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ABSTRACT

In this paper we will introduce a new graph distance based polynomial;
Detour Hosoya polynomials of graphs H*(G ;X). The Detour Hosoya

polynomials H*(G ; X ) for some special graphs such as paths and cycles are
obtained. Moreover the Detour Hosoya polynomials H*(G1 eG,;X),
H™(G,:G,;x) and H (G, ©G,; X are obtained.
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1. Introduction

The concept of Hosoya polynomial was first put forward in 1988 by
Hosoya [1]. Several authors, such as [1], [2], [3], [4], [5], [6], [7], [8], [13]
and [15] had obtained Hosoya polynomials for special graphs, graphs
having some kind of regularity and for compound graphs obtained by using
some well-known binary operations in graph theory.
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In this paper, we consider finite connected graphs without loops or
multiple edges. For undefined concepts and notations see [9] and [12].

Ordinarily, when we wish to proceed from a point A to a point B we
take a route which involves the least distance. We have all been faced with
detour sign which require us to take a route from A to B that involves a
greater distance. In any such detour route from A to B we assume that there
is no possible shortcut along the route, for otherwise this should have been
part of the route initially. When one is driving along such a detour, it
sometimes seems that we are using the longest route possible from A to B
(again subject to the “no shortcut” condition). In this paper we investigate
longest detour routes in graphs.

The distance d(u,V) between two vertices u and v in a connected

graph G is the length of a shortest u-v path in G. For a nonempty set S of
vertices of G, the subgraph < S > of G induced by S as its vertex set while
an edge of G belongs to < S > if it joins two vertices of S. If P is a u-v
path of length d(u,Vv), then the subgraph <V (P)> induced by the

vertices of P is P itself. This observation suggests the following concept.
The detour distance d (u,v) between u and v in G is the length of a
longest induced u-v path, that is a longest u-v path P for which
<V (P)>=P . An induced u-v path of length d”(u,V) is called a detour
path [10].

Observe that d” (u,v) =d(u,V) for all vertices u and v of G and
that d”(u,v)=d(u,v) =1 if and only if u and v are adjacent. Also, note

that d”(u,v)=d " (v,u) for all vertices u and v of G. Therefore the detour
distance is symmetric. However, the triangle inequality does not hold in
general. Consider the wheel Wp of order p=6 with center at the vertex
w; then: d (u,v)=p—-3>2=d (u,w)+d (w,V), for every two
vertices u and v of Wp, u,v# W, that are both adjacent to a common

vertex X#W.

Therefore, in general, the detour distance is not a metric on the vertex set of
G[10].

The detour eccentricity e (v) of a vertex v is defined by
e"(v)=max{d (v,w):weV(G)}. The detour eccentricity set

e"(G)of a connected graph G is the set consisting of all detour
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eccentricities of G, that is " (G) ={e"(v):v €V (G)}. The detour radius
rad (G) of G is the minimum detour eccentricity, while the detour
diameter diam ™ (G)of G is the maximum detour eccentricity.

For completeness we define d” (u,v) =0 ifand only U=V

A connected graph G is called a detour graph if d” (u,v)=d(u,Vv)

for all vertices u and v of G. No cycle of length 5 or more is a detour graph.
On the other hand, all trees and all complete graphs are detour graphs. If u

and v are distinct vertices of a graph G such that d” (u,v)=1 or 2, then
d”(u,v)=d(u,V)[10], the converse is not true in general, that is if
d(u,v) =2, then d"(u,v) =2, as for the wheel W,, p26.

The concept of Hosoya polynomial H(G; X) of a graph G was put
forward by Hosoya[13], and defined as

5(G)
H(G;x)= Y C(G,k)x*; where C(G,k) is the number of pairs of
k=0

vertices in G that are distance k apart, and 8(G ) is the diameter of the

graph G.

In this paper, the concept of Hosoya polynomials of detour distance of a
connected graph G ( or simply detour Hosoya polynomial of a graph G)
has been defined by

. 5(G) .
H'(G;x)= Y C'(G,k)x*= x4V ...(1)
k=0 {uyvleV(G)
in which C™(G,K) is the number of pairs of vertices in G with detour

distance k, and 8" (G) is the detour diameter of G .
It is clear that if G is a detour graph, then H ™ (G;X) = H(G; x).

The sum W *(G) of detour distances between all pairs of vertices of

the graph G is known as the Wiener index of detour distance of the graph G
(or simply detour Wiener index of the graph G), that is

W' (G)=Xd (uyv),

where the sum is taken over all unordered pairs {U, v} of distinct vertices in G.
Itis clear that
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d
dx
We illustrate these ideas in the following example.

W™ (G)= H*(G;x)\le.

