
Al-Rafidain Journal of Computer Sciences and Mathematics (RJCM), Vol. 16, No. 1, 2022 (81-86)

81

Using Socket.io Approach for Many-to-Many Bi-Directional Video

Conferencing
Sameer Jasim Karam

1
,* Bikhtiyar Firyad Abdulrahman

2

College of Pharmacy

Hawler Medical University, Arbil, Iraq
1

, Erbil Technical Engineering College

Erbil Polytechnic University, Arbil, Iraq
2
,

*Corresponding author. Email: Sameer.karam@hwv.edu.krd

 Article information Abstract

Article history:

Received : 23/11/2021
Accepted : 27/12/2021
Available online :

Video conferencing has become a critical need in today’s world due to its importance in

education and business to mention a few; also, recent years have witnessed a great revolution in

communication technologies. However, there still exist limitations in these technologies in

terms of the quality of communication established between two peers. Therefore, many

solutions have been suggested for a variety of video conferencing applications. One of these

technologies is Web Real-Time Communication technology (WebRTC). WebRTC provides the

ability to efficiently perform peer-to-peer communication, which improves the quality of the

communication. This work tries to propose a WebRTC bi-directional video conferencing for

many-to-many (mesh topology) peers. In this work, signaling was obtained using Socket.io

Library. The performance evaluation of the proposed approach was performed in terms of CPU

performance, and Quality of Experience (QoE). Moreover, to validate the simulations results, a

real implementation was achieved based on the following scenarios a) involving several peers,

b) at the same time, opening several video rooms, c) a session will still be active even when the

room initiator leaves, and d) new users can be shared with currently involved participants.

Keywords:

Video Conferencing, many-to-many communication, WebRTC, Bidirectional Communication, and Mesh Topology

Correspondence:
Author :Sameer jasim karam

Email: Sameer.karam@hwv.edu.krd

1. INTRODUCTION
The different directions of multimedia have been supported

using the current communication technologies. This support

enables many features in these applications' experiences such

as being real-time-based [1]. Due to the low cost of Internet

services with high quality, it is widely used for sending and

receiving multimedia files (e.g., videos, audio, images, etc.)

[2]. Moreover, a new standard called Web Real-Time

Communication (WebRTC) was developed by the Internet

Engineering Task Force (IETF) and the World Wide Web

Consortium (W3C) [3]. This standard is open-source and

includes JavaScript APIs and other standards that have the

ability to secure interactive communication among peers to

exchange multimedia files [4]. The WebRTC also provides

other advantages, for instance, it reduces cost, plug-ins are not

required, ease of use, securing high-quality real-time

communication, and no licenses are needed [5]. Furthermore,

the IETF and W3C have not yet provided protocols for testing

the WebRTC. They also have not confirmed the final

signaling mechanism. Besides, in WebRTC the signaling

channel standard has not yet been determined [6]. More

precisely, there are no standards or a specific approach of

WebRTC that can be followed to establish a communication

between two browsers. This is because it is up to developers to

create their protocols or to freely select the appropriate

protocols for their applications such as Scoket.io, Extensible

Messaging and Presence Protocol (XMPP), or Session

Initiation Protocol (SIP) [7]. The peer detection can be

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCM)

www.csmj.mosuljournals.com

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCM), Vol. 16, No. 1, 2022 (81-86)

82

performed through signaling, which identifies peers as well as

coordinating the communications among pairs. Using

communications channels, signaling can also initiate users’

communications and enables exchanging data [8]. In addition,

connecting browsers to servers can be performed through

signaling, which enables the communication between other

peers to the defined servers. This process includes supporting

the SDP protocol in merging ports numbers and network

addresses aiming to provide the ability of media exchange

[9].

 On the other hand, the Socket.io (API), a transport

protocol, can provide the feature of real-time bi-directional

communication between users and servers [7]. Its

programming started and ended using Node.js [10]. The

authors of [9] extended the Socket.io aiming to enable

designers and developers to use the WebSockets, which can

identify a variety of synchronized-communication techniques

that are managed by the user’s browser. Moreover, the

authors in [10] and [7] showed that Socket.io can provide a

simple library for clients and servers. This library supports

real-time bi-directional communication between both parties

of communication. This feature has the ability to provide

many-to-many bi-directional video conferencing. Also, it

secures two communication types that help a single peer to

freely choose the role as an initiator or a participant.

