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Abstract— We prove that a positive solution to a given boundary problem exists
and is unique. This new boundary condition relates the non-local unknown value of

unknown function at A with its influence due to a sup-strip (x,1), 0< A < <1 .Our

results are obtainted by using " Banach and Krasnoselskii’s theorems™a linked to
anywhere. Some classical theorems of fixed points assistance to achieve the

greatest results.

Keywords:

"Fractional differential equations”; "Positive solution"; “"Nonlocal boundary conditions"; "Fixed point theorems".

Correspondence:
Author : N. L. Housen
Email: nooralaith1984@uomosul.edu.iq

l. INTRODUCTION

For various areas of science and engineering, fractional order
differential equations have been employed, such as "physics,
mechanics, economy, and biological science," etc... see
[5,6,13].

The existence of positive solutions nonlinear fractional
order differential equations with

multipoint integral boundary conditions has been stutied by
several authors using diffrrent methods (see [2,8,10,12]
Bashir Ahmad et al. [3] investigated the presence and
singularity of three pin integral frontier fractional difference

border value solutions of order 9 € (2.2]
‘D*W(a)=Qzp,W (), 0<p <1, 1<g<2

W (0)=0 ,W(1)=afw@)dz ,0<np<l

In paper [7] the autho:s discussed a problem with the limit
value with similar generalized conditions given by

‘DW(a)=Q(av,W(z)), 0<p <1, 1<g<2

W(0)=0, W(.f):aiw@)d? . £e(0))
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Where €2 is agiven function, a is positive constant .
The aim of this study is to determine whether

positive solutions exist and uniqueness for the following
boundary problem

‘D" O(p)=Q(ar,0()), 2<x <3, o €[0]]
0(0)=0'(0)=0, 6(1)= ﬂj&(?)dz (LD

Where °D* the symbolizes: "Caputo fractional derivative" of
order k, Q:[01]x¥, — ‘¥, is an ongoing function, and
BeR and A<y <1 Here (¥,,].[)isa

"Banach space "and C =C([01], \Y,) is the

"Banach space"

of all continuous function from [0,1] — ¥, with norm

6] =sup {o(@)| & <011}

2. Preliminaries
Let's establish some basic fractional calculus definitions [4,1].
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Definition 2.1 :For a continuous function 7 :[0,0) — R
the derivative of fractional order v is defined as

°pY h(a).):r(ﬁl_ O)J.(w_z)niﬁil h(n)(Z) a7,

N=[0]+1 and “D° denotes the Caputo derivative.

n-l<o<n..

(2

Definition 2.2 : The fractional integral of order ¢ is define
as

I B A 1 (5 N
I x(w)_F(g)-!(w—Z)l‘g 7, ¢>0 . (2.2)

Which is called Riemann- Liouville integral, where there is
an integral exists.

Definition 2.3 : The derivative p "Riemann-Liouville" for
continuous function Q(af) is given by

1
- ) (@— 0" g(7) d7...(23)
r(n- p) I
If point specified on the rlght side on (0,0) , n=[p]+1.
These definitions sings to the
nonlocal fractional derivative which is different from the
local fractional derivative which is defined in [11] .

D g (@)=

Lemma 2.4 : ( see [9]) The overall answer for the equation
°D? O() =0 is provided by

O(@)=Cc’ " +C,p° " +..+Cyp’ ™ ..(2.4)
Where ¢, eR, 1=012,..,N-1(N =[0]+1) where N\
is smallest integer grater than or equal to & (0 >0).

Lemma 2.5 : A unique solution of the boundary problem
(1.1) is given by

e(w):r(ll() [(@ -7 w60 e
e N OILE
ﬂ”’ 1} j (m.0() dif |dr ..(25)

u

Proof : For certain constants C;,C,,C; € R We've get:

@

[@

()
From 6(0) =6'(0) =0,wehavec, =c, =0

0(a)= — ) LQ(r) dr + @ + 0@ + c* ... (26)

By applying the second condition to (1.1)

38

pl o@dr= ] [j(f;(i); () dﬁjdr
G 1) A 1-u*
=8 |] ) Q(n) dif | dz+ B, .27
and
9(/1)—mj(,1 2)1Q(r) dr +c A

which imply that

e )j(,z ) Q(r)dr

T

where

O AR
K

j(j(r n)“Q(n)danr (2.8)

Replacing the values of
C,,C, andc,in(2.6) we have obtained the solution (2.5), the
proof is complete.

In view of lemma 2.5, An operator N : o — @ is given by

NO)@) =

i ) j(zy—r)*‘-lg(r,e(r)) dz

*10(7,0(z)) dr

l"() o

Jﬁ?(ﬁ)i @(T‘ﬁ)“ﬁ(ﬁﬁ(ﬁ))dﬁ]dr (2.9)

3- Existence Results in a "Banach space"

Theorem 3.1 : Let Q:[01]x ¥, — ¥, bea continuous
function and assume that

(21) |Xz,0) -z, )| <L[6-9|,
Vo el0l], L>0, 6,9¢Y¥,.

with L<§, where A is givenby
1

_ [1+ lLlK+l )]J
I'(x+1)

Then the limit value of the problem (1.1) has
a unique solution.

