

Spectral Extension Property of Perturbed Triple Product on Semisimple Commutative Banach Algebras

Marwan A. Jardo ¹ * and Amir A. Mohammed ²

*1, 2 Department of Mathematics, College of Education for Pure Sciences, University of Mosul, Mosul, Iraq *Corresponding author Email: ¹ [marwanjardo@uomosul.edu.iq](mailto:marwanjardo@uomosul.edu.iq,)*

Banach algebra, the perturbed triple product and spectral extension property

Correspondence: Author: Marwan A. Jardo Email: marwanjardo@uomosul.edu.iq

I. INTRODUCTION

The spectrum of an element is without a doubt the most foundational concept in Banach algebra theory, and it has generated interest in harmonic analysis for spectral properties such as the spectral extension property (SEP) (for a systematic presentation of this property, see [4] and [10]). As a result, many researchers chose to investigate the SEP's stability in the product of Banach algebra (B. a.). We refer to some of them, Dabhi and Patel see [1], [4], [5], [11], and Dedanin and Kanani see [6], [7], and [8].

Now, assume that each of $\mathfrak{A}, \mathfrak{B}$ and \mathfrak{C} is B. a. Let $h \in$ $Hom(\mathfrak{B}, \mathfrak{A})$ (where $Hom(\mathfrak{B}, \mathfrak{A})$ is the set of all homomorphisms from \mathfrak{B} into \mathfrak{A} and $g \in Hom(\mathfrak{B}, \mathfrak{C})$ such that $\|h\| \leq 1$ and $\|g\| \leq 1$. Then the product space $\mathfrak{A} \times_{h} \mathfrak{B} \times_{g} \mathfrak{C}$ is a B. a. under the following product defined by Jardo and Mohammed in [9]:

 $(m_1, n_1, r_1)(m_2, n_2, r_2)$ $= (m_1 m_2 + m_1 h(n_2) + h(n_1) m_2, n_1 n_2, r_1 r_2 + r_1 g(n_2))$ + $g(n_1)r_2$) $\forall (m_1, n_1, r_1), (m_2, n_2, r_2) \in$ with a norm defined as follows:

 $||(m, n, r)||_{\mathfrak{A}\times_{\mathfrak{h}}\mathfrak{B}\times_{\mathfrak{g}}\mathfrak{C}} = ||m||_{\mathfrak{A}} + ||n||_{\mathfrak{B}} + ||r||_{\mathfrak{C}}$ $\forall (m, n, r) \in \mathfrak{A} \times_h \mathfrak{B} \times_g \mathfrak{C}.$

This B. a. is called (h, g) -perturbed product of $\mathfrak{A}, \mathfrak{B}$ and \mathfrak{C} . In this paper, we discuss the stability of SEP of $\mathfrak{A} \times_h \mathfrak{B} \times_g \mathfrak{C}.$

II. Spectral Extension Property (SEP) of $\mathfrak{A} \times_h \mathfrak{B} \times_g \mathfrak{C}$

For our goal, we need the following propositions, and the proofs of these propositions can be found in [9].

Proposition 2.1 Assume that $\mathfrak{A}, \mathfrak{B}$ and \mathfrak{C} are B. a.s. Let $h \in \text{Hom}(\mathfrak{B}, \mathfrak{A})$ and $g \in \text{Hom}(\mathfrak{B}, \mathfrak{C})$ with $\| h \| \leq 1$ and $\|g\| \leq 1$. Then,

- 1. $\mathfrak{A} \times_{h} \mathfrak{B} \times_{g} \mathfrak{C}$ is a commutative Banach algebra (c. B. a.) if and only if $\mathfrak{A}, \mathfrak{B}$ and \mathfrak{C} are c. B. a.s.
- 2. $\mathfrak{A} \times_{h} \mathfrak{B} \times_{g} \mathfrak{C}$ is an untial Banach algebra (u. B. a.) if and only if $\mathfrak{A}, \mathfrak{B}$ and \mathfrak{C} are u. B. a.s.
- 3. $\mathfrak{A} \times_{h} \mathfrak{B} \times_{g} \mathfrak{C}$ is a semisimple Banach algebra (ss. B. a.) if and only if $\mathfrak{A}, \mathfrak{B}$ and \mathfrak{C} are ss. B. a.s.

Proposition 2.2 Assume that $\mathfrak A$ and $\mathfrak C$ are c. B. a.s with the Gel'fand spaces $\Delta(\mathfrak{A})$ and $\Delta(\mathfrak{C})$ respectively, and let \mathfrak{B} is a Banach algebra with the Gel'fand space $\Delta(\mathfrak{B})$, let h \in Hom($(\mathfrak{B}, \mathfrak{A})$ and $g \in \text{Hom}(\mathfrak{B}, \mathfrak{C})$ such that $||h|| \leq 1$ and $||g|| \le 1$. Then the Gel'fand spaces of $\mathfrak{A} \times_h \mathfrak{B} \times_g \mathfrak{C}$ is denoted by $\Delta(\mathfrak{A} \times_h \mathfrak{B} \times_g \mathfrak{C})$ and

 $\Delta(\mathfrak{A} \times_h \mathfrak{B} \times_q \mathfrak{C})$

 $=\{(\alpha, \alpha \cdot h, 0) : \alpha \in \Delta(\mathfrak{A})\} \cup \{(0, \gamma \cdot g, \gamma) : \gamma \in \Delta(\mathfrak{C})\}$ $\{(0, \beta, 0): \beta \in \Delta(\mathfrak{B})\},$ a disjoint union, where $E := \{ (\alpha, \alpha \cdot h, 0) : \alpha \in \Delta(\mathfrak{A}) \} \cup \{ (0, \gamma \cdot g, \gamma) : \gamma \in \Delta(\mathfrak{C}) \}$ and $F := \{(0, \beta, 0) : \beta \in \Delta(\mathfrak{B})\}$ are clopen in $\Delta(\mathfrak{A} \times_h \mathfrak{B} \times_g \mathfrak{C}).$ Recall that, a c. B. a. $\mathcal B$ is said to be a commutative extension of $\mathfrak A$ if the algebra $\mathfrak A$ is a (not necessarily closed) subalgebra of \mathfrak{B} [8]. And a c. B. a. \mathfrak{A} has SEP if $r_{\mathfrak{B}}(x) = r_{\mathfrak{A}}(x)$ for every extension B of U and every $x \in \mathfrak{A}$ (where $r_{\mathfrak{A}}(x)$ is the spectral radius of an element $x \in \mathfrak{A}$)[10].

Lemma 2.3[10] Let $\mathfrak A$ be a c. B. a. Then $\mathfrak A$ has a SEP if and only if every algebra norm $|\cdot|$ on $\mathfrak A$ satisfies $r_{\mathfrak A}(x) \leq |x|$ for all $x \in \mathfrak{A}$.

Now, we discuss the stability of SEP of $\mathfrak{A} \times_{h} \mathfrak{B} \times_{g} \mathfrak{C}$. First step, assume that $|\cdot|_{\mathfrak{A}}$ is an algebra norm on \mathfrak{A} . Identify $|\cdot|_{\mathfrak{A}\times_{h}\mathfrak{B}\times_{g}(\mathfrak{A})}: \mathfrak{A}\times_{h}\mathfrak{B}\times_{g}(\mathfrak{C})\to\mathbb{R}$ by

$$
|(m, n, r)|_{\mathfrak{A} \times_{h} \mathfrak{B} \times_{g} \mathfrak{C}, \mathfrak{A}}
$$

= $|m + h(n)|_{\mathfrak{A}} + ||n||_{\mathfrak{B}} + ||r + g(n)||_{\mathfrak{C}}$

$$
\forall (m, n, r) \in \mathfrak{A} \times_{h} \mathfrak{B} \times_{\sigma} \mathfrak{C}.
$$

