |y=1.

A wheel graph W, of ordern, is a graph that contains
acycle C,_, of order n — 1, and for which every vertex in the
cycle is connected to one other vertex which is known as
the hub (or the center).

In 2012, Ali and Gashaw [1] obtained the restricted detour
polynomials of chain a hexagonal ladder graph. In 2017, Ali,
I. D. and Herish computed the restricted detour polynomial of
edge-ldentification of two wheel graphs[3]. Ali, I. D, obtained
restricted detour polynomial of some cycle related graphs[2].
In this study, we obtained the restricted detour polynomial and
restricted detour index of chain k-wheels consisting of one row
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of 8 wheels.

2. Identified edges of a Straight chain of wheels
Let G, and G, be two disjoint graphs, let e; = w,;v; € E(Gy)
and e, = u,v, € E(G,), an edge identification of G, and G,
is denoted by G;:G, obtained from identifying e, with e,
where u, identifying with u, and v,with v, to get the new
edge e [3].

Now, a straight chain of wheels indicated by <p(l/|/kﬁ), g =
3, is a graph established on one row of 8 copies of wheels of
orders k > 6 such that every two consecutive wheels have
exactly one common cycle-edge proportion forming a straight
chain as illustrated in the Figures 1 and 2 for even and odd k
respectively. The hub vertices of each copy of the k-wheels

are denoted by wy, w,, ..., wg.

Figure 2: The graph cp(wf) for odd k.

The order of the straight chain of wheels (p(WkB ) is provided
by p(e(W}F)) = (k —2)B + 2; while the size of (W) is
provided by q(e(W})) = 2k —3) + 1.

Proposition 2.1.[10] For k = 4, we have
D*(@p(Wp);x) = D*(Wy; x) =
k+2(k—Dx+(k—-1) %x% + Zi‘;&x’] ,when k is odd,
2 when k is even. B

k+2(k - Dx + (k- D[Z5 %],

Theorem 2.2.[3] For odd k > 7, we have

D*(p(Wg); x) = 2D*(Wj; x) — x — 2
k1 ket =
2 2k—2—(i+j k-j
+x*+2 %282 x (i+)) +4%2,x"

k

+2%,2

i

xk—4+i +2 Zi=23 Zj=3

1 k-1 k-1
) 2 x2k—1—(1+1) +

k-1 .
232, x .,
Theorem 2.3.[3] For even k > 6, we have

D (p(W?2);x) = 2D*(W;x) —x — 2 4+ x? + xk=1

3k-8 k=2 3y .

k —_
—2x*242x2+ 4x"2 +4 Y2 x 2 !

2 2
42 $2k-1-G+) 4 o ZZXZk—Z—(i+j)

4

=
N

k=2 k-2

N‘

j=3 i=2 j=2

1l
w

k=2 k=2
+4%,2, xF T+ 432, xk=4t m

Let us indicate the j-th copy of Wy, in (p(WkB) by Wy ;, for
j=1,..,6. Then the two consecutive wheels W, ; and W,
will have the same proportion of the common edge
e- @M, vy = @?,v®). Now, for j = 2,..., 8 — 1; and if

k is even, then the two consecutive wheels W, ; and Wy ;.

will share the common edge e;_(ud’, vi) = @YY, U
2 2

as illustrated in Figurel; and if k is odd then the two
consecutive wheels W, ; and W, ;,,will have the same
@ LMDy

€i=(Uki1, Vi) =
2 2

proportion of the common edge

@Y™, Uy as demonstrated in Figure2.

We mention Figuresl and 2 and indicate M; = V(W) —
{uil),vl(l)} and M, = V(W) — {uiﬁ),vl(ﬁ)}. Let uand v be
any two vertices of V((p(W,f)). Hence, for all possibilities of
€ V((p(Wkﬁ) —M, {oru,ve V(cp(Wkﬁ) — M,}, we get the
corresponding polynomial D*(cp(WkB_l: x)); and for all
possibilities of u,v € V((p(WkB) —{M, U M,}, we obtain the
corresponding polynomial D*((p(l/l/,f_z); x).

