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ABSTRACT 

The aim of this paper is to find polynomials related to Schultz, and modified 

Schultz indices of vertex identification chain and ring for hexagonal rings (6 – cycles). 

Also to find index and average index of all of them. 
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 يانات الدداسيةمتعددات حدود شولتز وشولتز المعدلة لتطابق رأس لدلدلة وحلقة للب

 محمود مدين عبد الله حمد محمد عليأ

 قسم الرياضيات، كلية علهم الحاسهب والرياضيات
 جامعة المهصل، المهصل، العراق

 90/90/0909 ريخ قبول البحث:ات                                       90/94/0909 ريخ استلام البحث:ات

 الملخص

س لسلسلة وحلقة للحلقات متعددات حدود شهلتز وشهلتز المعدلة لتطابق رأ الهدف من هذا البحث هه ايجاد
 وجدنا دليل شهلتز وشهلتز المعدلة ودليلهما. ، كما أيضا  السداسية

 .تطابق رؤوس لسلسلة وحلقة ،شهلتز، شهلتز المعدلة: الكلمات المفتاحية

1. INTRODUCTION: 

We will let all graphs in this paper to be connected, finite, undirected and simple, 

which means empty from loops and multiple edges. Let         be a connected 

simple graph, and        and        denote the sets of vertices and edges, 

respectively, of  . 

In any graph   represent the number of vertices the order of   and denoted that by 

symbol        |    |, and we called the number of edges the size of  , and 

denoted that by symbol        |    |  We say for any two vertices     in   

adjacent in   if there exists edge between them, and we write     , as well as we say 

the edge   incident on   and  . We called the degree of vertex   as the number of edges 

incident on it and denoted that by      as such that for vertex   in   [5]. 

Now, we define the distance between any two vertices     in  . The distance is the 

length of a shortest path that join between   and   in   which is denoted by          or 

      . We called the maximum distance between any two vertices   and   in   the 

diameter and denoted that by       [4]. In 2005, Gutman introduced the graph 
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polynomials related to the Schultz and modified Schultz indices [12], and in 2011, 

Behmaram, et al. found the Schultz polynomials of some graph operation [3]. Farahani 

[9], gave Schultz and modified Schultz polynomials of some Harary graphs in 2013. 

Ahmed and Haitham studied Schultz and modified Schultz polynomials, indices, and 

index average for two Gutman’s operations [1]. Also they found general formulas for 

Schultz and modified Schultz polynomials, indices, and index average of cog-special 

graphs [2]. Also there are many studies about their applications ([6,7,8,10, 11]). 

Schultz had introduced and studied in 1989 Schultz index (molecular topological index) 

[18]. Then, in 1997 Klavžar and Gutman introduced the modified Schultz index [17]. 

They have defined Schultz and modified Schultz, indices, respectively, as: 

      ∑                             . 

       ∑                             . 

Schultz and modified Schultz polynomials are considered very important 

polynomials through studying some properties of their coefficients. Schultz and 

modified Schultz polynomials are defined, respectively, as: 

        ∑                              .  

         ∑                              .  
 

We can obtain the indices of Schultz and modified Schultz by taking derivative of 

them with respect to   at    , as explained below. 

       
 

  
         |    and        

 

  
          |   . 

 

While we can obtain the average of the Schultz and modified Schultz indices for 

connected graph   with order      that are defined as: 

                             and                               .  
 

In any connected graph  , we refer to the set of unordered pairs of vertices which 

are distance   apart by the symbol       and let |     |        . 

Now let that         be the set of all unordered pairs of vertices     in  , which are of 

distance   and of                

It is obvious that ∑ |     |         
                   where        

|     |. 
Finally, Schultz indices are considered very interesting to determine some 

properties of chemical structures, see more ([13,14,15,16]). 