Then $\left\| \cdot \right\|_{\mathfrak{A} \times_{\mathbf{h}} \mathfrak{B} \times_{\mathbf{g}} \mathfrak{C}, \mathfrak{A}}$ is an algebra norm on $\mathfrak{A} \times_{\mathbf{h}} \mathfrak{B} \times_{\mathbf{g}} \mathfrak{C}$. Indeed, let (m, n, r) , $(\hat{m}, \hat{n}, \hat{r}) \in \mathfrak{A} \times_{\mathfrak{h}} \mathfrak{B} \times_{\mathfrak{g}} \mathfrak{C}$. Then

$$
|(m, n, r)(\hat{m}, \hat{n}, \hat{r})|_{\mathfrak{A}\times_{\mathfrak{g}}\mathfrak{C}, \mathfrak{A}}
$$

=
$$
|(m\hat{m} + m\hat{n}(\hat{n}) + \hat{n}(n)\hat{m}, n\hat{n}, r\hat{r} + r g(\hat{n}) + g(n)\hat{r})|_{\mathfrak{A}\times_{\mathfrak{h}}\mathfrak{B}\times_{\mathfrak{g}}\mathfrak{C}, \mathfrak{A}}
$$

$$
= |m\dot{m} + m h(\dot{n}) + h(n)\dot{m} + h(n\dot{n})|_{\mathfrak{A}} + ||n\dot{n}||_{\mathfrak{B}} + ||r\dot{r} + r g(\dot{n}) + g(n)\dot{r} + g(n\dot{n})||_{\mathfrak{C}} \leq |m + h(n)|_{\mathfrak{A}}| \dot{m} + h(\dot{n})|_{\mathfrak{A}} + ||n||_{\mathfrak{B}}||\dot{n}||_{\mathfrak{B}} + ||r + g(n)||_{\mathfrak{C}}|| \dot{r} + g(\dot{n})||_{\mathfrak{C}}
$$

$$
\leq (|m + h(n)|_{\mathfrak{A}} + ||n||_{\mathfrak{B}} + ||r + g(n)||_{\mathfrak{C}})
$$

$$
(\Vert \vec{m} + \mathbf{h}(\vec{n}) \Vert_{\mathfrak{A}} + \Vert \vec{n} \Vert_{\mathfrak{B}} + \Vert \vec{r} + \mathbf{g}(\vec{n}) \Vert_{\mathfrak{C}})
$$

=
$$
[(\mathbf{m}, \mathbf{n}, \mathbf{r})]_{\mathfrak{A}_{\mathcal{M}}, \mathfrak{B}_{\mathcal{M}}, \mathfrak{D}} = [(\mathbf{m}, \mathbf{n}, \vec{r})]_{\mathfrak{A}_{\mathcal{M}}, \mathfrak{D}, \mathfrak{D}, \mathfrak{D}, \mathfrak{D}, \mathfrak{D}} =
$$

 $[(m, n, r)]_{\mathfrak{A}\times_{h}\mathfrak{B}\times_{g}\mathfrak{C},\mathfrak{A}}[(m, n, r)]_{\mathfrak{A}\times_{h}\mathfrak{B}\times_{g}\mathfrak{C},\mathfrak{A}}.$ Therefor $|\cdot|_{\mathfrak{A}\times_{h}\mathfrak{B}\times_{g}\mathfrak{C},\mathfrak{A}}$ is an algebra norm on $\mathfrak{A}\times_{h}\mathfrak{B}\times_{g}\mathfrak{C}$. Similarly, if we assume that $|\cdot|_{\mathfrak{B}}$ is an algebra norm on \mathfrak{B} . Identify $|\cdot|_{\mathfrak{A}\times_{\mathfrak{p}}\mathfrak{B}\times_{\mathfrak{g}}\mathfrak{C},\mathfrak{B}}:\mathfrak{A}\times_{\mathfrak{h}}\mathfrak{B}\times_{\mathfrak{g}}\mathfrak{C}\to\mathbb{R}$ by

 $|(m, n, r)|_{\mathfrak{A}\times_{\mathfrak{h}}\mathfrak{B}\times_{\mathfrak{g}}\mathfrak{C}, \mathfrak{B}}$ $=$ $\|m + h(n)\|_{\mathfrak{A}} + |n|_{\mathfrak{B}} + \|r + g(n)\|_{\mathfrak{C}}$ $\forall (m, n, r) \in \mathfrak{A} \times_h \mathfrak{B} \times_g \mathfrak{C}$ and if we assume that $|\cdot|_{\mathfrak{C}}$ is a norm on \mathfrak{C} . Identify $|\cdot|_{\mathfrak{A}\times_{h}\mathfrak{B}\times_{g}\mathfrak{C},\mathfrak{C}}:\mathfrak{A}\times_{h}\mathfrak{B}\times_{g}\mathfrak{C}\to\mathbb{R}$ by

 $|(m, n, r)|_{\mathfrak{A}\times_{\mathfrak{h}}\mathfrak{B}\times_{\mathfrak{g}}\mathfrak{C},\mathfrak{C}}$ $=$ $\|m + h(n)\|_{\mathfrak{A}} + \|n\|_{\mathfrak{B}} + |r + g(n)|_{\mathfrak{C}}$ $\forall (m, n, r) \in \mathfrak{A} \times_h \mathfrak{B} \times_g \mathfrak{C}.$

By similar way of above method we can show that $|\cdot|_{\mathfrak{A}\times_{h}\mathfrak{B}\times_{g}\mathfrak{C},\mathfrak{B}}$ and $|\cdot|_{\mathfrak{A}\times_{h}\mathfrak{B}\times_{g}\mathfrak{C},\mathfrak{C}}$ are also algebra norms on $\mathfrak{A} \times_{h} \mathfrak{B} \times_{\sigma} \mathfrak{C}.$

Proposition 2.4 Assume that $\mathfrak{A}, \mathfrak{B}$ and \mathfrak{C} are c. B. a.s. Let $h \in Hom(\mathfrak{B}, \mathfrak{A})$ and $g \in Hom(\mathfrak{B}, \mathfrak{C})$ with $||h|| \leq 1$ and $\|g\| \leq 1$. If $\mathfrak{A} \times_{h} \mathfrak{B} \times_{g} \mathfrak{C}$ has SEP, then each of $\mathfrak{A}, \mathfrak{B}$ and \mathfrak{C} has SEP.

Proof. Assume that $|\cdot|_{\mathfrak{A}}$ is an algebra norm on \mathfrak{A} . Identify $|\!\cdot\!|_{\mathfrak{A} \times_h \mathfrak{B} \times_g \mathfrak{C}, \mathfrak{A}} \colon \mathfrak{A} \times_h \mathfrak{B} \times_g \mathfrak{C} \ \rightarrow \mathbb{R} \text{ by }$ $|(m, n, r)|_{\mathfrak{A}\times_{\mathfrak{p}}\mathfrak{B}\times_{\mathfrak{g}}\mathfrak{C}, \mathfrak{A}}$ $= |m + h(n)|_{\mathfrak{A}} + ||n||_{\mathfrak{B}} + ||r + g(n)||_{\mathfrak{C}}$ $\forall (m, n, r) \in \mathfrak{A} \times_h \mathfrak{B} \times_g \mathfrak{C}.$ Since $\mathfrak{A} \times_h \mathfrak{B} \times_g \mathfrak{C}$ has SEP,