Moreover, it provides the ability to identify a room initiator

and keep open sessions in active staus even with the absence

of the initiator. The aforementioned features can be utilized in

a variety of communication applications (e.g., distance

learning and telemedicine).

 The rest of this paper is organized as follows, Section II

reviews the literature, Section III describes the research

method in terms of design, implementation, and results.

Section IV results discussions. Finally, Section V concludes

this work and presents the future possible considerations.

2. Literature Review and Problem Statement
 Most of the WebRTC implementations for creating video

conferencing used the pooling cycle or XMLHttpRequest

(XHR). However, this approach almost causes time delay and

consumes bandwidth due to the unnecessary empty responses

between the browser and server that make the process busy

all the time [11]. Other approaches such SIP requires to be

installed and adjusted with the server used [12]. Besides,

integrating WebRTC and SIP needs a lot of effort to establish

a multimedia environment for sessions [13].

 Pasha et al. [14] suggested an architecture for WebRTC

dedicated to video conferencing. They used what has been

called Multipoint Control Unit (MCU) in their proposed

architecture. The authors elaborated on the proposed method

and how it offers high resolutions such as session recording

and stream processing. Another study performed by Fai Ng et

al. [15] showed that the use of MCU was extremely

expensive but it can be subscribed to some providers at the

time of the conference. Also, the developers in [16] approved

that MCU cannot support heterogeneous endpoints or when

having a large number of participants. In the same context,

Potthast [17] elaborated on some issues related to video

conferencing. For instance, the codecs of video conferencing

codecs are able to support up to 4 participants of multipoint.

 According to the aforementioned description and the

literature, MCU in usual situations presents failure quality of

video conferencing, which eventually affects the whole

performance of the conference [15]. Hence, this paper comes

to overcome these issues and suggest an approach that

guarantees to provide reliable and high-quality performance.

3. Research Method
This section describes the details of how the proposed

approach was designed. The main tool used was the JavaScript

language. Also, for handling the signaling, the JSFiddle

platform was used as a web server. Besides, a Windows task

manager was used aiming to evaluate the performance. A

group of 10 computers with a variety of CPU specifications,

including different CPU cores such as i5 and i7 that are

connected through different locations to the Internet.

3.1 Practical Implementation

 To implement WebRTC video conferencing, a test-bed

lab was initiated among different users under many-to-many

(mesh topology). The proposed approach used the signaling

mechanism based on the Socket.io library. It is divided into

two portions: the main browser set up and setting up the

initiation and the termination of the communication. Also, it

was crucial to creating a room with a specific identifier (room-

id). This id is unique and used for establishing and joining the

room. This also guarantees that particular messages will be

exchanged with relevant participants, which prevents other

users to access these messages. For this specific reason, each

participant must have a "room-id" for sharing information with

other participants in that room. This approach enables one user

to initiate a room "room-id" that other users can join and

participate in.

Creating a room by an initiator requires creating a new socket.

This socket can be utilized for different communications

purposes.

3.1.1 Browser Setting Up

The home page in our design is characterized by many

features such as “open/join” a room, “mute-audio/video”, and

display in “full-screen”. The frontend was designed to have

two buttons in order to enable users to “opening” or “joining”

a particular room. Also, the Socket.io library was utilized for

“initiating” a constructor for the following purposes:

1. Set “Session Type” as a video conferencing session.

2. Set “SDP video directions” as bi-directional

streaming.

3. Link “socket.io API” in order to involve the

signalling mechanism.

4. Add “quick event handler” from the aforementioned

buttons.

The first step in our proposed method was to test the code.

This step is required to secure LAN communication between

two users using two taps in the browser. Then, video settings

were set to be with a width of 40% and border-radius of 15px

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCM), Vol. 16, No. 1, 2022 (81-86)

83

aiming to have an appropriate display. In the next step, the

initiator determined the room-id and opened it. An

audio/video “MediaStream” were displayed. The

“MediaStream” was obtained using the

“navigator.getUserMedia” method, which was performed by

requesting permission for accessing the microphone and

camera that were necessary for recording users’ screens.

