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1. INTRODUCTION

Ji-Huan He (1998, 1999) published the so-called HPM
[1-3] six years after Shijun Liao (1992) suggested the earliest
homotopy analysis method (HAM) in his Ph.D. thesis. The
HPM, such as the earliest HAM, is constructed Based on a
homotopy equation
(1 -p)L[p(x;p) —ue(x)] + pN[p(x;p)] = 0,

x€Q, pel01] )
where uy(x) is an initial guess and L is an auxiliary linear
operator. The concept of homotopy (Hilton, 1953) in
topology (Sen, 1983) theoretically gives us a lot of leeway in
selecting the auxiliary linear operator L and the initial guess
Uy (x). The zeroth-order deformation equation is the same of
Eg. ().

The HPM is a semi-analytical method for solving both
linear and non-linear differential and integral problems. A
system of linear and non-linear differential equations may
also be solved using this approach. Artificial parameters [4]
were used to build this approach [5-8]. Almost every classic
perturbation approach is predicated on the assumption of a
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small number of parameters. However, the vast majority of
non-linear problems contain no tiny parameters at all,
therefore determining small parameters appears to be a unique
skill needing unique methodologies. Tiny changes in small
factors might have a big impact on the outcomes. Unsuitable
tiny parameter selection, on the other hand, has negative
consequences, which can be severe.

Consider the general 1\VVPs of first order [9,10]
u+ku—gw) =pflnuw), u@@=a 0<x<l (2)
where g is a linear / non-linear function of u and f is a
function with some discontinuity, whereas k, | analpha arere
real constants.

Based on the currently available literature, Al-Hayani and
Casasus [9,11,12] solved the IVP Eq. (2) with discontinuities
by the Adomian decomposition method (ADM). Al-Hayani
and Rasha Fahad [10,13] have been utilized the homotopy
analysis method (HAM) for the Eqg. (2). Ji-Huan He [14]
utilized the HPM to solve non-linear oscillators.

The major purpose of this study is to test the HPM for
solving first-order 1\VVPs with a derivative discontinuous, unit
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step function and unit impulse function to achieve
approximate-exact solutions in a variety of circumstances.
Section 2 gives the fundamental idea of HPM, section 3
shows HPM Applied to an I\VVPs for linear and non-linear
cases, and the conclusions in section 4.

2. The Fundamental Idea of HPM

Now, we demonstrate the fundamental concept of the
HPM [1-3,15-18]. For this, we'll use the non-linear
differential equation below:

Aw) - f(r)=0, req (3)
subject to the boundary conditions
0
B(u,—u)zo, rerl 4)
ar

where A denotes a generic differential operator, B denotes a
boundary operator, T' denotes the domain  boundary, and
f(r) denotes a known analytic function. The linear L and
non-linear N components of the operator A can be separated.
As a result, Eqg. (3) may be expressed as follows:

Lw)+Nw)—f(@r) =0, 5)
In Eq. (5), a fake parameter p can be inserted as follows:
L) +p(Nw) = f() =0, (6)

where p € [0,1] is a parameter for embedding (also named as
an artificial parameter).

We create a homotopy by employing homotopy approaches
[1-3,15-18].

v(r,p): Q x [0,1] - R to Eq. (5) which satisfies

H(,p) = (1 —p)[L(v) — L(uo)]

; +plL(W) + N(v) — f(")] = (7
an
H(v,p) = L(v) — L(uo) + pL(uo)

+p[N(v) - f(")] =0, €))

Here, u, is an initial approximation of Eq. (8) it meets the
requirements.

By substituting p = 0 and p = 1 in Eq. (8), The following
equations may be obtained, respectively

H(,0) = L(v) — L(up) =0,

and

H(v,1) =AWw) - f(r) =0.

when the value of p changes from 0 to 1, v(r,p) changes
from uy(r) to u(r). In topology, this is called deformation
and L(v) — L(uy) and A(v) — f(r) are homotopic to each
other. Because p € [0,1] is a tiny parameter, we consider Eq.
(7) solution as a power series in p, as shown below.

v =v, + pyy + p2v, + 9)

The approximation solution of Eq. (3) can then be acquired as

u—llmv—v0+vl+v2+ (10)
p—)
In [1] has given the convergence of the series solution (10).