 $r_{\mathfrak{A}}(m) = r_{\mathfrak{A}\times_{\mathfrak{B}}\mathfrak{B}\times_{\mathfrak{A}}\mathfrak{C}}(m, 0, 0) \leq$ $= |m|_{\mathfrak{N}} (m \in \mathfrak{A}).$ Also, Assume that $|\cdot|_{\mathfrak{B}}$ is an algebra norm on \mathfrak{B} . Identify $|\cdot|_{\mathfrak{A}\times_{h}\mathfrak{B}\times_{g} \mathfrak{C}, \mathcal{B}}:\mathfrak{A}\times_{h}\mathfrak{B}\times_{g} \mathfrak{C} \rightarrow \mathbb{R}$ by $|(m, n, r)|_{\mathfrak{A}\times_{\mathfrak{p}}\mathfrak{B}\times_{\mathfrak{g}}\mathfrak{C}, \mathfrak{B}}$ $= \|m + h(n)\|_{\mathfrak{A}} + |n|_{\mathfrak{B}} + \|r + g(n)\|_{\mathfrak{C}}$ $\forall (m, n, r) \in \mathfrak{A} \times_h \mathfrak{B} \times_g \mathfrak{C}.$ Since $\mathfrak{A} \times_h \mathfrak{B} \times_g \mathfrak{C}$ has SEP, $r_{\mathfrak{B}}(n) = r_{\mathfrak{A}\times_{\mathfrak{b}}\mathfrak{B}\times_{\mathfrak{g}}\mathfrak{C}}(-h(n), n, -g(n))$ $\leq |(-h(n), n, -g(n))|_{\mathfrak{A}\times_{h}\mathfrak{B}\times_{\sigma}\mathfrak{C}, \mathfrak{B}} = |n|_{\mathfrak{B}}.$ Finally, assume that $|\cdot|_{\mathfrak{C}}$ is an algebra norm on \mathfrak{C} . Identify $|\cdot|_{\mathfrak{A}\times_h\mathfrak{B}\times_g\mathfrak{C},\mathfrak{C}}:\mathfrak{A}\times_h\mathfrak{B}\times_g\mathfrak{C}\to\mathbb{R}$ by $|(m, n, r)|_{\mathfrak{A}\times_{\mathfrak{h}}\mathfrak{B}\times_{\mathfrak{g}}\mathfrak{C},\mathfrak{C}}$ $=$ $\|m + h(n)\|_{\mathfrak{A}} + \|n\|_{\mathfrak{B}} + |r + g(n)|_{\mathfrak{C}}$ $\forall (m, n, r) \in \mathfrak{A} \times_h \mathfrak{B} \times_g \mathfrak{C}.$ Since $\mathfrak{A} \times_h \mathfrak{B} \times_g \mathfrak{C}$ has SEP, $r_{\mathfrak{C}}(r) = r_{\mathfrak{A}\times_{h}\mathfrak{B}\times_{g}\mathfrak{C}}(0,0,r) \leq |(0,0,r)|_{\mathfrak{A}\times_{h}\mathfrak{B}\times_{g}\mathfrak{C},\mathfrak{C}} = |r|_{\mathfrak{C}}.$

Hence, each of $\mathfrak{A}, \mathfrak{B}$ and \mathfrak{C} has SEP. \blacksquare

To prove the opposite of proposition 2.4 under the assumption of semi simplicity, we need the following lemmas.

Lemma 2.5 Assume that $\mathfrak{A}, \mathfrak{B}$ and \mathfrak{C} are c. B. a.s. Let $h \in Hom(\mathfrak{B}, \mathfrak{A})$ and $g \in Hom(\mathfrak{B}, \mathfrak{C})$ with $||h|| \leq 1$ and $\|g\| \leq 1$. Then,

$$
\mathbf{r}_{\mathfrak{A}\times_{\mathfrak{g}}\mathfrak{C}}(m,n,r)
$$

= max{ $\mathbf{r}_{\mathfrak{A}}(m + \mathbf{h}(n))$, $\mathbf{r}_{\mathfrak{B}}(n)$, $\mathbf{r}_{\mathfrak{C}}(r + \mathfrak{g}(n))$ }
 $\forall (m,n,r) \in \mathfrak{A} \times_{\mathfrak{h}} \mathfrak{B} \times_{\mathfrak{g}} \mathfrak{C}.$

Proof. Since each of $\mathfrak{A}, \mathfrak{B}$ and \mathfrak{C} is c. B. a. Then by proposition 2.1(1), $\mathfrak{A} \times_h \mathfrak{B} \times_g \mathfrak{C}$ is a c. B. a., therefor

$$
r_{\mathfrak{A}\times_{\mathfrak{g}}\mathfrak{C}}\big((m, n, r)\big)
$$

= sup{ | $\zeta((m, n, r))$ |: $\zeta \in \Delta(\mathfrak{A}\times_{\mathfrak{h}}\mathfrak{B}\times_{\mathfrak{g}}\mathfrak{C})$ }
 \forall $(m, n, r) \in \mathfrak{A}\times_{\mathfrak{h}}\mathfrak{B}\times_{\mathfrak{g}}\mathfrak{C}.$

If $(m, n, r) \in \mathfrak{A} \times_{h} \mathfrak{B} \times_{g} \mathfrak{C}$, then

$$
\mathrm{r}_{\mathfrak{A}\times_{\mathsf{B}}\mathfrak{B}\times_{\mathsf{g}}\mathsf{C}}((m,n,r))
$$
\n
$$
= \sup \left\{ \frac{|\alpha(m + h(n))|, |\beta(n)|, |\gamma(r + g(n))|:}{\alpha \in \Delta(\mathfrak{A}), \beta \in \Delta(\mathfrak{B}), \gamma \in \Delta(\mathfrak{C})} \right\}
$$
\n
$$
= \max \{ \mathrm{r}_{\mathfrak{A}}(m + h(n)), \mathrm{r}_{\mathfrak{B}}(n), \mathrm{r}_{\mathfrak{C}}(r + g(n)) \}.
$$

Lemma 2.6 Assume that each of $\mathfrak{A}, \mathfrak{B}$ and \mathfrak{C} is B. a. Let $h \in Hom(\mathfrak{B}, \mathfrak{V})$ and $g \in Hom(\mathfrak{B}, \mathfrak{C})$, then ${(-h(n), n, -g(n)) : n \in \mathfrak{B}} \cong \mathfrak{B}$ as a B. a. **Proof.** Define ψ : { $(-h(n), n, -g(n)) : n \in \mathbb{B}$ } $\rightarrow \mathbb{B}$ by $\psi((-h(n), n, -g(n))) = n$ $\forall (-h(n), n, -g(n)) \in \{(-h(n), n, -g(n)) : n \in \mathcal{B}\}.$ Then,

1. ψ is well define, Suppose that

$$
(-h(n_1), n_1, -g(n_1)), (-h(n_2), n_2, -g(n_2)) \in
$$

\n
$$
\{(-h(n), n, -g(n)) : n \in \mathbb{B}\} \text{ Such that,}
$$

\n
$$
(-h(n_1), n_1, -g(n_1)) = (-h(n_2), n_2, -g(n_2))
$$

\n
$$
\Rightarrow h(n_1) = h(n_2), n_1 = n_2 \text{ and } g(n_1) = g(n_2)
$$

\nSince $n_1 = n_2$, we have
\n
$$
\psi((-h(n_1), n_1, -g(n_1))) = \psi((-h(n_2), n_2, -g(n_2))).
$$

2. ψ is one to one, Suppose that

 $(-h(n_1), n_1, -g(n_1)), (-h(n_2), n_2, -g(n_2)) \in$ ${(-h(n), n, -g(n)) : n \in \mathbb{B}}$ Such that, $\psi((-h(n_1), n_1, -g(n_1))) = \psi((-h(n_2), n_2, -g(n_2)))$ \Rightarrow $n_1 = n_2 \Rightarrow h(n_1) = h(n_2)$ and $g(n_1) = g(n_2)$ (h and are well define)

 $\Rightarrow (-h(n_1), n_1, -g(n_1)) = (-h(n_2), n_2, -g(n_2)).$ 3. ψ is onto, Suppose that $n \in \mathcal{B}$, then there exists $(-h(n), n, -g(n)) \in \{(-h(n), n, -g(n)) : n \in \mathfrak{B}\}$ such that $\psi((-h(n), n, -g(n))) = n$. 4. ψ is homomorphism, Suppose that

$$
(-h(n_1), n_1, -g(n_1)), (-h(n_2), n_2, -g(n_2)) \in
$$

\n
$$
\{(-h(n), n, -g(n)) : n \in \mathbb{B} \} \text{ and } \sigma \in \mathbb{C} \text{ Then,}
$$