Consequently, we reach the following reduction formula

D* (W) x) = 2D (@(WE™); %) — D (@(W ™2); ) + prep (%),

in which p, (x) is the polynomial corresponding to all
possibilities of u, v for which u € M; and v € M,.
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Now, after some calculation having carried out, we readily

D* (W) %) = (B = DD (@(W); x)

—(B = 2)D" (QW); %) + Xt oy(B =M + 1)pem ().

3. Restricted Detour Polynomial of Straight

Chain of Wheels (p(Wff), forp=3and B =4

In this section, we will discover the restricted detour

polynomials and the restricted detour indices of straight
chains of wheels cp(WkB) forp =3 and g = 4.

The restricted detour polynomial of cp(W,f) for =3 is
given in the next two propositions.

Proposition 3.1. For odd k > 7, the restricted detour
polynomial of @ (W;3) is given by

D*(p(W); x) = 2D*(p(Wi2);x) — D* (@ (Wy); x) +

Pr,3(x), in which

k—1

z ) 1
Pr3(x) = 42 xZGh DTy KD g oy 2k=4 4 453Bk=7)

j=3

k=1 k1
L),
Proof. We refer to Figure2, with 8 = 3, and denote

(D (1)

,U3 '""UE y
2

5
E[k—3]

k-1
+2x [1+A+x)2X2x

U= @®u®, . ul), 0 =

2

V= {u§3),ug3), ...,ug} and V = {v(3), vf), ...,v& .

2 2

Let wy, w, and wy are the hub vertices of W, ;, W, , and W, 5
respectively. Let uand v be any two distinct vertices of
oW withu e UUTU U {w,}andv €V UV U {w;}.
Evidently, from the proof of Theorem 3.4.1 in [2, page71];
the restricted detour polynomial of all vertices on the cycles
except for (u = ul, v =v) and (u=v"v=u®) is
given by

p1(x) =

k-1

5 A
221+ 1+ 02,2, %

ko1
2—-i + 2123

Now, it remains to compute the restricted detour polynomial

k-1

;xs‘(i”))].

of the other vertices in the graph ¢@(w?). To do so, we
consider the following cases
(1) Ifu= ugl) V= 1]2(3)

and , then the restricted detour path
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P, between u and v;

1 1 1 1 1

P, = ug ),ué ) ,u‘(} ), ...,u&,v&,...
2 2
- 173(1), v vl(z), w@, uf’), ug”, " u,(f_)l, v,@l e, v§3), v2(3)is
2 2
a longest u — v path of length 2(k — 2). If u = v{"and v =
u$® | then the path P, between u and v is
@ @ ® @) @ (2

o (1) 2
Py =07, 037, 0,7, VS, Uy e, U Uy, U ,w( ),

2 2
3) .,3) 3 ,,3)
,...,vﬂ,uﬂ,...,u3 ,u2
2 2

vl(g), v2(3) is a longest u — v path of

length 2(k — 2). Then the polynomial in this case is given by

pa(x) = 2x2(=2),

(1)

2) Ifu=wjandv = u§3) (oru = uy " and v = wjy), then the

path P, between u and v is

1 2 2 2
P, =00 0@ o,
2
v1(3),v2(3),v§3),...,v&,ug“..,uf),ug” is a longest u —v
2 2
path of length ~(3k —7). If u=wjandv =v{"(or u=
v, v = wy), then the path B, between u and v is
Pz =
@ @ @ @ 3.0 G @) 3 ©INE)

Up Uy Uy e Wes Uy Uy Uy e

2 2 2

U1, Vihy s Vs Uy

is a longest u—v path of length %(3k—7). Then the

1

polynomial in this case is given by ps(x) = 4x2G3%7).