Thereafter, the multimedia (video and audio) started

streaming. At that step, the whole implementation was ready

for the other users to join and communicate. Here, it was

crucial for the participants to call "getUserMedia" in order to

share their own media (microphone and cameras). For any

participant who would like to leave the room, it was needed

to close the browser or refresh the web page. This procedure

did not impact the communications of the other participants.

3.1.2 Involving the Signaling

 The MultiConnection library and the URLs of Socket.io

API were utilized for the signalling. The former was used to

set up and initiate a video conferencing new session. In

addition, the MultiConnection library added the "onstream"

function for the purpose of remote/local media streaming.

According to that, a unique id was assigned to each media

stream. Furthermore, the analysis of the Socket.io API was

automatically generated by the Node.js server. This process

can be performed based on a variety of techniques. In

particular, the AJAX long polling and JSON, and Adobe Flash

Socket can be involved aiming to determine the real-time

communication method was the most appropriate for each

user. For instance, in the case of the browser was not able to

generate the JSON, Socket.io was used to suggest some

communication techniques. As stated in [18] and [9], the use

of Socket.io enables, at the same time, dealing with the server

and client files. It could also detect the connection whether it

was established with WebSocket, Flash, or AJAX. In this

context, the components of the client and server sides could be

provided using Socket.io with similar APIs [19]. Figure (1),

presents a screeshoot from the main web.

Fig1. A screenshoot from the main web

3.2 Analysis

 The analysis of this work is demonstrated and

described in the following subsections:

3.2.1 Bi-directional signaling

 The analysis of this work was started by collecting

elements from Firefox and Google Chrome browsers that

were used in the experiments. The analysis of the signalling

mechanism was performed based on the delay time when

involving two to ten participants. Here, two aspects were

used; first, the signalling delay time and the second was

based on sending requests/receiving responses among

participants.

The minimum and maximum times consumption to get

ready were 215ms and 385ms respectively. Also, the

minimum and maximum times consumption to send

requests and receive responses were 390ms and 776ms

respectively. The average time consumption was 251ms to

be ready and 513ms for sending requests and receiving

responses. The Socket.io signaling mechanism was able to

fully and simultaneously control the sessions among users

in terms of establishing/ending communications. The

analysis also showed that there was a slight difference in

delay variations between Firefox and Google Chrome.

Interestingly, it was observed that the Opera browser was

not supported by the signalling mechanism. Moreover, the

quality of video/audio streaming was significantly affected

by the bandwidth and the CPU loads. Besides, the use of

Socket.io signaling caused a long delay.

3.2.2 Analysis of Video Conferencing Quality

 The quality of video/audio streaming between the two

participants was excellent. It was noticed that when a 3rd

participant joined a room, the video/audio quality was good.

However, when a 4th participant joined the same room, the

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCM), Vol. 16, No. 1, 2022 (81-86)

84

video quality was not stable and the delay was increased.

This situation continues on the same behavior when a 5th

participant joined the same room. In contrast, in the case of

the 6th or more participants who joined the same room, it

was found that the video and audio quality were

significantly decreased and caused a failure. This means, 6

participants were at the threshold of the quality of the

system, after this threshold the quality was insufficient.

Table (1), presents the quality of video and audio among

seven peers.

Table (1): Quality of video/audio among seven participants.

Number No. of peer Duration Audio Quality Video Quality

1. 2–3 3 minutes Excellent Excellent

2.
3- 4 3 minutes

Between acceptable and
unacceptable

Unacceptable

3. 6 and more 3 minutes Almost unacceptable Almost unacceptable

4. 7 and more 3 minutes Not connected Not connected

3.3.3 Mesh Topology Evaluation

 The use of mesh topology enables participants to

download/upload video streaming from/to neighbors’

participants at the same time, also the mesh topology is

considered a complex topology [20]. This is because it

consumes CPU capacity and needs high-speed bandwidth,

which is also proved in the study of [21]. This means high

CPU performance leads to having more participants joining

the conference as well as better communication quality as

indicated in [21][22]. In this regard, [23] showed that the

CPUs in mesh topology consumed a lot. This is due to the

encoding/decoding processes on videos especially when this

kind of process is needed multiple times in parallel. Another

drawback in the mesh can be on the client-side, which is a

massive bottleneck that can be caused by bandwidth

differences among users.