\n• $\psi \left((-h(n_1), n_1, -g(n_1)) + (-h(n_2), n_2, -g(n_2)) \right)$
\n= $\psi \left((-h(n_1) - h(n_2), n_1 + n_2, -g(n_1) - g(n_2)) \right)$
\n= $\psi \left((-h(n_1 + n_2), n_1 + n_2, -g(n_1 + n_2)) \right)$
\n= $n_1 + n_2$
\n= $\psi \left((-h(n_1), n_1, -g(n_1)) \right) +$
\n $\psi \left((-h(n_2), n_2, -g(n_2)) \right).$
\n• $\psi \left((-h(n_1), n_1, -g(n_1)) (-h(n_2), n_2, -g(n_2)) \right)$
\n• $\psi \left((-h(n_1)) (-h(n_2)) - h(n_1)h(n_2) -h(n_1)h(n_2) -h(n_1)h(n_2) -h(n_1)h(n_2) -g(n_1)g(n_2) \right)$
\n- $g(n_1)g(n_2) - g(n_1)g(n_2)$
\n= $\psi (-h(n_1, n_2), n_1 n_2, -g(n_1, n_2)) = n_1 n_2$
\n= $\psi \left((-h(n_1), n_1, -g(n_1)) \right) \psi \left((-h(n_2), n_2, -g(n_2)) \right).$
\n• $\psi \left(\sigma(-h(n_1), n_1, -g(n_1)) \right) =$
\n $\psi \left((-h(n_1), n_1, -g(n_1)) \right) = \sigma n_1$

 $= \sigma \psi \left((-h(n_1), n_1, -g(n_1)) \right)$ It follows, ψ is a bijective algebra homomorphism. Now, if $(-h(n), n, -g(n)) \in \{ (-h(n), n, -g(n)) : n \in \}$ \mathfrak{B} , then

$$
\|\psi\left((-\mathrm{h}(n), n, -\mathrm{g}(n))\right)\|_{\mathfrak{B}} = \|n\|_{\mathfrak{B}}\leq \| \mathrm{h}(n) \|_{\mathfrak{A}} + \|n\|_{\mathfrak{B}} + \| \mathrm{g}(n) \|_{\mathfrak{C}}= \| (-\mathrm{h}(n), n, -\mathrm{g}(n)) \|_{\mathfrak{A}} \times_{\mathrm{h}} \mathfrak{B} \times_{\mathrm{g}} \mathfrak{C}}
$$

As a result, ψ is continuous. Hence, ψ is a Banach algebra isomorphism according to the open mapping theorem.

Lemma 2.7 Assume that each of $e_{\mathfrak{A}}$, $e_{\mathfrak{B}}$ and $e_{\mathfrak{C}}$ is the identity of c. B. a.s $\mathfrak{A}, \mathfrak{B}$ and \mathfrak{C} , respectively, and let $h \in \text{Hom}(\mathfrak{B}, \mathfrak{A})$ and $g \in Hom(\mathfrak{B}, \mathfrak{C})$ with $||h|| \leq 1$ and $||g|| \leq 1$. If each of $\mathfrak{A}, \mathfrak{B}$ and \mathfrak{C} has SEP, then $\mathfrak{A} \times_h \mathfrak{B} \times_g \mathfrak{C}$ has SEP.

Proof. By Lemma 2.6 we note that $\{(-h(n), n, -g(n))\}$: $n \in \mathfrak{B} \geq \mathfrak{B}$ as a B. a.

Assume that $|\cdot|_{\mathfrak{A}\times_{h}\mathfrak{B}\times_{g} \mathfrak{C}}$ is a norm on $\mathfrak{A}\times_{h}\mathfrak{B}\times_{g} \mathfrak{C}$. Then

 $|m|_{\mathfrak{A}} = |(m, 0, 0)|_{\mathfrak{A}\times_{h} \mathfrak{B}\times_{g} \mathfrak{C}}(m \in \mathfrak{A})$ is a norm on $\mathfrak{A},$ $|n|_{\mathfrak{B}} = |(-h(n), n, -g(n))|_{\mathfrak{A}\times_{h}\mathfrak{B}\times_{g}\mathfrak{C}} (n \in \mathfrak{B})$ is a norm on B and $|\mathcal{F}|_{\mathfrak{C}} = |(0,0,\mathcal{F})|_{\mathfrak{A}\times_{\mathfrak{B}}\mathfrak{B}\times_{\mathfrak{C}}\mathfrak{C}}(\mathcal{F} \in \mathfrak{C})$ is a norm on \mathfrak{C} . Since $\mathfrak{A}, \mathfrak{B}$ and $\mathfrak C$ have SEP, then

$$
r_{\mathfrak{A}}(m) \le |m|_{\mathfrak{A}} = |(m, 0, 0)|_{\mathfrak{A} \times_{\mathfrak{h}} \mathfrak{B} \times_{\mathfrak{g}} \mathfrak{C}}(m \in \mathfrak{A}),
$$

\n
$$
r_{\mathfrak{B}}(n) \le |n|_{\mathfrak{B}} = |(-h(n), n, -g(n))|_{\mathfrak{A} \times_{\mathfrak{h}} \mathfrak{B} \times_{\mathfrak{g}} \mathfrak{C}}(n \in \mathfrak{B}),
$$

\nand, $r_{\mathfrak{C}}(r) \le |r|_{\mathfrak{C}} = |(0, 0, r)|_{\mathfrak{A} \times_{\mathfrak{h}} \mathfrak{B} \times_{\mathfrak{g}} \mathfrak{C}}(r \in \mathfrak{C}).$
\nLet $(m, n, r) \in \mathfrak{A} \times_{\mathfrak{h}} \mathfrak{B} \times_{\mathfrak{g}} \mathfrak{C}$ and let $k \in \mathbb{N}$. Then,
\n $(m + h(n), 0, 0)^k = (m, n, r)^k (e_{\mathfrak{A}}, 0, 0),$
\n $(-h(n), n, -g(n))^k = (m, n, r)^k (-h(e_{\mathfrak{B}}), e_{\mathfrak{B}}, -g(e_{\mathfrak{B}})),$

and
$$
(0,0,r+g(n))^k = (m,n,r)^k
$$
 ($h(c_8^k)$, c_8^k , $g(c_8^k)$),
and $(0,0,r+g(n))^k = (m,n,r)^k$ ($0,0,e_0$).

Since the spectral radius is a uniform semi norm [4, Lemma 2.26], then

$$
r_{\mathfrak{A}}((m + h(n))^{2^{k}} = r_{\mathfrak{A}}((m + h(n))^{2^{k}})
$$
\n
$$
\leq |(m + h(n), 0, 0)^{2^{k}}|_{\mathfrak{A} \times_{h} \mathfrak{B} \times_{g} \mathfrak{C}}
$$
\n
$$
= |(m, n, r)^{2^{k}}(e_{\mathfrak{A}}, 0, 0)|_{\mathfrak{A} \times_{h} \mathfrak{B} \times_{g} \mathfrak{C}}
$$
\n
$$
\leq |(m, n, r)^{2^{k}}|_{\mathfrak{A} \times_{h} \mathfrak{B} \times_{g} \mathfrak{C}}[(e_{\mathfrak{A}}, 0, 0)|_{\mathfrak{A} \times_{h} \mathfrak{B} \times_{g} \mathfrak{C}},
$$
\n
$$
r_{\mathfrak{B}}(n)^{2^{k}} = r_{\mathfrak{B}}(n^{2^{k}}) \leq |(-h(n), n, -g(n))^{2^{k}}|_{\mathfrak{A} \times_{h} \mathfrak{B} \times_{g} \mathfrak{C}}
$$
\n
$$
= |(m, n, r)^{2^{k}}((-h(e_{\mathfrak{B}}), e_{\mathfrak{B}}, -g(e_{\mathfrak{B}})|_{\mathfrak{A} \times_{h} \mathfrak{B} \times_{g} \mathfrak{C}})
$$
\n
$$
\leq |(m, n, r)|^{2^{k}}_{\mathfrak{A} \times_{h} \mathfrak{B} \times_{g} \mathfrak{C}}|(-h(e_{\mathfrak{B}}), e_{\mathfrak{B}}, -g(e_{\mathfrak{B}})|_{\mathfrak{A} \times_{h} \mathfrak{B} \times_{g} \mathfrak{C}},
$$
\nand $r_{\mathfrak{C}}((r + g(n))^{2^{k}}) \leq |(0, 0, r + g(n))^{2^{k}}|_{\mathfrak{A} \times_{h} \mathfrak{B} \times_{g} \mathfrak{C}}$ \n
$$
= |(m, n, r)^{2^{k}}(0, 0, e_{\mathfrak{C}})|_{\mathfrak{A} \times_{h} \mathfrak{B} \times_{g} \mathfrak{C}}
$$
\n
$$
\leq |(m, n, r)^
$$