2. Main Results: 

2.1. The Vertex – Identification Chain (VIC) – Graphs:  

Let              be a set of pairwise disjoint graphs with vertices 

                               then the vertex-identification chain graph 

                                                       of        
  with 

respect to the vertices              
    is the graph obtained from the graphs            

by identifying the vertex     with the vertex      for all              (See Fig. 2-1) 

in which: 
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Fig. 2-1-1.               . 

 

Some Properties of Graph               : 

1.                   ∑     
 
          . 

2.                   ∑     
 
    . 

3.       (              )  ∑         
 
   . 

The equality of both bounds are satisfied at complete graphs, but the upper bound is 

satisfied at path graphs in which    ,    are end-vertices of    for          . 

If      , for all      , where    is a connected graph of order  , we denoted 

               by        . 

Schultz and modified Schultz of            

 

 

 

 

      

Fig. 2-1-2 The Graph           
 

From Fig. 2-1-2, we note that  (       
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Theorem 2.1.1: For      then:  

1.   (       

 
  )                                

                               
  

 
∑          

  

 
    

 

 
           ∑    

 

 
  

      

2.    (       

 
  )                                

                                 ∑           
  

 
  

      
  

    

Proof:  For all     and every two vertices              

 
   there is         , 

    
  

 
, we will have ten partitions for proof: 

P1. If         , then |  |      (       

 
) and we have two subsets of the edge 

set: 

P1.1 |       |  | {                            
 

 
}                   (  

 
     )  

                               (  

 
     ) |        

P1.2 |       |  |{                                                    
 

 
  }| 

                                 
P2. If           then, we have two subsets of    

P2.1 |       |  |                                                     
 

 
     

                                         (  

 
       )  (  

 
       )                 | 

                               
P2.2 |       |  |                                                      

                                   
 

 
   |         

Therefor  |  |     4. 

P3. If           then, we have three subsets of   : 

P3.1 |       |  |                                                   

                                                          
 

 
 |         

P3.2 |       |  |{        (  

 
     

 
)}|      

P3.3 |       |  |{                
 

 
  }|  

 

 
    

Therefor |  |  
   

 
  . 

P4. If           when                 
 

 
  , then, we have two subsets of 

  : 

P4.1 |       |  | (          
      

 

)  (          
      

 

)  (          
      

 

)  

                                (          
      

 

)      
 

 
 

   

 
   (        

 

)  (        

 

)   

                                (  

 
      

      

 

)  (  

 
      

      

 

) |     
      

 
    

P4.2 |       |  | (       
   

 

)  (       
   

 

)  ( 
   

    

 

     )  ( 
   

    

 

     )  

                                   
 

 
 

   

 
 |     
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Therefore |  |     
 

 
     , for                 

 

 
   

P5. If           when       ,         
 

 
 3, then, we have two subset of   : 

P5.1 |       |  | (        
    

 

)  (        
    

 

)  (        
    

 

)  (        
    

 

)  

                                   
 

 
 

   

 
    (          

 

)  (          

 

)  (  

 
      

    

 

)   

                               (  

 
      

    

 

) |     
      

 
   

P5.2 |       |  | (         
   

 

)  (         
   

 

)  ( 
   

      

 

     )  ( 
   

      

 

     ) 

                                     
 

 
 

   

 
 |     

      

 
  

Thus |  |     
 

 
       for       ,         

 

 
 3.   

P6. If           when        ,            
 

 
  , then, we have three subsets 

of   : 

P6.1 |       |  | (      
  

 

)  (      
  

 

)  (      
  

 

)  (      
  

 

)  

                                    
  

 
 |     

  

 
    

P6.2 |       |  | (     

 
  

)  (  

 
     

 
 

 

 
  

) |     

P6.3 |       |  |{(        
 

 
  

)      
 

 
 

 

 
  }|  

 

 
 

 

 
  . 

Thus |  |  
  

 
      for         ,            

 

 
  . 