3.3.4 CPU Usage

 As mentioned, in the mesh topology high load of

communications is handled because of a high frequency of

sending/receiving processes performed. These processes are

performed at the same time for video and audio streaming,

as a side effect, the whole performance is affected. The

work of [22] proved that the CPU loads are significantly

affected when using the mesh topology.

3.3.5 Quality of Experience (QoE) Evaluation

 It was mentioned that video/audio quality for two to

ten participants was gradually increased. In the Quality of

Experience (QoE) evaluation, several participants were

involved in the experiments using some questionnaires. The

participants were asked about their experience in the

presented system, their responses are presented in Table 2.

The analysis of the responses showed excellent reflections

on the quality of audio and video. This result reflects the

case when having three users who use 4G networks. Based

on these results, it can be inferred that bandwidth is crucial

in affecting the quality of audio and video. Moreover, CPU

performance is driven by the number of participants in a

session and the loads can be significantly increased when

increasing this number. However, CPU performance, in this

case, can become better after the initiation of the

communications among users. Also, the signaling may

cause a delay at the time of sending requests and receiving

responses.

Table 2: The QoE of 10 users when the communication.

Questions Very Bad Bad Fair Good Excellent

Assess the quality of video using Socket.io

protocol 3 - 5 users 2 users

Assess the quality of audio through the session
 4 users 3 users

Assess the quality of video through the session
4 users 3 users 2 users

Assess the resilience of the connection
3 users 3 users 2 users

Assess the echo through the session 4 users 3 users 2 users

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCM), Vol. 16, No. 1, 2022 (81-86)

85

4. Discussions
 In this work and according to the obtained results, it

can be observed that Socket.io was useful in a mesh

topology and supported the communications among

different web browsers. Also, the signalling mechanism

was able to handle the communications over the

Internet. Moreover, signalling has the ability to provide

bi-directional video conferencing and maintains

sessions to stay active even when a user left the room.

Another ability of signalling was shown, which was the

ability to control the streaming and allow only

authorized participants to join particular rooms.

Another feature, it can be developed with no need for

external devices or cloud/server support. This paper can

be considered the first work that develops a “WebRTC

Bi-Directional” video conferencing using 4G networks.

It should be mentioned that the proposed approach does

not support the Opera web browser.
 The results also showed that some issues were faced

in the quality of video/audio considering low bandwidth and

low CPU specifications. This phenomenon is termed “CPU

stress”. It depends on many factors such as the used codecs

and the defined quality of videos/audios. Besides, the

differences in bandwidths among system users can be

considered as an important factor in the quality of the

exchanged videos/audios. Furthermore, it can be said that

CPU specs play a crucial role in handling communications

among a high number of users. Similarly, the bandwidth

also plays a leading role in the quality of audio/video. The

Socket.io signalling mechanism was not able to handle more

than three users, which is a threshold of this mechanism.

This mechanism also caused a high delay time when

initiating the communications among network peers.

Finally, the QoE confirmed that the presented testbed

environment was sufficient for users.

5. Conclusion and Future Work

This work presented a WebRTC bi-directional approach for

video conferencing in a mesh topology. The approach used

the Internet in the experiments. The implementation of the

proposed approach was real-time-based. Also, the Socket.io

signaling mechanism was used to handle all the

communications among participants. Besides, the work also

performed a comprehensive analysis and evaluation of the

performance in terms of CPU usage, signalling in Socket.io,

Quality of Experience, and the mesh topology. The

evaluation was performed in a physical environment. In

addition, the evaluation was performed using different web

browsers. Practically, the applications of this work can be

applied to entertainment games, e-Learning and so on. As

future work, the proposed approach can be extended to use

different signaling mechanisms over the WebRTC. This

work includes a lot of directions to be developed and

investigated by developers.