Since $k \in \mathbb{N}$ is arbitrary, hence, $r_{\mathfrak{A}}(m + h(n)) \leq$ $|(m, n, r)|_{\mathfrak{A}\times_{\mathfrak{g}}\mathfrak{B}\times_{\mathfrak{g}}\mathfrak{C}}, \mathsf{r}_{\mathfrak{B}}(n) \leq |(m, n, r)|_{\mathfrak{A}\times_{\mathfrak{h}}\mathfrak{B}\times_{\mathfrak{g}}\mathfrak{C}}$ and $r_{\mathfrak{C}}(r + g(n)) \leq |(m, n, r)|_{\mathfrak{A}\times_{\mathfrak{D}}\mathfrak{B}\times_{\mathfrak{D}}\mathfrak{C}}.$

Now, by lemma 2.5, if $(m, n, r) \in \mathfrak{A} \times_h \mathfrak{B} \times_g \mathfrak{C}$, then,

$$
r_{\mathfrak{A}_{\times_{\mathfrak{h}}}\mathfrak{B}_{\times_{\mathfrak{g}}}\mathfrak{C}}(m,n,r)
$$

= max{ $r_{\mathfrak{A}}(m + h(n))$, $r_{\mathfrak{B}}(n)$, $r_{\mathfrak{C}}(r + g(n))$ }
Hence, $r_{\mathfrak{A}_{\times_{\mathfrak{h}}}\mathfrak{B}_{\times_{\mathfrak{g}}}\mathfrak{C}}(m,n,r) \le |(m,n,r)|_{\mathfrak{A}_{\times_{\mathfrak{h}}}\mathfrak{B}_{\times_{\mathfrak{g}}}\mathfrak{C}} \text{ and }$

therefore $\mathfrak{A} \times_{h} \mathfrak{B} \times_{g} \mathfrak{C}$ has SEP. \blacksquare

Lemma 2.8 [4] Let I be a closed ideal of c. B. a. \mathfrak{A} . If \mathfrak{A} has SEP and $mI = \{0\}$ ($m \in \mathfrak{A}$) lead to $m = 0$, then I has SEP.

Remember that the unitization of a Banach algebra $\mathfrak A$ is $\mathfrak{A}_{\rm e} = \mathfrak{A} \times \mathbb{C}$. Where $\mathfrak{A}_{\rm e}$ is a Banach algebra with the product $(m + \lambda 1)$ (m + μ 1)

$$
(m + \lambda 1_{\mathfrak{A}})(n + \mu 1_{\mathfrak{A}})
$$

= $mn + \mu m + \lambda n + \lambda \mu \mathbb{1}_{\mathfrak{A}} (m + \lambda \mathbb{1}_{\mathfrak{A}} n + \mu \mathbb{1}_{\mathfrak{A}} \in \mathfrak{A}_{e})$ and the norm

 $\|m + \lambda 1_{\mathfrak{A}}\|_1 = \|m\|_{\mathfrak{A}} + |\lambda| (m + \lambda 1_{\mathfrak{A}} \in \mathfrak{A}_{e}).$

We see that $\mathfrak A$ is a closed ideal of $\mathfrak A_e$ and $\mathfrak A_e$ is a commutative

if and only if $\mathfrak A$ is a commutative. For a systematic presentation of this topic, see [3].

Lemma 2.9 Assume that each of $\mathfrak{A}, \mathfrak{B}$ and \mathfrak{C} is c. B. a. Let $h \in Hom(\mathfrak{B}, \mathfrak{A})$ and $g \in Hom(\mathfrak{B}, \mathfrak{C})$ with $||h|| \leq 1$ and $\|g\| \leq 1$. Then,

1. If $\mathfrak A$ and $\mathfrak C$ are non-unitals and $\mathfrak B$ with identity $e_{\mathfrak B}$, then $\mathfrak{A}_{\mathrm{e}} \times_{\mathrm{h}} \mathfrak{B} \times_{\mathrm{g}} \mathfrak{C}_{\mathrm{e}} \cong (\mathfrak{A} \times_{\mathrm{h}} \mathfrak{B} \times_{\mathrm{g}} \mathfrak{C})_{\mathrm{e}}$ as a B. a.

2. If $e_{\mathfrak{A}}$ and $e_{\mathfrak{C}}$ are identities of $\mathfrak A$ and $\mathfrak C$, respectively, and B be non-unital, then $\mathfrak{A} \times_{h_e} \mathfrak{B}_e \times_{g_e} \mathfrak{C} \cong (\mathfrak{A} \times_h \mathfrak{B} \times_g \mathfrak{C})_e$ as a B. a.

3. If $e_{\mathfrak{A}}$ and $e_{\mathfrak{B}}$ are identities of $\mathfrak A$ and $\mathfrak B$, respectively, and $\mathfrak C$ be non-unital, then $\mathfrak A \times_h \mathfrak B \times_g \mathfrak C_e \cong (\mathfrak A \times_h \mathfrak B \times_g \mathfrak C)_e$ as a B. a.

4. If $e_{\mathcal{B}}$ and $e_{\mathcal{C}}$ are identities of \mathcal{B} and \mathcal{C} respectively, and \mathfrak{A} be non-unital, then $\mathfrak{A}_{e} \times_{h} \mathfrak{B} \times_{g} \mathfrak{C} \cong (\mathfrak{A} \times_{h} \mathfrak{B} \times_{g} \mathfrak{C})_{e}$ as a B. a.

5. If $\mathfrak A$ and $\mathfrak B$ are non-unitals and $\mathfrak C$ with identity $e_{\mathfrak C}$, then $\mathfrak{A}_{\mathrm{e}} \times_{\mathrm{h}^{\mathrm{e}}} \mathfrak{B}_{\mathrm{e}} \times_{\mathrm{g}_{\mathrm{e}}} \mathfrak{C} \cong (\mathfrak{A} \times_{\mathrm{h}} \mathfrak{B} \times_{\mathrm{g}} \mathfrak{C})_{\mathrm{e}}$ as a B. a.

6. If $\mathfrak B$ and $\mathfrak C$ are non-unitals and $\mathfrak A$ with identity $e_{\mathfrak A}$, then $\mathfrak{A} \times_{h_e} \mathfrak{B}_e \times_{g^e} \mathfrak{C}_e \cong (\mathfrak{A} \times_h \mathfrak{B} \times_g \mathfrak{C})_e$ as a B. a. Where,

 $h_e: \mathfrak{B}_e \to \mathfrak{A}$ defined by $h_e(n + \lambda 1_{\mathfrak{B}}) = h(n) +$ $\lambda e_{\mathfrak{A}} (\forall n + \lambda 1_{\mathfrak{B}} \in \mathfrak{B}_{e}), g_{e} : \mathfrak{B}_{e} \to \mathfrak{C}$ defined by $g_{e}(n)$ $\lambda 1_{\mathfrak{B}}$) = g(n) + $\lambda e_{\mathfrak{C}}$ ($\forall n + \lambda 1_{\mathfrak{B}} \in \mathfrak{B}_{e}$), h^e: defined by $h^{e}(n + \lambda 1_{\mathcal{B}}) = h(n) + \lambda 1_{\mathcal{A}}$ (\forall \mathfrak{B}_e), and $g^e: \mathfrak{B}_e \to \mathfrak{C}_e$ defined by $g_e(n + \lambda 1_{\mathfrak{B}}) =$ $g(n) + \lambda 1_{\mathfrak{C}} (\forall n + \lambda 1_{\mathfrak{B}} \in \mathfrak{B}_{e}),$

Proof.