3. HPM Applied to an IVPs

Applying the standard HPM as in [1-3], Eq. (2) can be
written as
u' = vy +plvg + k*u— gw) —pf(x,w)] =0, (11)
We can utilize the embedding parameter p as a tiny parameter
and suppose that the solution of Eq. (2) can be represented as
a power series in p, according to the HPM.
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u(x) = Zp (), (12)
and the non -linear term can be decomposed as
gu) = Z p"H,(u), (13)

for some He s polynomials H, (u) [18] that are given by

10"
H, (ug, uy, -, Uy) == ap Zp u; )
n=01, 2 (14)
Substituting (12) and (13) into Eq. (11) we get
Z P un —vo +p |vg + k? Z P Uy — Z p"Hy, (W)
n=0 n=0 n=0
— uf(x, u)l =0, (15)

and equating the terms in the same power of p, we have a
system IVPs of first order

p% uy—v)=0, u(0)=a

plr ul + vy + kPug— Ho(w) — uf(x,u) =0, u;(0)=0
p% u,—k?u; —H(w) =0, u,(0)=0 (16)
p3: uy —k?u, —Hy,(u) =0, u3(0)=0

p* uy —k?u; —Hy;(u) =0, u,(0)=0

pn. u;l_kunl nl(u)—o un(O)—O n=12,.

Solving the system of Eqgs. (16), we obtain the |terat|ons
Ug, Uy, Uy, ..., Uy. Thus, the approximate solution in a series
form is given by

o

u(x) = Z U, (x).

n=0

3.1. Linear Case: Let g(u) =0 and a = 1.
Case 3.1.1. If we consider k =2, p=10 and f(x,u) is a
continuous function, but non-differentiable, for instance

+1 <1
b x<Z
_ 2’ 2
flx,u) = 1 >1

X 2 x_2

From the system (16) the initial iterations are then determined
in the recursive manner described below:

u0:1,
1
—5x% +x, x <=
_ 2
ul(x)_ 1
5x* —9x + -, x25
20 1
—x3 —2x?, x <=
_J)3 2
u2(x) =1 "y 5 1
—?x3+18x2—10x+§ xZE
20 +8 <1
——x* x3 x <=
wiy =1 3773 2
3 20 4 a0 20045 5]
3x X x TXtg 23
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u4(x1)6 8 1
5 __,4 _
_ T * 3% x<2
gt 80 5, %0, 10 1 1

3 X R R T R )

and etc., obtaining the rest of the iterations in this manner.
As a result, the series form of the approximate answer is

1
14 hy (), x<§
u(®) = ) un) = Z
n=0 h,(x), x= >
where
Gy — 65536 . 16384 8192
1) = 127702575"8 608%%5" 285668725"64
_ AU 12 11 _ 10 4, 229 o 9% 3
66825 22275 ~2025° ‘taos® " a5”
128, ey St —x*=T7x*+x+1
45 % T35 X Tz X TR O TITS
and
65536 376832
h —- "7 N5, 7 T .14
200 =~ 157702575 % ' 22567525 "
352256 ., 346112 2048 100684
- xB+ x12— ——x
6081075 1403325 2475 42525
153344 , 89792 , 539264 , 242720
5515 © ' 6615 © 19845 = ' 5103
1011376, 1191988 , 5006356 |
175 ~ 56133
| 27117767 263452799 1656639563
405405 © 8513505 © ' 255405150 °
The closed form of this series is as follows: n — o
5 .15 7 1
——x+———e™¥, x <z
uExact(x)= 52 158 78 5 % (17)
ey — — — _p~4x 4 _ ,—4x+2 >z
2¥ " g "g¢ tze T *¥23

is the exact solution of the case 3.1.1.

In Table 1 we compare numerical results produced using the
HPM (n = 15), the integral equation of the nth-Eq. for the
system (16) (IEI), the numerical solution of the nth-Eq. for
the system (16) using the Simpson rule (SIMPR) and
trapezoidal rule (TRAPR) with the exact solution (17). We
used twenty points in the Simpson and trapezoidal rules.
Table 2 shows the maximum absolute error (MAE),

IR =\/f01[u5xact(x) — u, (x)]?dx, the maximum relative

error (MRE) and the maximum residual error (MRR)
obtained by the HPM with the exact solution (17) on [0,1].
Table 3 shows the estimated orders of convergence (EOC)
for various values of the constant k.