References

[1] B. Y. Julian. Jang-Jaccard, Surya. Nepal, Branko. Celler,

“WebRTC-based video conferencing service for telehealth,”

Computing, vol. 98, no. 1–2, pp. 169–193, 2016.

[2] M. Phankokkruad and P. Jaturawat, “An Evaluation of Technical

Study and Performance for Real-Time Face Detection Using Web

Real-Time Communication,” in International Conference on
Computer, Communication, and Control Technology (I4CT), no.

I4, pp. 162–166, 2015.

[3] M. L. Giuliana. Carullo, Marco. Tambasco, Mario. Di Mauro, “A
Performance Evaluation of WebRTC over LTE,” in 12th Annual

Conference on Wireless On-demand Network Systems and
Services (WONS), pp. 170–175, 2016.

[4] L. O. D. N. Eirik. Fosser, “Quality of Experience of WebRTC

based video communication,” Norwegian University of Science
and Technology, 2016.

[5] K. S. Alan. Johnston, John. Yoakum, “Taking on webRTC in an

enterprise,” IEEE Commun. Soc., vol. 51, no. 4, pp. 48–54, 2013.

[6] P. J. Ha and L. D. Hoon, “Scalable signaling protocol for Web real-

time communication based on a distributed hash table,” Comput.

Commun., vol. 70, pp. 28–39, 2015.

[7] M. Grinberg, “socketio Documentation,” 2017.

[8] H. V. Cola. Cristian, “On multi-user web conference using

WebRTC,” in 18th International Conference on System Theory,
Control and Computing (ICSTCC), pp. 430–433, 2014.

[9] Mathieu Nebra, “Socket.io: let’s go to real time,”

OPENCLASSROOMS, 2017. [Online]. Available:
https://openclassrooms.com/courses/ultra-fast-applications-using-

node-js/socket-io-let-s-go-to-real-time. [Accessed: 30-Jun-2017].

[10] R. Rai, Socket. IO Real-time Web Application Development.
Birmingham - Mumbai: PACKT, 2013.

[11] J. A. S. N. Luis. López. Fernández, Migue.l París. Díaz, Raúl.

Benítez. Mejías, Francisco. Javier. López, “Kurento: A media
server technology for convergent WWW/mobile real-time

multimedia communications supporting WebRTC,” in 14th

International Symposium on “A World of Wireless, Mobile and
Multimedia Networks” (WoWMoM), p. 6, 2013.

[12] E. R. J. Uberti, C. Jennings, “JavaScript Session Establishment

Protocol,” USA, 2017.

[13] A. A. Lozano, “Performance analysis of topologies for Web-based

Real-Time Communication (WebRTC),” Aalto University, 2013.

[14] M. Pasha, F. Shahzad, and A. Ahmad, “Analysis of challenges
faced by WebRTC videoconferencing and a remedial architecture,”

Int. J. Comput. Sci. Inf. Secur., vol. 14, no. 10, pp. 698–705, 2016.

[15] W. C. Kwok-Fai. Ng, Man-Yan. Ching, Yang. Liu, Tao. Cai, Li.
Li, “A P2P-MCU Approach to Multi-Party Video Conference with

WebRTC,” Int. J. Futur. Comput. Commun., vol. 3, no. 5, pp. 319–

324, 2014.

[16] “Video Conferencing,” Daitan GROUP, 2013. [Online]. Available:

http://www.daitangroup.com/video-conferencing-what-is-an-mcu/.

[Accessed: 15-Jul-2017].

[17] S. Potthast, “Point to Point and Multipoint,” Jisc community, 2016.

[Online]. Available: https://community.jisc.ac.uk/library/janet-

services-documentation/point-point-and-multipoint. [Accessed: 23-
Aug-2017].

[18] David. Walsh, “WebSocket and Socket.IO,” Media Temple, 2010.

[Online]. Available: https://davidwalsh.name/websocket.
[Accessed: 26-Jun-2017].

[19] N. Chhetri, “A Comparative Analysis of Node . js (Server-Side

JavaScript),” St. Cloud State University, 2016.