1. Define $\Psi : (\mathfrak{A} \times_h \mathfrak{B} \times_g \mathfrak{C})_e \to \mathfrak{A}_e \times_h \mathfrak{B} \times_g \mathfrak{C}_e$ by

$$
\Psi((m, n, r) + \lambda 1_{\mathfrak{A} \times_h \mathfrak{B} \times_g \mathfrak{C}}) = (m, n, r) + \lambda (1_{\mathfrak{A}} - h(e_{\mathfrak{B}}), e_{\mathfrak{B}}, 1_{\mathfrak{C}} - g(e_{\mathfrak{B}})).
$$

$$
\forall (m, n, r) + \lambda 1_{\mathfrak{A} \times_{\mathfrak{h}} \mathfrak{B} \times_{\mathfrak{g}} \mathfrak{C}} \in (\mathfrak{A} \times_{\mathfrak{h}} \mathfrak{B} \times_{\mathfrak{g}} \mathfrak{C})_{\mathfrak{g}}
$$

Then Ψ is a bijective algebra homomorphism.

If $(m, n, r) + \lambda 1_{\mathfrak{A}\times_{\mathfrak{h}}\mathfrak{B}\times_{\mathfrak{g}}\mathfrak{C}} \in (\mathfrak{A}\times_{\mathfrak{h}}\mathfrak{B}\times_{\mathfrak{g}}\mathfrak{C})_e$, then

$$
\|\Psi\left((m, n, r) + \lambda 1_{\mathfrak{A}\times_{h}\mathfrak{B}\times_{g}\mathfrak{C}}\right)\|_{\mathfrak{A}_{\varepsilon}\times_{h}\mathfrak{B}\times_{g}\mathfrak{C}_{e}}
$$

=
$$
\|(m - \lambda h(e_{\mathfrak{B}})) + \lambda 1_{\mathfrak{A}}, n + \lambda e_{\mathfrak{B}}, (r - \lambda g(e_{\mathfrak{B}}))
$$

$$
+ \lambda 1_{\mathfrak{C}})\|_{\mathfrak{A}_{\varepsilon}\times_{h}\mathfrak{B}\times_{g}\mathfrak{C}_{e}}
$$

$$
\leq ||m||_{\mathfrak{A}} + |\lambda| ||h(e_{\mathfrak{B}})||_{\mathfrak{A}} + |\lambda| + ||n||_{\mathfrak{B}} + |\lambda| ||e_{\mathfrak{B}}||_{\mathfrak{B}} + ||r||_{\mathfrak{C}}
$$

+ $|\lambda| ||g(e_{\mathfrak{B}})||_{\mathfrak{C}} + |\lambda|$

$$
\leq ||m||_{\mathfrak{A}} + |\lambda| ||h|| ||e_{\mathfrak{B}}||_{\mathfrak{B}} + |\lambda| + ||n||_{\mathfrak{B}} + |\lambda| ||e_{\mathfrak{B}}||_{\mathfrak{B}}
$$

+ $||m||_{\mathfrak{A}} + |\lambda| ||h|| ||e_{\mathfrak{B}}||_{\mathfrak{B}} + |\lambda| + ||h||_{\mathfrak{B}} + |\lambda| ||e_{\mathfrak{B}}||_{\mathfrak{B}}$

$$
\leq 5 \|e_{\mathcal{B}}\|_{\mathcal{B}} (\|m\|_{\mathcal{U}} + \|n\|_{\mathcal{B}} + \|r\|_{\mathcal{C}} + |\lambda|)
$$

= 5 \|e_{\mathcal{B}}\|_{\mathcal{B}} (\|(m, n, r)\|_{\mathcal{U}\times_{h} \mathcal{B}\times_{\mathcal{E}} \mathcal{C}} + |\lambda|)

 $= 5 \|e_{\mathcal{B}}\|_{\mathcal{B}} \left\| (m, n, r) + \lambda 1_{\mathfrak{A} \times_{\mathfrak{h}} \mathfrak{B} \times_{\mathfrak{g}} \mathfrak{C}} \right\|_1.$

As a result, Ψ is continuous. Hence, Ψ is a Banach algebra isomorphism according to the open mapping theorem.

2. Define
$$
\Psi: (\mathfrak{A} \times_h \mathfrak{B} \times_g \mathfrak{C})_e \to \mathfrak{A} \times_{h_e} \mathfrak{B}_e \times_{g_e} \mathfrak{C}
$$
 by
\n
$$
\Psi((m, n, r) + \lambda 1_{\mathfrak{A} \times_h \mathfrak{B} \times_g \mathfrak{C}}) = (m, n + \lambda 1_{\mathfrak{B}}, r)
$$
\n
$$
\forall (m, n, r) + \lambda 1_{\mathfrak{A} \times_h \mathfrak{B} \times_g \mathfrak{C}} \in (\mathfrak{A} \times_h \mathfrak{B} \times_g \mathfrak{C})_e.
$$

Then Ψ is a bijective algebra homomorphism.

if
$$
(m, n, r)
$$
 + $\lambda 1_{\mathfrak{A} \times_{h} \mathfrak{B} \times_{g} \mathfrak{C}} \in (\mathfrak{A} \times_{h} \mathfrak{B} \times_{g} \mathfrak{C})_{e}$. Then,
\n
$$
\|\Psi((m, n, r) + \lambda 1_{\mathfrak{A} \times_{h} \mathfrak{B} \times_{g} \mathfrak{C}})\|_{\mathfrak{A} \times_{h_{e}} \mathfrak{B}_{e} \times_{g_{e}} \mathfrak{C}}
$$
\n
$$
= \| (m, n + \lambda 1_{\mathfrak{B}}, r) \|_{\mathfrak{A} \times_{h_{e}} \mathfrak{B}_{e} \times_{g_{e}} \mathfrak{C}}
$$
\n
$$
= \|m\|_{\mathfrak{A}} + \|n\|_{\mathfrak{B}} + \|r\|_{\mathfrak{C}} + |\lambda|
$$
\n
$$
= \| (m, n, r) \|_{\mathfrak{A} \times_{h} \mathfrak{B} \times_{g} \mathfrak{C}} + |\lambda|
$$
\n
$$
= \| (m, n, r) + \lambda 1_{\mathfrak{A} \times_{h} \mathfrak{B} \times_{g} \mathfrak{C}} \|_{1}.
$$

As a result, Ψ is continuous. Hence, Ψ is a Banach algebra isomorphism according to the open mapping theorem. the proof of other cases by similar way. \blacksquare

Theorem 2.10 Assume that each of $\mathfrak{A}, \mathfrak{B}$ and \mathfrak{C} is ss. c. B. a. Let $h \in Hom(\mathfrak{B}, \mathfrak{A})$ and $g \in Hom(\mathfrak{B}, \mathfrak{C})$ with $||h|| \leq 1$ and $\|g\| \leq 1$. If each of $\mathfrak{A}, \mathfrak{B}$ and \mathfrak{C} has SEP, then $\mathfrak{A} \times_{h} \mathfrak{B} \times_{g} \mathfrak{C}$ has SEP.

Proof.

Case 1. If each of $\mathfrak{A}, \mathfrak{B}$ and \mathfrak{C} is untial, then by lemma 2.7 $\mathfrak{A} \times_{h} \mathfrak{B} \times_{g} \mathfrak{C}$ has SEP.

Case 2. If each of $\mathfrak{A}, \mathfrak{B}$ and \mathfrak{C} is non-unital. Since each of $\mathfrak{A}, \mathfrak{B}$ and $\mathfrak C$ has SEP and each of them is ss. c. B. a. by a assumption, then by corollary 3.2 [2], each of \mathfrak{A}_{e} , \mathfrak{B}_{e} and has SEP.