B)Ifu=w;andv = ui(3) (oru = ugl), v =ws;), then the

path P; between u and v is

Py =u® @@ u @ oD@ s
2 2 2

a longest u — v path of length %(Bk— 1)—i where i =

3,4, ,% fu=w,v= vj(3) (or u= vj(l),v = wjy), then
the path P, between u and v is

Py =

1.71(1), ‘UZ(Z) 1.7;2) P U&_l, U1(3), ugg), 'U,gg) ) eeey ug_l, V&_l, U]-(3)

2 2 2

is a longest u — v path of length %(3k— 1) —j, for j =

k-1
3,4, 5
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k-1 .
Then we get the polynomial p,(x) = 4% 2, xzC" D7,
(4) If u = w, and v = wy, then the path P, between u and v
is

P, = u§1)’ugz)’ugz) , ...,ug_l,uf), w3

2

is a longest u —v

path of length %(k+1). Then we get the polynomial

1

ps(x) = x2
Now, we add the polynomials p; (x), p,(x), p3(x), ps(x) and

(k+1)

ps(x) and then simplifying we get the result as given in the
statement of the proposition. m

Proposition 3.2. For even k =6, the restricted detour
polynomial of ¢(w}) is given by

D*(p(W); x) = 2D*(p(Wi2); %) — D* (@ (Wy); x) +
Pr,3(x) in which

: i,
Prea (@) = XTI 4 x + 2(x + 1) N2 227 +

k k
7711 o .
(x +3) T2, T2, 26D 425202 4 571
371 i Lrt1
+2(1 + )1+ 32, 37 ]+ a2 +

2k-107.6 4 .7 71 oo 71 10 k
2xz [+ x" + B 0T+ B x0T ] 4 20T
Proof. We can proof the proposition by using similar
techniques and steps followed in the proof of Proposition
31lm
The restricted detour polynomial of @(Wkﬁ) for =4 is

given in the next two proposition.

Proposition 3.3. For odd k =7, the restricted detour
polynomial of @ (W}}) is given by
D*(p(Wi); x) = 2D*(p(W); %) — D*(p(Wi); x) +

Pr,4(x), in which

=

-1

Pra(x) = x*2[x? K + 45,2

4

x4+ 4xT2] +

=
w

—1 k-1 k-1

20 +0)x** 1+ 2F 2,03 + Zzzji x6-0*0],

Proof. We refer to Figure2, with g =4, and denote U =

{ugl),ugl), ...,u&}, U= vz(l),vgl), ...,vg ,

2 2

v ={ul,ul?, ...,ug} and V = (v, v, ...,v& :
2 2

Let wy,w,,ws and w, are the hub vertices of
Wy 1, Wy 2, Wy 3 and Wy , respectively.
Let uand v be any two distinct vertices of (W) with
ueUUUU{wandv €V UV U {w,}.
Evidently, by Theorem 3.4.2 in [2, page72]; the restricted
detour polynomial of all vertices on the cycles is given by
p1(x) =

k=1 k=1 k-1
20+ )01 423 2 3 + 3,2, 7.2 107,
Now, it remains to compute the restricted detour polynomial
of the other vertices in the graph ¢ (w}), to do so, we consider
the following cases

1) f u=w;andv = ug”

(oru=u" andv = w,), then
the restricted detour u — v path P,

P1=u§1) ©)] () 3,6 . (3)

JUp e Uy U Y0y
Lt )
2
3) (4) . (4) (4 @ @ (4) (4)
Vi1 ,Ul ,v2 yes Vpl1 5 U2 U2, Uk Zq ,...,u2
2z 1 ) 2 2z !

is a longest u — v path of length (2k — 4).