Fig. 1 gives the exact solution ug,q.:(x) with our
approximation HPM (n=14) on 0<x<1. The
application of the HPM for k > 3, necessitates order n = 20

approximants if we want to get over the (at x=%)
discontinuity.
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Case 3.1.2. Takingk = 1, u = 10, and

_u 1_0, x <1
flx,u) = &—)—h‘le

is the unit step function at x = 1. Following that, from the
system (16) the first iterations are calculated recursively as
manner below:

u0=1, 1
—x, x<
ul(x)_{9x—10 x>1
x2
B x <1
uz(x)z 9
-3 2410x -5, x=>1
x3
-, x <1
w) =y L
—§x3—5x2+5x——, x=>1
x* L
—, x <
_ )24
wI=1"3 5 55 s
——xt4 o —oxt 4 ox - x=>1

8 3 2 37 12
and etc, obtaining the rest of the iterations in this manner.

As a result, the series form of the approximate answer is
8

hi(x), x<1
u®) = ) (@) =
— hz(x); x21
n=0
where
9
hy(x) = —
1) =~ 352880
and
1 1 1 1 1
h _ 9 _ 8 7 _ = 64 _— .5
() = 70320 ~7032% TTo0s” ~132° *288%
SR SR U 1
288" T232% T1008° T 2032 36288

The closed form of this series is as follows:n — o

) {e"‘, x <1
u X) =

Fract 10 — 10e~* + 7%,
is the exact solution of the case 3.1.2.
Table 4 compares numerical results obtained by the HPM
(n = 9), the integral equation of the nth-Eq. for the system
(16) (IEI), the numerical solution of the nth-Eq. for the system
(16) using the Simpson rule (SIMPR) and trapezoidal rule
(TRAPR) with the exact solution (18). We used twenty points
in the Simpson and trapezoidal rules. Table 5 shows the
maximum absolute error MAE, ||-||,, the MRE and the MRR
obtained by the HPM with the exact solution (18) on the
interval [0,2].

The EOC are 1.10504 at x = 0.9 and 1.12704 at x = 1.1.

In Fig. 2 we represent the exact solution ug,,..(x) with our
approximation HPM (n =8)on 0 <t < 2.

The HPM is applicable until the value k = 2 in this case.

(18)
x=>1

Case 3.1.3. Letk =1, p=1 and f(x,u) = 6(x — 1) is the
unit impulse function at x = 1. From the system (16) the first
iterations are calculated recursively as manner below:
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uO(x) = 1;
u(x),=U(x—-1)—x
u(x) =1 —-x)U(x—1) +lx2,
2
uz(x) = <l—x+1x2>U(x— 1) —1x3
3 2 2 ’

1 1 1 1 1
u,(x) = (———x+ x ——x)U(x—1)+—x

6 2 2 6 24

and etc, obtaining the rest of the iterations in this manner.

As a result, the series form of the approximate answer is
8

w() = ) (o),

=0
(685n 1957 163 , 65 . 1., 1,
252 720 T 120° T 144™ T9¥ Tag”
P S UG- 1)
360" 5040" )7V
1 1, 1 1 1 1

+1—x+5x —gx +Zx —gx +ax —ax

+_

8x

The closed form of this series is as follows: n — o
Ugxaet () = U(x — 1)e—x+1 +e™, (19)
is the exact solution of the case 3.1.3.

In Table 6 we show the MAE, [|-||,, the MRE and the MRR
obtained by the HPM with the exact solution (19) on [0,2].
The EOC are 1.10504 at x = 0.9 and 1.13506 at x = 1.1.

Fig. 3 gives the exact solution ug,..(x) with our
approximation HPM (n =8)on 0 <t < 2.

The HPM is applicable in this case when k < 2.2 for all
values of u.

Case 3.1.4. Now we take k = 1, p =1 and
1 3
f(x,u)=6<x—5)+6(x—1)+5<x—5>,

is the unit impulse function atx = %1% From the system

(16) the first iterations are calculated recursively as manner
below:

uy(x) =1,

U (x) = (x—%)+U(x—1)+U(x—;)—x,

u,(x) = (2—x)U(x——)+(1—x)U(x—1)
e rbe

w0 = (g5 +57)U (x =)
+<%—x+%x2)U(x—1)
ettt

wir= (bbbl
+<%—%x+5x —=x )U(x—l)

64

<99 3 1

16 8x+ x——x

U 3>+1 4
2* 7% ) (X_E 22%

and etc, obtaining the rest of the iterations in this manner.