Now, define $h_e: \mathfrak{B}_e \rightarrow \mathfrak{A}_e$ as

 $h_e(n + \lambda 1_{\mathfrak{B}}) = h(n) + \lambda 1_{\mathfrak{A}} (n + \lambda 1_{\mathfrak{B}} \in \mathfrak{B}_e)$ and $g_e: \mathfrak{B}_e \rightarrow \mathfrak{C}_e$ as

 $g_e(n + \lambda 1_g) = g(n) + \lambda 1_g (n + \lambda 1_g \in \mathfrak{B}_e).$

Then h_e and g_e are algebra homomorphisms with $||h_e|| \leq 1$ and $\|g_e\| \leq 1$, as stated in theorem 2.30 [4]. Therefore $\mathfrak{A}_{\rm e} \times_{\rm h} \mathfrak{B}_{\rm e} \times_{\rm g} \mathfrak{C}_{\rm e}$ is a Banach algebra and by lemma 2.7 $\mathfrak{A}_{e} \times_{h_{e}} \mathfrak{B}_{e} \times_{g_{e}} \mathfrak{C}_{e}$ has SEP.

Now, $\mathfrak{A} \times_{\mathbf{h}} \mathfrak{B} \times_{\mathbf{g}} \mathfrak{C}$ is a closed ideal of $\mathfrak{A}_{\mathbf{e}} \times_{\mathbf{h}_{\mathbf{a}}} \mathfrak{B}_{\mathbf{e}} \times_{\mathbf{g}_{\mathbf{a}}} \mathfrak{C}_{\mathbf{e}}$. Let $(m + \lambda 1_A, n + \mu 1_B, r + \eta 1_\mathbb{C}) \in \mathfrak{A}_{\mathrm{e}} \times_{\mathrm{h}_\mathbb{C}} \mathfrak{B}_{\mathrm{e}} \times_{\mathrm{g}_\mathbb{C}} \mathfrak{C}$ such that

$$
(m + \lambda 1_{\mathfrak{A}}, n + \mu 1_{\mathfrak{B}}, r + \eta 1_{\mathfrak{C}}) (\mathfrak{A} \times_{\mathfrak{h}} \mathfrak{B} \times_{\mathfrak{g}} \mathfrak{C})
$$

= {(0,0,0)}.

Since each of $\mathfrak{A}, \mathfrak{B}$ and \mathfrak{C} is non-unital and each of them is ss., we have

$$
(m + \lambda 1_{\mathfrak{A}}, n + \mu 1_{\mathfrak{B}}, r + \eta 1_{\mathfrak{C}}) = (0,0,0).
$$

Hence, by Lemma 2.8, $\mathfrak{A} \times_h \mathfrak{B} \times_g \mathfrak{C}$ has SEP.

Case 3. if $\mathfrak A$ and $\mathfrak C$ are non-unitals and $\mathfrak B$ is unital, then $\mathfrak{A}_{e} \times_{h} \mathfrak{B} \times_{g} \mathfrak{C}_{e}$ is unital. By Lemma 2.7, it has SEP. From lemma 2.9 (1) $\mathfrak{A}_{\mathbf{e}} \times_{\mathbf{h}} \mathfrak{B} \times_{\mathbf{g}} \mathfrak{C}_{\mathbf{e}} \cong (\mathfrak{A} \times_{\mathbf{h}} \mathfrak{B} \times_{\mathbf{g}} \mathfrak{C})_{\mathbf{e}},$ $(\mathfrak{A} \times_{\mathsf{h}} \mathfrak{B} \times_{\mathsf{g}} \mathfrak{C})_{\mathsf{e}}$ has SEP.

Since $\mathfrak{A} \times_h \mathfrak{B} \times_g \mathfrak{C}$ is a closed ideal of $(\mathfrak{A} \times_h \mathfrak{B} \times_g \mathfrak{C})_e$. Let $(m, n, r) + \lambda 1_{\mathfrak{A} \times_{\mathfrak{h}} \mathfrak{B} \times_{\mathfrak{g}} \mathcal{C}} \in (\mathfrak{A} \times_{\mathfrak{h}} \mathfrak{B} \times_{\mathfrak{g}} \mathfrak{C})_{e}$ such that $((m, n, r) + \lambda 1_{\mathfrak{A} \times_h \mathfrak{B} \times_g \mathfrak{C}}) (\mathfrak{A} \times_h \mathfrak{B} \times_g \mathfrak{C}) = (0, 0, 0).$

Then,

$$
((m, n, r) + \lambda 1_{\mathfrak{A} \times_{\mathfrak{h}} \mathfrak{B} \times_{\mathfrak{g}} \mathfrak{G}})(\vec{m}, \vec{n}, \vec{r})
$$

= $(m\vec{m} + m h(\vec{n}) + h(n)\vec{m} + \lambda \vec{m}, n\vec{n} + \lambda \vec{n}, r\vec{r} + r g(\vec{n}) + g(n)\vec{r} + \lambda \vec{r}) = (0,0,0)$

 $\forall (\hat{m}, \hat{n}, \hat{r}) \in \mathfrak{A} \times_{h} \mathfrak{B} \times_{g} \mathfrak{C}.$

Suppose that $\lambda \neq 0$ and taking $\dot{\mathcal{n}} = 0$, we get $-\frac{1}{\lambda}$ $\frac{1}{\lambda}(m)$ $(h(n)) \hat{m} = \hat{m}$ for all $\hat{m} \in \mathfrak{A}$ and $-\frac{1}{\lambda}$ $\frac{1}{\lambda}(r' + g(n))\dot{r} = \dot{r}$ for all $\mathbf{r} \in \mathfrak{C}$. These are not possible as \mathfrak{A} and \mathfrak{C} are nonunitals.

Thus, $(m\hat{m} + m h(\hat{n}) + h(n)\hat{m}$, $n\hat{n}$, $r\hat{r} + r g(\hat{n}) +$ $g(n)\dot{r}$) = (0,0,0) for all $(\dot{m}, \dot{n}, \dot{r}) \in \mathfrak{A} \times_{h} \mathfrak{B} \times_{g} \mathfrak{C}$. Since $\mathfrak B$ is unital and $n \dot n = 0$ for all $\dot n \in \mathfrak B$, we get $n = 0$. By taking $\dot{n} = 0$, we get $m\dot{m} = 0$ for all $\hat{m} \in \mathfrak{A}$ and $r \hat{r} = 0$ for all $\hat{r} \in \mathfrak{C}$. In particular, $m^2 = 0$ and $r^2 = 0$. This gives $r_{\mathfrak{A}}(m)^2 = r_{\mathfrak{A}}(m^2) = 0$ and $r_{\mathfrak{C}}(r)^2 = r_{\mathfrak{C}}(r^2) = 0$. Since each of $\mathfrak A$ and $\mathfrak C$ is semisimple, $m = 0$ and $r = 0$. Thus (m, n, r) + $\lambda 1_{\mathfrak{A}\times_{h}\mathfrak{B}\times_{g}\mathfrak{C}} = (0,0,0)$. Hence, by lemma 2.8 $\mathfrak{A}\times_{h}\mathfrak{B}\times_{g}\mathfrak{C}$ has SEP.

Case 4. If $\mathfrak A$ and $\mathfrak C$ are unitals and $\mathfrak B$ is non-unital, then $\mathfrak{A} \times_{\mathfrak{h}_{\alpha}} \mathfrak{B}_{e} \times_{g_{\alpha}} \mathfrak{C}$ is untial. By Lemma 2.7, it has SEP. From lemma 2.9 $\mathfrak{C} \cong (\mathfrak{A} \times_h \mathfrak{B} \times_g \mathfrak{C})_e,$ $(\mathfrak{A} \times_{\mathbf{h}} \mathfrak{B} \times_{\mathbf{g}} \mathfrak{C})_{\mathbf{e}}$ has SEP.