If u=w;andv= v2(4)(0r u= vz(l),v =w,), then the

restricted detour u — v path P;;
p @ @ (2 @ 3,6 . 3)
1

=v, L, 0,7, 037, L vl LT Uy Uy e
= 1
(3) @ @ (4 @ @ @ ()
,uﬁ_l,ul ,u2 ,...,uE_l, ﬂ' UE, UE_]_’ ""UZ IS a
2 2 2 2 2

longest u — v path of length (2k — 4). Then the polynomial in
this case is p,(x) = 4x @k,
(1

) lfu=w, andv = ul@) (oru=u;",v=w,) for

i =34, % then the restricted detour u — v path P,
) )] 3,06 3)

_ @ (@2
P, =v7,0,7, 07, L, v 1,171 JUT Uy
-

®3) 9 (@) 4 ©) (4
,uﬂ_l,ug ),vl( ),vz( ), o Vko1 o Ukt ui( )

2 2 2
is a longest u— v path of length 2k —1 —i, where i =
3,4,.., 2
2
Ifu=wy,v=v* (oru=v"v=w,)forj=34,..,—

then the restricted detour u — v path P,
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5 1 2 2 3 3 3
P, = ui ),ug ), ...,u&_l, u§ ), V1( ),vz( ).
2
RS ¥ v1(4),u§4),u§4),...,u,(i)1 1,u,(ﬁ)1,vj(4) is the longest

2 2 2

u — v path of length 2k — 1 — j, where j = 3,4, % Then

k-1
we get the polynomial ps (x) = 4 X2, x**"* -,

(3) If u=w,andv = w, then the restricted detour u —v

path
P3 =
1 2 2 2 3 3 3 3 4
vl( ),vz( ),v3( ),...,v&_l, vl( ),u§ ),ug ), ...,u&_l,ui ),w4,

2 2

is a longest u — v path of length k.
Then the polynomial in this case is given by p,(x) = x*.
Now, add the

p1(x), p2(x), p3(x) and p,(x) and simplifying we get the
result as given in the statement of the proposition.m

we polynomials

Proposition 3.4. For even k =6, the restricted detour
polynomial of ¢ (w;) is given by

D*(ewi); x) = 2D*(@(W3); x) — D*(@(Wg); x) + P4 (x)
in which

k
Pra(x) = 371001 4+ 3x% + 3x + 1) (2 ZL?:; x4+

k k

L _ _
?:3 j=3 x7 (l+]))] +x2(k 1)_|_4_x2(k 2)
Lsk-10) 1 4L L ;
+4x2 [1+37 ]+ 4% x¥ 717 +
3
2x2°71 4 xk,

Proof. We can proof the proposition by using similar
techniques and steps followed in the proof of Proposition
31lm

Next, we obtain the restricted detour index of (W), by
taking the derivative of D*(@(W;23);x) at x = 1 obtained
from Propositions 3.1. and 3.2.

Corollary 3.5. For k =6, the restricted detour index of

@(W2) is given as follow

(1) For even k =6 we have dd*(p(W})) = %kS - %kz +

431

—k —81.
4

103

(2) For odd k>7 we have dd*(p(W?2)) = §(49k3 -
351k? + 871k — 657).

Proof.

(1) Taking the derivative of D*(@(W2);x) given in
Proposition 3.2., at x = 1, we get

dd* (p(W)) = 2dd" (p(W2)) — dd* p(W) + == pres =1,
where == presly-y = 2k — 13k + 2k — =%

Now, simplifying the results above, we get dd*(@(W3)) as
given in the statement of the proposition.

(2) Obvious.m

The restricted detour index of @ (W,}) is obtained in the next
corollary by taking the derivative of D*(@(W);x) atx =1
obtained in Propositions 3.3. and 3.4.

Corollary 3.6. For k =6, the restricted detour index of

(W) is given as follows

25,3 _
2

ﬁkz_i_
4

(1) For even k =6, we have dd*(p(W)) =
197k — 135.

(2) For odd k=7, we have dd*(p(WH)= %(25k3 -
173k2 + 403k — 283).

Proof. Obvious.m

4. Restricted Detour Polynomial of Straight
Chains of Wheels (p(Wf:) forp =5

In this section, we will discover the restricted detour
polynomials and the restricted detour indices of the straight
chain of wheels (p(WkB), where 8 > 5.