Proof : Let Sup |Q(¢,O)|= H and choosing
o<[0,1]

Z>AH@A-LA)™

[ e+ 1)+ |8 -
K+1

. (3.

, we show that XB, — B, where
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= {6’ e ||6’|| < Z}. for& € B, we have
< {T @0 Q(z,6(2)) -
A

) Q(r,0)+ Q(T,O)‘ dr

-Q(r0) |+] Q(r.0)|Jdr

j("ﬁ)H [t o) -0 |+ Q(T,O)]dﬁjdr}

_ T)/(*l d

A
cif (4
dr +[y|a™™
d '[[ I'(x)

1 s 7|2
T'(x+1) F(K+1)

v [ ey |- )
I'(x+1)

K+1
(Lz+H)A<Lz -(3.2)
Now, for 8,3 € @ and for each @ €[0,1], we get

NI }
(K+2)

S(LZ+H)[

<(Lz+H)

|8 @) - :9)(zzr)H<—f(m ) Q(r, 0(r) -z, 9())|d

(o)
wK_l A o
g [ e -t s or

wk‘—l 1/t o B _ _ _ _
+71_ﬁ(’()£u(f_n) Q(n,H(n))—Q(n,S(n))dnjdr

< LH—S[%T(w—r)“ dr+
Y\|\Ba" o x-1
‘ o J(I(r 1) dnjdr}

<t [1+ ]]e_s
I'(x-1)

<L~ 4] . (33)

for A shall be provided by (3.1). Note that A just one of the
issue parameters depends on.

k-1 A

‘7‘¢ J-(/l )Kldf

Al e -0+ Bl g
xk+1

where

1 : .
As L <X ,s0 Nisa contraction.
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Next, we argue that (1.1) solutions exist by the use "fixed
point theorem" [9] of Krasnoselskii.

Theorem 3.2 : ("The fixed point theorem of Krasnoselskii").
Let S be a closed convex and not void subset of a "Banach

space" W, . Let A, B, tobe the operators
That's it.
(@ A0O+B.9€S wheneverd,9eS;

(b) A, is compact and continuous ;
(c) B, is a contraction. Then itis available Z € S
That'sit. z= Az + Bz ;

Theorem 3.3 : Let Q:[0,1] x ¥, — ‘¥, be a continual
common mapping of function limited sub sets of [0,1] x P,
into comparatively built-in subsets of ‘¥ and assume that
(22) ||Q(zz7, 0)|| <d(w), for all(ew,0) €[01] x P, and
S e L'([01], R") and (1) holds with

(e + 1) + |8 - 1Y)
K+1

L
r(K+1)( ]<1 (3.4)

Then the problem (1.1) has at least one solution on [0,1].

Proof: Setting Sup |§(w)|:||5||, we fix
»<[01]

75l (1+ ”M)]] .. (35)
I'(x+1)

and consider B, = {49 ep: ||0|| < Z}. We define operators

7 [ e +2) +|8l -
Kx+1

| and J on B, as

(10)(@) = ﬁ j (@ —7)"Qr, 0(r)) d7 ...(36)
JO) (@)=~ ,0(7))dz
B ? (‘Z;_l i[! (r— ﬁ)’“‘lﬂ(ﬁ,e(ﬁ))dﬁJdr

For 0,9 € B, , we find that
1 @
160+39|=|——| (@-1)""Q(r,6(r))dr
o34 Hm)!

-1 4

1Q(r,9(r))dr
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x-11

Braw
) I

T

[ -mram,gn)dn

(
[m

Hence 10+J9 ¢ BZ so J is contraction mapping by (Z1)
together with (3.4). Continuity of €2 means that the operator
I'is contiuous. Also is uniformly bounded on B as

Jar

[ e+ 1)+ | pa— )]
xKk+1

< lal

ST+ ]sz - (3.7)

il
16| < ———— .. (3.8
el T (x+1) (38)
We verify next the compactness of I.
Bu using (Z1) we know sup |Q(zz7,9)| =M<

(,0)€[0,1]xB;
then we have
[

j[(wz o) - (@, - 1) |0, 0(0))d e +

0

H I g(d’-z) - Ig(wl)H:

1
I'(x)
} g

That is unrelated to @. So I is relatively compact on B, .
Hence, by "Arzela— Ascoli's" theorem, I is compact on
B.; So all the assumptions of theorem 3.2. are satisfied,

which implies that the boundary problem (1.1)
has at least one solution on [0,1].

T(afz -7)'Q(r,0(r))dr

oy

M
T(k+1)

2z, -2) + (0 - 2,") - (39)
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