Since $\mathfrak{A} \times_h \mathfrak{B} \times_g \mathfrak{C}$ is a closed ideal of $(\mathfrak{A} \times_h \mathfrak{B} \times_g \mathfrak{C})_e$. Let $(m, n, r) + \lambda 1_{\mathfrak{A} \times_{\mathfrak{B}} \mathfrak{B} \times_{\mathfrak{g}} \mathfrak{C}} \in (\mathfrak{A} \times_{\mathfrak{h}} \mathfrak{B} \times_{\mathfrak{g}} \mathfrak{C})_{e}$ such that

$$
\left((m, n, r) + \lambda 1_{\mathfrak{A} \times_{\mathfrak{h}} \mathfrak{B} \times_{\mathfrak{g}} \mathfrak{C}} \right) \left(\mathfrak{A} \times_{\mathfrak{h}} \mathfrak{B} \times_{\mathfrak{g}} \mathfrak{C} \right) = (0, 0, 0).
$$

 λ

Then,

$$
= (m\dot{m} + m h(\dot{n}) + \lambda 1_{\mathfrak{A}\times_{\mathfrak{h}}\mathfrak{B}\times_{\mathfrak{g}}\mathfrak{C}})(\dot{m}, \dot{n}, \dot{r})
$$

=
$$
(m\dot{m} + m h(\dot{n}) + h(n)\dot{m} + \lambda \dot{m}, n\dot{n} + \lambda \dot{n}, r\dot{r} + r\mathfrak{g}(\dot{n}) + g(n)\dot{r} + \lambda \dot{r}) = (0,0,0)
$$

 $\forall (\grave{m}, \grave{n}, \grave{r}) \in \mathfrak{A} \times_{\mathrm{h}} \mathfrak{B} \times_{\mathrm{g}} \mathfrak{C}.$

Suppose that $\lambda \neq 0$. we get $-\frac{1}{2}$ $\frac{1}{\lambda}n\dot{n} = \dot{n}$ for all $\dot{n} \in \mathfrak{B}$. This is not possible as \mathfrak{B} is non-unital. Thus, $(m \hat{m} +$ $mh(n) + h(n) \dot{m}$, $n \dot{n}$, $r \dot{r} + r g(\dot{n}) + g(n) \dot{r}$) = $(0,0,0)$ for all $(\hat{m}, \hat{n}, \hat{r}) \in \mathfrak{A} \times_h \mathfrak{B} \times_g \mathfrak{C}$. Thus, $n\hat{n} = 0$ for all $\hat{n} \in \mathfrak{B}$. In particular, $n^2 = 0$. This gives $r_{\mathfrak{B}}(n)^2$ $r_{\mathcal{B}}(n^2) = 0$. Since \mathcal{B} is semisimple, $n = 0$. Thus $(m\hat{m} + m h(\hat{n}), 0, r\hat{r} + r g(\hat{n})) = (0,0,0)$ for all $(m, \hat{n}, \hat{r}) \in \mathfrak{A} \times_{h} \mathfrak{B} \times_{g} \mathfrak{C}$. Thus $m(m + h(\hat{n})) = 0$ and $r(r^2 + g(n)) = 0$, in particular taking $\dot{n} = 0$, then $m \hat{m} = 0$ for all $\hat{m} \in \mathfrak{A}$ and $r \hat{r} = 0$ for all $\hat{r} \in \mathfrak{C}$, and Since $\mathfrak A$ and $\mathfrak C$ are unital, we get $m = 0$ and $r = 0$. Thus $(m, n, r) + \lambda 1_{\mathfrak{A} \times_{\mathfrak{A}} \mathfrak{B} \times_{\mathfrak{g}} \mathfrak{C}} = (0, 0, 0)$. Hence, by Lemma 2.8 $\mathfrak{A} \times_{h} \mathfrak{B} \times_{g} \mathfrak{C}$ has SEP.

The other cases can be proved by using the similar arguments as above, it follows $\mathfrak{A} \times_h \mathfrak{B} \times_g \mathfrak{C}$ *SEP*.

Conclusion

Assume that $\mathfrak{A}, \mathfrak{B}$ and \mathfrak{C} are c. B. a.s Let $h \in Hom(\mathfrak{B}, \mathfrak{A})$ and $g \in \text{Hom}(\mathfrak{B}, \mathfrak{C})$ with $||h|| \leq 1$ and $||g|| \leq 1$. Then,

1. If $\mathfrak{A} \times_h \mathfrak{B} \times_g \mathfrak{C}$ has SEP, then each of $\mathfrak{A}, \mathfrak{B}$ and \mathfrak{C} has SEP.

2. If each of $\mathfrak{A}, \mathfrak{B}$ and \mathfrak{C} has SEP and each of them is ss., then $\mathfrak{A} \times_{h} \mathfrak{B} \times_{g} \mathfrak{C}$ has SEP. In another word, the SEP is stable with respect to the (h, g) -perturbed product defined on three semisimple commutative Banach.

Acknowledgement

The authors would express they're thanks to college of Education for Pure Sciences, University of Mosul to support this report.

References

- [1] Bhatt S. J. ad Dabhi P. A., Arens regularity and amenability of Lau product of Banach algebras defined by a Banach algebra morphism, Bull. Aust. Math. Soc. 87 (2013), 195–206
- [2] Bhatt S. J. and Dedania H. V., Uniqueness of the uniform norm and adjoining identity in Banach algebras, Proc. Indian Acad. Sci. (Math. Sci.) 105 (1995), 405–409.
- [3] Bonsall F. F. and Duncan J., Complete normed algebras, Springer Verlag, Berlin Heidelberg New York 1973.
- [4] Dabhi P. A. and Patel S. K., Spectral properties and stability of perturbed cartesian product, Proc. Indian Acad. Sci. (Math. Sci.) 127 (2017), 673–687.
- [5] Dabhi P. A. and Patel S. K., Spectral properties of the Lau Product $\mathfrak{A} \times_{\theta} \mathfrak{B}$ of Banach algebras, Ann. Funct. Anal. 8752(2008),1-12.
- [6] Dedania H. V. and Kanani H. J., Some Banach algebra properties in the cartesian product of Banach algebras, Ann. Funct. Anal. 5 (2014), 51– 55.
- [7] Dedania H. V. and Kanani H. J., Some spectral properties of the Banach algebra $\mathfrak{A} \times_{d} \mathfrak{B}$ with the direct-sum product, International Journal of Science and Research, 8 (2019),318-323.
- [8] Dedania H. V. and Kanani H. J., Various spectral properties in the Banach algebra $\mathfrak{A} \times_{c} I$ with the convolution product, Int. J. Math. And Appl., 7(4)(2019), 9–14.
- [9] Jardo M. A. and Mohammed A. A., Stability of Arens regularity of (h, g) -perturbation of triple product of Banach algebras, 4th International Scientific Conference of Engineering Sciences and Advance Technologies (IICESAT), and American Institute of physics (AIP), 2022, Acceptable.
- [10] Kaniuth E., A course in commutative Banach algebras, Springer, New York , 2009.
- [11] Lau, A. T.-M. 'Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups', Fund. Math. 118 (1983), 161–175.
- [12] Meyer M J, The spectral extension property and extension of multiplicative linear functionals, Proc. Am. Math. Soc. 112 (1991) 855– 861.

خاصية االيتذاد انطيفي نهضرب انثالثي انًشوش عهى جبور باناخ االبذانية شبه انبسيطة

يرواٌ عزيز جردو و عاير عبذ االنه دمحم

قسى انرياضيات، كهية انتربية نهعهوو انصرفة، جايعة انًوصم، انًوصم، انعراق amirabdulillah@uomosul.edu.iq marwanjardo@uomosul.edu.iq

تاريخ االستالو30/6/2022: تاريخ انقبول17/8/2022: انًهخص

تحت عملية ضرب ثلاثي مشوش معرفة على ثلاثة جبور باناخ ابدالية شبه بسيطة مع تأثير تشاكلان معرفان على اثنين منهم و يحملان صفات معينة ، برهنا ان خاصية الامنداد الطيفي مستقرة.

ا**لكلمات المفتاحية:** جبر باناخ، الضرب الثلاثي المشوش، خاصية الامتداد الطيفي.