As a result, the series form of the approximate answer is
14

wG) = ), (@)

=0
__(280§4721508153

17003918131200
134782314943

+ 163499212800 "
17017969

T 1238630400
6331

3234775558633

~ 1961990553600
2042156287 306323443

T 7431782400 T 4459069440
354541, 75973

+ 154828800° 232243200
211 79 "

7

+ 174182400~

12

+ 154828800 - 46448640 x

11

+ 319334400 "

- 1)
6227020800 2
260412269 13563139 ,

95800320 ~ T 9979200
9864101 98641

T 21772800 'F§70912x

s 137 6

t36288"
13

T 319334400

4 <8463398743
3113510400

109601
4838400 "

163

7 8

+2419200%

3628800

9

T 1741824 %
1 1 1

10 _ 11
+ 1360800~ 159667%0x *+ 239500800 "
13
— —1
6227020800 )U(x )
<134402599609 36185315027 904632821

29989273600 8074035200 x+403701760x
205598269

T 275251200
5139817

T 137625600
131

12

, 10279877 ,
55050240

. 321193

+ 51609600 "
5711

8

~ 127456~ 151609600"
, 67 . 29

_F58060§00x

563
46448640

11

319334400

12
+ 191600640
1 13>U< 3)+1 +1 5 1 3
6227020800 XT3 XToX 76
1 5 1 6
st oy b
22 "120° 720
_ ! x7 + ! x® — x® +
5040" 40320 362880

11

10

3628800
T 39916800
1 1 1

12 _ 13
T 479001600 6227020800 ' 87178291200
The closed form of this series is as follows: n — oo

1
U (x - 5) ez ¥+ U(x — 1el™

14

Ugxact (x) =
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3\ 3
+U (x - E) ez ¥ +e7¥, (20)
is the exact solution of the case 3.1.4.
The EOC for both sides of the discontinuity are given in
Table 7.
Figs. 4 and 5 show the exact solution ug,,.:(x) as well as
our HPM (n = 15) approximation. The approximation HPM
(n = 15) is only valid until the second discontinuity, as can
be seen in Fig. 5.

3.2. Non-Linear Case: Let g(u) = u?and a = 1.
The non-linear term w2 is calculated using He's polynomials
[18] as follows:

n

u? = Zuiun_i, n=>i, n=012,...
i=0
Case 3.2.1. Ifwetake k =1, u=1and

_u 1= 0, x<1
fGou) =U(x — )—{1’ o1

the unit step function at x = 1. From the system (16) the first
iterations are calculated recursively as manner below:
uO(x) = 1;

) {0, x <1
u(x) =
! x—1, x=>1
0, x<1
=11 1
U (%) Exz—x+§, x=>1
0, x <1
us(x) =41 , 3 , 3 1
—x3_Z —x—= >1
2x 2x +2x > X =
0, x <1
u(x)=43, 3 ., 9, 3 3
x4t Zx2_Z — >1
8x 2x +2x 2x+8, X =2

and etc., obtaining the rest of the iterations in this manner.

As a result, the series form of the approximate answer is
15

() Z () {0, x <1
ulx) = u,\x) =
— " h(x), x=1
n=0
where
o) 85863963 . 118413753
*) = 1793792000 179379200
219650349 .~ 170883
+ X2 —
51251200 856
38491597 90715067 57227327
X — X X
788480 896000 358400
122242643
627200
L 93116567 , 4938851 , 141888429
501760 © 35840 © ' 1792000
17049507 , 44616683
492800 © ' 3942400
13881059 , 16964357 76066623
5125120 © ' 14350336 ' 448448000

Fig. 6 depicts the numeric solution uy(x) with a very tiny
error as well as our HPM approximation (n = 16) for
0<x<2
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The HPM is applicable in this case for all values of © when
k < 1.5.

Case 3.22. Taking k =1, u=1and f(x,u) =6 (x — %) the
unit impulse function at x = % From the system (16) the first

iterations are calculated recursively as manner below:
uO(x) = 11

1
u(x) =U (x — E)'
uy(x) = <x —%) U(x —%),

2 2
1, 5, 11 17 1
w0 = (g2t + 3t = e = a)u (x=3)

and etc., obtaining the rest of the iterations in this manner.