In the next theorem, we shall find the restricted detour
polynomial of (p(WkB) odd k = 7 and g = 5 (for even and odd
B).

Theorem 4.1. For odd k = 7 and 8 = 5, the restricted detour
polynomial of (p(w,f) is given by

D* (W) x) = 2D" (p(W); x) = D* (9(W2); x) +
pr,p(x), in which

k-1

1 .
Prp(x) =2(1+ x)x(k_l)(1+iﬁ)‘6[1 +2% % x4
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i 1 .
Zi:s Zj=3 xﬁ_(l+])]+xfﬁ(k_1) [xz—k + 42]’:3 x1-J

1 k-1 -1

2 2 2
+4x72].

Proof. We refer to Figure2 for odd k > 7 and 8 = 5; and

denote U = {u”,ul?, ...,ug . U=, 00, ...,v,si_)l ,

2 2

V= {ugﬁ),ugﬁ), ...,ug}, and V = {vz(ﬁ),véﬁ), ...,vg}. Let

2 2

Wy, W, ..., and wg be the hub vertices of Wy 1, Wy, .., and
W,z respectively. We consider two main cases for g in
which it is either an odd or an even number.

Let # = 5 be an odd positive integer, and let u and v be any
two distinct vertices of (W) with u € U U U U {w;} and
vEV UV U{w}

By Theorem 3.4.3 in [2, page74]; it is obvious that the
restricted detour polynomial of all vertices on the cycles is

given by

p1(x) =21+ x)x(k_l)(lJr%ﬁ)_ﬁ[l + ZZZ(:T;x*i +
k=1 k1
32,22, x0T
Now, it remains to compute the restricted detour polynomial

of the other vertices in the graph @(W,”).To do so, we

consider the following cases

(1) f u=w,andv = ugﬁ) (oru = ugl) and v = wg), then

the restricted detour u — v path P; is

1 2) (2) 2) 3) .3 .3
P1=v1( ),vz( ,173( ""’vﬂ_l’vl( ,ui , Uy ),...

2
(3) ) 4 -1 B-1) (B-1) (B-1)
A 7

JUgZ1 S Ug LU, e, Uy s e Vg,
1 =z !
® B ® B ® B
v ®, v ,....vé. ué, uP
2 2

is a longest u — v path of length %ﬁk - %ﬁ - 2.

If u=w;andv = vz(’g)(or u= vz(l),v =wg) ), then the

restricted detour u — v path P is

A 1 2 2 2 3 3 3
P, = ug ), ug ),ug ) , ...,u&_l,ui ),vl( ), vz( ),

2
@3) 4 4 B-1  (B-1) _ (B-1) B-1)
V=1 V1( ),ug ), ...,1713 ,ulﬁ ,uzﬁ ,...,ukﬁ_1 )

) 7 L

® B B BB B
uPuP, P P
2 2

is a longest u—v path of length %ﬁk—%ﬁ—z. The

- . L pr-1pg—2
polynomial in this case is given by p,(x) = 4x 2P 72F7<,
®

(2)Ifu=w1andv=ugﬁ) (oru=u;",v=wp)

fori = 3,4, % then the restricted detour u — v path P, is

@ @ @ @ 3 .6 . 3)
P, =u;’uy”, ug ,...,uu_l,u1 SV LV

2
vfﬁ_l),ugﬁ_l),ugﬁ_l), ...,u,El_;l_ll)

%1

uB) o ® BB B B

y e Ukm1) U1, U
2 2 2

is a longest u — v path of length %,Bk - %/3 +1—1i where

. k-1
L= 3,4’, ,T

fu=w,v= V,-(4) (oru= vj(l),v = wp), for j = 3,4, %

then the restricted detour u — v path P, is

4 1 2) .2 ) 3) .3 @3
P, = U1( ),vz( ),v3 '---'”ﬂ_l”ﬁ( , Uy ),u2 ),

2
(B-1) B-1n B B B ® B B
v, Ve,

UL U g e U Ve,

-1 (B-1
rul ’ vl j

’