P7. If        
  

 
    then, we have two subsets of    

 
  

: 

P7.1 |   

 
  

     |  |{(         ) (         ) (         ) (         )      }| 

                                    

P7.2 |   

 
  

     |  | (     

 
)  (  

 
     ) |     

Therefore |   

 
  

|    . 

P8. If        
  

 
    then |   

 
  

|     because: 

|   

 
  

     |  | (     ) (     ) (     ) (     ) (     

 
  )  (       )   

                           (     

 
  )  (       ) |   .  

P9. If        
  

 
    then |   

 
  

|     because: 

|   

 
  

     |  |{(     

 
  )  (     ) (     

 
  )  (     )}|      

P10. If        
  

 
  then |   

 

|     since |   

 

     |  |{(     

 
  )}|     

From P1  to P10 and Table 2.1.1, we have: 

   (       

 
  )                                      

                             {              (
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Now, we find modified Shultz polynomial: 
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Remark: 

1.                                            
                                                  
2.                                                        

                                        
3.                                                          

                                         

Corollary 2.1.2: For      then we have: 

1.   (         )  
  

 
             

2.    (         )                                            

Corollary 2.1.3: If    is the number of cycles    in the graph        ,     , then  

1.                            
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2.                                                         

Corollary 2.1.4: For      then we have: 

1.   ̅̅ ̅        

 
  

  

  
      

  

    
   

2.    ̅̅ ̅̅             
  

   
      

  

    
                                                

2.2. The Vertex – Identification Ring (VIR) – Graph: 

Let              be a set of pairwise disjoint graphs with vertices 

                              then the vertex-identification Ring graph 

                                                            of        
   

with respect to the vertices            
  is the graph obtained from the graphs 

           by identifying the vertex     with the vertex      for all            (See 

Fig. 2-2) where        . 

 

 
Fig. 2-2-1. 𝑅𝑣 𝐺  𝐺    𝐺𝑛  

 

Some Properties of the graph               : 

1.                   ∑     
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⌉ . 

The equality of both bounds are satisfied at complete graphs but the upper bound is 

satisfied at path graphs in which    ,    are end-vertices of    for          . 

If      , for all      , where    is a connected graph of order  , we denoted 

               by        . 

Schultz and modified Schultz of          : 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2-2-2. The Graph          ,    , even  . 
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From Fig. 2-2-2, we note that   (       

 
)  
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    (       
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 ⌈

   

 
⌉. For all        ,      then we have: 

 

Table 2.1.1 
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Theorem 2.1.2: For    , then we have:  
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Proof: For all       and every two vertices              

 
   there is         , 

    
  

 
, we will have seven partitions for proof: 

P1. If         , then |  |      (       

 
) and we have two subsets of the edge 

set: 

P1.1 |       |  |{                            
 

 
}|      

P1.2 |       |  |{                                                
 

 
}|      

where   

 
       

P2. If           then, we have two subsets of   : 

P2.1 |       |  |                                                     
 

 
   

                                             |      where                      

P2.2 |       |  |{                                                
 

 
}|      

where           

Thus |  |      
P3. If           then,we have three subsets of   : 

P3.1 |       |  |                                                 
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where                            
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P6. If           when        , and when              ,           
 

 
    

and when              ,         
   

 
    then, we have three subsets of such 

      pairs of   : 
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P7. If        
 

 
 ⌈

   

 
⌉  then we have: 

a- If               then, we have two subsets of   
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Now, we find modified Shultz polynomial: 
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By simply, we can calculate: 
 

1.                                                  
                                                        
2.                                                         
                                                           

Remark: 

1.                              
                                     
2.                                      

                                            

Corollary 2.1.2: For      then we have: 

1.    (       
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)  {

 

 
                         

 

 
                          

                                   

Corollary 2.1.3: If   is the number of cycles    in the graph        ,    , then we 

have: 
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1.             {
                         

                        
  

2.               {
                          

                          
                                   

Corollary 2.1.4: For    , then we have: 
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