As a result, the series form of the approximate answer is
15

w() = ) un (o)

n=0
1 5461
-1 14 13
4_(87178291200x 4151347200
,_ 4186001 34381987
3832012800~ ' 383201280
L 127942159 3940482079 , 15845512463
92897280 © ' 1393459200 1857945600
5304427333
Pt
1083801600
| 9658527373 | "9131472937 . 222986673947 ,
1486356480 891813888 © ' 29727129600
1054623527057
490497638400
, 4539815287201 1897379562929
3923981107200 ' 3400783626240

125252924948413) ( 1)

* 285665824604160) " \* 2
In Fig. 7 we show our approximations by HPM (n = 16) and

HPM (n=15)on0<x < 1.
The HPM is applicable in this case when k < 2.3 for all
values of u.

Case 3.2.3. Lastly, we take k =1, p =1 and
1 1
=ofe—3)vo(-3)
flx,w) x 2 x 3
is the unit impulse function atx = % . From the system (16)
the first iterations are calculated recursively as manner below:
u(x) =1,

uq (x) =U(x—%>+U(x—%),

s == ol
1 3 7 1
uz(x) = (Ex2+zx—§)U(x—Z>

+<1 2_|_5 11)U( 1)
2 T2 7))\ 7))

N | =

)
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1, 11, 23 35)U( 1) , 236849951231 , 48840731441
”4(x)_<8x te Y T3 T3\ ¥y 190253629440 ' 46976204800
+<1 L 17, 3 +41)U( 1) +339044310157) ( 1)
6F T2 ¥ T g\ FT2) 531502202880 4

: .. . . . . _|_< xll + 877 10 x9
and etc., obtaining the rest of the iterations in this manner. 39916800 1036800 46080
As a result, the series form of the approximate answer is 8285741 . 256410067 .
2 483840 1935360
u(x) = Z w0, (%) 362974489 5396729393 8437009321 ,
= 7711059200 © 22118400 © ' 27525120
14 ( 1 ny, 13 4, 7473 5697570557
= "7 \39916800"° T 26080° " 143360~ T 735389440
N 18495359 7264829 4 31199858569 5 1432995034841
15482880 ' 1474560 679477248 © 237817036800
36195413 5120087 1667427029 4 280129663691 1
+ x® — x> + X +—)U(x——).
29491200 14155776 660602880 523197480960 2
4 688364861 Fig. 8 represents our approximations by HPM (n = 13) and
754974720 HPM (n = 12) for 0 < x < 0.6.
Table 1. Numerically results of the case 3.1.1
x U racs (%) HPM IEI SIMPR TRAPR
0.0 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000
0.1 1.038469959 1.038469959 1.038469959 1.038469959 1.038469959
0.2 0.981837156 0.981837156 0.981837156 0.981837156 0.981837156
0.3 0.861455064 0.861455064 0.861455064 0.861455064 0.861455064
0.4 0.698340546 0.698340548 0.698340548 0.698340548 0.698340548
0.5 0.506581627 0.506581654 0.506581655 0.506581655 0.506581655
0.6 0.383521848 0.383522158 0.383522173 0.383522173 0.383522173
0.7 0.383452400 0.383454722 0.383454859 0.383454859 0.383454864
0.8 0.465825836 0.465838661 0.465839564 0.465839564 0.465839598
0.9 0.603462390 0.603517986 0.603522609 0.603522609 0.603522773
1.0 0.778142920 0.778339367 0.778358613 0.778358613 0778359252
Table 2. MAE, ||-|l,, MRE and MRR of the case 3.1.1
n MAE [11l2 MRE MRR
8 4.0047E-02 6.8841E-03 5.1465E-02 7.8095E-01
9 4.1173E-03 1.7059E-03 7.5656E-03 1.7354E-01
10 3.8490E-03 1.4102E-03 5.4421E-03 2.8138E-2
11 2.9400E-03 7.8419E-04 3.7783E-03 2.6525E-02
12 1.4487E-03 3.3660E-04 1.8618E-03 1.7555E-02
13 5.7357E-04 1.2251E-04 7.3710E-04 8.0893E-03
14 1.9644E-04 3.9440E-05 2.5245E-04 3.0800E-03
15 6.0179E-05 1.14910E-4 7.7337E-05 1.0265E-03
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Table 3. EOC of the case 3.1.1