2 2 2

is a longest u — v path of length %ﬁk —%[3 + 1 —j, where

j=34,.. . The polynomial in this case is given by

k1
2
k=1 4 k-lpiioi
- -— + -

p3(x) = 42]233(23 FP+1-J
(3 If u=w;andv =wg then the restricted detour u —v
path P; is P; = ugl),ugz),ugz) , ...,u&_l, uf), v1(3), vz(g),

2
,vfﬁ_l),ugﬁ_l),ugﬁ_l) (B-1) ugﬁ)

peo Uiy
2

,wg is a longest u — v

path of length 23k—§ﬁ+2 — k. The polynomial in this

case is given by

pa(x) = x%ﬁk_%ﬁ”_k-

Now, adding the polynomials p;(x), p,(x), ps(x) andp,(x)
and simplifying we get the result as given in the statement of
the theorem.

Similarly if g is even.

This completes the proof.X

In the next two theorems, we shall find the restricted detour

polynomial of cp(Wkﬁ) evenm=6and = 5.

Theorem 4.2. For even k > 6and odd f =5, the restricted
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detour polynomial of <p(l/|/,f) is given by
D*(p(wf); x) = 2D* (p(w); x) — D* (P(WE); ) + piep (x)

in which

Prp(x) = (3 +0)x & V()%

D+22 T+
kl k
2 3360ﬂﬂ+2u+xyék”“W)ﬂ1+
k k
23] 4 gk [1+x+Z PR X B

(3 BE=DFD) | o Sk(B-1)—5(B=3) |, 7k(B-2)—5(B~5)

Proof. We can proof the theorem by using similar techniques

and steps followed in the proof of Theorem 4.1.m

Theorem 4.3. For even k > 6 and even 8 > 6, the restricted
detour polynomial of (p(W‘B) is given by

D*(@(WF); x) = 2D (p(W2); x) — D* (p(W2); x) +

Pr,p(x) in which

_ 15)- LaY
pk,ﬁ(xz = (Bx+ Dx* (1+36) °[11 + 2% x37

k
2 -1 2

x5~ (l+])]+x2 B(k—1)

j= 3
_|_4_x—(k 1)(1+B)——[1 + Z X371 +2x—[3’(k 1)- 2[2 +
__1 .
2% x4+ xiﬁ(k_l)[Zx 2 4 x27k].
Proof. We refer to Figurel, and denote

= Al )0 000
2

® @B

V=P u®,. (’”}and v = 0, o)
2

Let uand v be any two distinct vertices of qo(Wﬁ ) with

vEVUVU{u(ﬁ) wg}.

2

uevlvulu {u(l) w;} and

2

Evidently, from the proof of Theorem 3.3.4 in [2, page76];

the restricted detour polynomial of all vertices on the cycles

is given by
1
Py () = (3x + Dx*0(1+2F)e
21 X1x
+sz3 L+sz6 (t+1)]
i=3 i=3 j=3

Pl g 50 1)(1+ﬁ)—5[1+2 el
Now, it remains to compute the restricted detour polynomial

j=34, ..,

105

of the other vertices in the graph (p(WkB), to do so, we
consider the following cases:
1) If u=w;andv = u(ﬁ) (oru = u )and v = wg), then

the u — v path P, is

P, = vl(l), vz(z), ...,v,gz) (3) uf’),ug?’), . (3) u§4),v1(4), .
272 2
vl(ﬁ_l),vz(ﬁ_l), ...,v,&ﬁ_l),vl(m,vz(ﬁ), ...,v,gﬁ),
5= 5-1
2 2
u,(f),u,((ﬁ) ‘ ...,ugﬁ),ugﬁ)
2 2
is a longest u —v path of length %ﬁk—%ﬂ—z. If u=

()

w; andv = vzﬁ)(or u= , v =wg) ), then the u — v path

P is
Br=u®uPu® o P00,
2
vl(ﬁ—l)‘ uiﬁ_l),ugﬁ_l), ---'u}(cﬁ_l) () ugﬁ), ...,u,(f),
2 7271
u;(f),v,(f), véﬁ),vz(ﬁ)

2 2

is the longest u — v path of length %ﬁk — %[3 - 2.