Al-Rafidain Journal of Computer Sciences and Mathematics (RJCM), Vol. 16, No. 1, 2022 (81-86)

86

[20] A. W. AlTuhafi, “A Review on Peer-to-Peer Live Video Streaming

Topology,” IEEE-International Conf. RFID-Technologies Appl.,
vol. 68, no. 5, pp. 1–4, 2013.

[21] T. S. Edan. N, Al-sherbaz. A, “Desing and Implement A Hybrid

WebRTC Signalling Mechanism for Unidirectional & Bi-
directional Video Conferencing,” Int. J. Electr. Comput. Eng., vol.

8, no. i, pp. 1–8, 2018.

[22] N. M. Edan, A. Al-sherbaz, and S. Turner, “WebNSM : A Novel
Scalable WebRTC Signalling Mechanism for Many-to-Many

Video Conferencing,” in 3rd IEEE International Conference on

Collaboration and Internet Computing (CIC), vol. 2, pp. 1–7, 2017.

[23] A. S. Karl. Bissereth, Billy B. L. Lim, “An Interactive Video

Conferencing Module for e-Learning using WebRTC,” in

Internetional Conferences, pp. 1–4, 2014.

[24] R. P. and S. Picek, “Multipoint Web Real-Time Communication,”

in Information System Development, Switzerland: Springer, pp.

99–110,2014.

لعقد مؤتمرات فيديو ثنائية الاتجاه Socket.io اسلوباستخدام

 بين العديد من الأطراف

 فرياد عبدالرحمنختيار ەب سمير جاسم كرم

sameer.karam@hmu.edu.krd Bikhtiyar.abdulrahman@epu.edu.iq

 كلية اربيل للهندسة الفنية كلية الصيدلة

 جامعة بوليتكنيك أربيل ، أربيل ، العراق ، العراق،أربيلجامعة هولير الطبية

 32/13/3231: تاريخ قبول البحث 32/11/3231 البحث: لامتاريخ است

 الخلاصة:

أصبحت مؤتمرات الفيديو حاجة ماسة في عالم اليوم نظرًا

لأهميتها في التعليم والأعمال على سبيل المثال لا الحصر ؛ كما شهدت

السنوات الأخيرة ثورة كبيرة في تقنيات الاتصال. ومع ذلك ، لا تزال

د في هذه التقنيات من حيث جودة الاتصال بين اثنين من هناك قيو

الأقران. لذلك ، تم اقتراح العديد من الحلول لمجموعة متنوعة من

-Web Realتطبيقات مؤتمرات الفيديو. إحدى هذه التقنيات هي تقنية

Time Communication (WebRTC) (التواصل عبر الويب في

القدرة على أداء اتصال نظير إلى WebRTC. يوفر (الوقت الفعلي

نظير بكفاءة ، مما يحسن جودة الاتصال. يحاول هذا العمل اقتراح

لأقران متعدد إلى كثير WebRTCمؤتمر فيديو ثنائي الاتجاه

(. في هذا العمل ، تم الحصول على الإشارات معشقة)طوبولوجيا ال

ج المقترح من . تم إجراء تقييم أداء النهSocket.ioباستخدام مكتبة

(. علاوة QoEحيث أداء وحدة المعالجة المركزية وجودة التجربة)

على ذلك ، للتحقق من صحة نتائج المحاكاة ، تم تحقيق تنفيذ حقيقي

بناءً على السيناريوهات التالية أ(إشراك العديد من الأقران ، ب(في

نفس الوقت ، فتح عدة غرف فيديو ، ج(ستظل الجلسة نشطة حتى

عندما يغادر منشئ الغرفة ، و د(يمكن مشاركة المستخدمين الجدد مع

 المشاركين المعنيين حالياً.

مؤتمرات الفيديو ، والاتصالات بين أطراف متعددة ، و : الكلمات المفتاحية

WebRTC معشقة)، والاتصال ثنائي الاتجاه ، والطوبولوجيا الMesh

Topology).

mailto:sameer.karam@hmu.edu.krd
mailto:sameer.karam@hmu.edu.krd
mailto:Bikhtiyar.abdulrahman@epu.edu.iq