k x=0.4 x=0.6
1 1.04447 1.05406
2 1.07048 1.05309
3 1.14818 1.22488
Table 4. Numerically results of the case 3.1.2
x Upract (X) HPM IEI SIMPR TRAPR
0.0 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000
0.2 0.818730753 0.818730753 0.818730753 0.818730753 0.818730753
0.4 0.670320046 0.670320046 0.670320046 0.670320046 0.670320046
0.6 0.548811636 0.548811634 0.548811634 0.548811634 0.548811634
0.8 0.449328964 0.449328936 0.449328934 0.449328934 0.449328934
1.0 0.367879441 0.367879188 0.367879163 0.367879163 0.367879163
1.2 2.113886681 2.113885143 2.113884957 2.113884957 2.113884953
1.4 3.543396503 3.543389440 3.543388426 3.543388426 3.543388402
1.6 4.713780157 4.713753757 4.713749351 4.713749351 4.713749250
1.8 5.672009247 5.671925111 5.671909032 5.671909032 5.671908667
2.0 6.456540871 6.456305114 6.456254058 6.456254058 6.456252908
Table 5. MAE, ||-|l,, MRE and MRR of the case 3.1.2
n MAE RIPS MRE MRR
4 1.7151E-01 1.2827E-01 9.3906E-02 3.5622E-01
5 1.2679E-01 6.6716E-02 1.9637E-02 2.7074E-01
6 5.6540E-02 8.7571E-02 8.7571E-03 1.8333E-01
7 1.8459E-02 7.0568E-03 2.8589E-03 7.4999E-02
8 4.9535E-03 1.7437E-03 7.6721E-04 2.3412E-02
9 1.1476E-03 3.7838E-04 1.7774E-04 6.1011E-03
Table 6. MAE, ||-|l,, MRE and MRR of the case 3.1.3
n MAE Il MRE MRR
4 3.3654E-01 1.7947E-01 6.6879E-01 8.3333E-01
5 1.6345E-01 7.5229E-02 3.2481E-01 5.0000E-01
6 6.1548E-02 2.5328E-02 1.2230E-01 2.2499E-01
7 7.1587E-03 7.1587E-03 3.7772E-02 8.0555E-02
8 5.0004E-03 1.7508E-03 9.9369E-03 2.4007E-02
9 1.1503E-03 3.7860E-04 2.2860E-03 6.1507E-03
Table 7. EOC of the case 3.1.4
x=0.4 x=0.6 x=0.9 x=1.1 x=14 x=1.6
1.04182 1.05990 1.08885 1.07732 1.07485 1.03233
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Fig. 1. Continuous line:ug,,.:(x), 0: HPM, k =2, u =100 Fig. 2. Continuous line: ugy.c:(x), 0:HPM, k=1, u =10

0 02 04 06 08 1 12 14 16 18 2 0 1 2 3 4

X X
Fig. 3. Continuous line: ug,q.:(x), 0: HPM, k=1, p=1 Fig. 4. Continuous line: ug,.:(x), 0:HPM, k=1, u=1
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Fig. 5. Continuous line: ug,q:(x), 0:HPM, k=2, pn=1
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Fig. 7. Continuous line: HPM (n = 16),

4. Conclusions

In this paper, the HPM was effectively used to solve
first-order initial value problems with discontinuities. The
size of the jump (given by W), which performs equally well
on both sides of the discontinuity, has no effect on the
method's convergence. The HPM for k =3 does not
converge in these initial value problems even for small
values of the parameter, such as u = 1073, In the non-linear
cases with large values of |, sometimes a computation with
more digits is required in order to avoid unstable

05 1 15 2

X
Fig. 6. Continuous line: uy(x), 0:HPM, k=1, u=1

51
4]
3
2
1 . : . . . :
1] 01 0.2 0.3 04 05 06
X

0:HPM (n = 15) Fig. 8. Continuous line: HPM (n = 13),
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0:HPM (n = 12)

oscillations. The approximate solution obtained by HPM is
compatible with analytical approximation approaches in the
literature, such as Adomian decomposition method. The
HPM has been confirmed by applying it to a linear situation
to yield approximation exact results. The method's
dependability is demonstrated by the outcomes obtained in
all scenarios.
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