1 1
Then the polynomial is p,(x) = 4x 2P¥72F~2
1)

@) Ifu=w,andv = u(ﬁ) (oru=1u;",v=wg) then the
path P, between u and v is
1)@ @ @ .03 .3 .G
P, ug ,uz),ug ) uk 1u1),v1()v2 ).
vl(ﬁ_l), uiB_l),ugﬁ_D, ___’uélil)’ugﬁ)’ 1]1(/3)’ "z(ﬁ)' o ® u,(f),

2 2

is a longest u — v path of length %[S’k - %[S’ +1—i where

i =34, ...,S— 1. f u=w;andv = vj(ﬁ) (or u= vj(l),v =
wg) then the path P, between u and v is given by

P, = 171(1) vz(z) 3(2) , ...,véz_)z v® u§3),u§3), "
w0 6D LB L ED L6 B ) ___’uu?) u,(f”,

2 2

is a longest u — v path of length %ﬂk —%ﬁ + 1 —j, where
LS
2

k
. kg g 1
Then we get the polynomial ps(x) = 432_, x 2Pk=3F+1-J,

(3) If u = wyand v = wy then the path P; between w and v is

®)
l

®
U]
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Py = ugl), ugz)’ ugz) ) e u,(f)l, u§3), 171(3), v2(3), e
L

vl(ﬁ—l)' uiﬁ_l), ugﬁ_l)

) ueey

ug:”,uim, wg is a longest u —v

path of length %ﬁ(k — 1) — (k — 2). Then the polynomial

1

is py(x) = x2PU-D-(k=2),

@ If u=wjandv = uéﬁ)

2

(or u=uf’,v=wp) then the
2

path P, between u and v is

@ .3 ..3) (3
...,uE_l,u1 V0,7,

2

P, = uil), ugz),

pBD =D =D o, u®

1: Uy
2 2

LI )

-1
ugil )' uiﬁ)‘ vl(ﬁ)

is a longest u — v path of length %ﬁ(k -1) —§k+ 1.

1 1
Then the polynomial is  pg(x) = 2x2P*~D 3+,
Now, we add the polynomials p, (x), p,(x), p5(x) and p,(x)

and then simplifying we get the result.X
Finally, we obtain the restricted detour index of (p(VI/;f) in

the next corollary, by taking the derivative of D*(w(Wkﬁ); x)
at x = 1 obtained in the Theorems, 4.1, 4.2, and 4.3.

Corollary 4.4. The restricted detour index of w(WkB) is given
as follows

(1) Forodd k = 7 and B = 5, we have

* B\ — (L p3 1 1p2 5 3_ (5 p3 2 _
dd*(p(W)) = (G B +5 B2 + ZB)K* — (S B + 4B
Y 2+ (i3 aBp2a®lp gy —(tpz o2
SB-DK +CR+ IR+ B8k~ R+ B+
163

g)ﬁ - 1.

(2) Forevenm = 6 and 8 = 5, we have
1 1 5 5 31
* By\y — 34 - p2 _ 3_ (" p3 4" p2
dd (pW)) = (5 8° +5B° =5, K = (5 ° + 5 B

—iﬂ—E)k2+(Eﬁ3+8ﬁ2 +g
12 4 3 12
—B)— G+ of
3 2 3 2

(3) Forevenk = 6 and S = 6, we have

* By = (Ltp3plpz _Spyv3_(Spg3idlpge_
dd*(pW)) = (B2 +5 82— = PK° — (B2 +28
S k24 (23 2,108, — gz 42
2B =Dk + G487+ —8)k — G+ 2B+

DB -3,

Proof. Obvious.m
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