Example 1.1. Let G be a graph of order p =9 ,depicted in figure 1.1(a).
It is clear that
e’ (v,)=5, e (v,)=4, e(v,)=4, e (v,)=3, e (v,)=4,
e (vy)=3,e(v,)=4,e(v,)=5and e (v,)=5.
Hence

e’ (G)={54,4,3,4,34,5,5} diam" (G ) =5and rad (G ) =3.
A detour v, —V 4 path is given in Figure 1.1(b). Therefore d " (v, ,v,) =5,

and this gives us the maximum detour distance among all detour distances
of pairs of vertices of V(G).

The path P’ is not a detour v, —V 4 path, because (\/ (P ')> # P/ (see

figures 1.1(c) and 1.1(d)).
By direct calculations, we get that

C(G,0)=p=09, C'(G,1) =10, C'(G,2)=9,
C(G,3)=9,C(G,4)=6and C(G,5) =2.
Hence, the detour Hosoya polynomial of G is
H(G;Xx)=9+10x +9x°+9x°®+6x"* +2x°,
and

vv*(G)=d—H*(G;x)\ =89.

dx x=1

Vv

VZO-V?, VsI stvg <_‘_:-@ Y4
Va (@) Thé.graph G . (b) The detour vV, —V 4 path
9 : <’.‘@ °

G v
(c) The path P’ (@ (V(P')>

Figure 1.1.
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In 1993, Gutman [8], established few additional properties of the
respective graph polynomials. He obtained Hosoya polynomials of some
special graphs and obtained formula for the Hosoya polynomials of some

compound graphs, namely G, ® G, and G, : G, which are defined in the
following: Let G, and G, be vertex-disjoint connected graphs, and let
ueV(G, ) and veV (G, ). Then, the graph G, ® G, is obtained from
G, and G, by identifying the two vertices u and v. This means that G,
and G, have exactly one vertex in common in the compound graph
G, G,. The graph G, : G, is obtained from G; and G, by introducing
a new edge joining the two vertices u and v. In this paper, formulas for
H™(G,eG,;x) and H (G, :G,;X) in terms of the detour Hosoya
polynomials of G,and G, will be obtained.

2. Detour Hosoya Polynomials of Some Special Graphs

Let P,, K, and S denotes the path, complete and star graphs of n

vertices respectively. It is known that [10] all trees and complete graphs are
detour graphs. This leads us to the following result.

Proposition 2.1

@) H*(Pn;x)=n§(n—k)xk.
k=0
(b) H*(Kn;x)=n+%n(n—1)x.
. (n—l) )
(c) H (S,;X)=n+(n-1)x+ 5 X" . m

Proposition 2.2 Let C , be a cycle of order p 25, then

c p—2
P+ x+ Y. x ) if pisodd
Tn
H*(Cp;X)=< k_,z) p—2
P+ x+1ix>+ X x) if piseven
L k=§+l
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Proof. Let u,v be any two distinct vertices of C_ . We will consider the
following cases:
(1) Ifuve E(C_ ) then d"(u,v)=1and C'(G1)=p.
2 Ifuvg E(C,), thend"(u,v)=p—d(u,v),
where d(u,Vv) denotes the ordinary distance.
We know that[11], for an odd p, the ordinary Hosoya polynomial of C o is
p—1

2
givenby H(C ;X)=p+ px+ p > x“.
k=2

Hence
p-1
. "2
H'(C,ix)=p+px+p X x*
k=p-2
or

-2

H™(C,;X)=p+ px+p pZ xX.
Pt
2

Similarly, we prove the formula for the case when p is even.
This completes the proof. m

Proposition 2.3 Let Wp be a wheel graph of p 2 6 vertices, then

> xk, if piseven

H'W;x)=p+2(p-Dx+(p-15 2
Ix2 + Y xN, if pisodd

Proof. For uv g E(W, ), dJ\,p(u,v)=dép_l(u,v).
Hence, for kK > 2
C (Wp,k)=C™(C,.k).
Thus,
H (W, ;x)=1+(p-1)x+H (C_,X).
Now, using Proposition 2 we obtain the required result.m

p-11
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Proposition 2.4 Let K, ¢ be a complete bipartite graph with partite subsets
of sizes t and s, then

H (K g;X)=(t+5)+ (ts)x+[(£)+[2ﬂx2.

Proof. Obvious m
The following result gives us the Wiener index of the detour distance

of the special graphs P, K, S, C,, W and K.

Proposition 2.5

LW (P,)=¢n(n* -1).

@ W (K,)=3n(n-1).

B W(Sy)=(n-1)%.

1p(3p? -12p+17), if pis odd
1p(3p*-12p+16), if piseven
1(p—1)(3p* —18p+39), if pis odd
L(p-1)(3p® —18p+40), if piseven
B W (K, )=ts+t(t—1)+s(s—1).

(4) For p25,W*(Cp)={

(5) For p=6, W*(va)={

3. Detour Hosoya Polynomials of Some Compound Graphs
Let U be a vertex of a connected graph G of order p. The number
of pairs of vertices of G containing the vertex U such that dg (u,v) =K,

V v eV (G), will be denoted by C” (u,G;K).
We define the polynomial

e (u)
H(u,G;x)= Y C'(u,G;k)x" .(2)
k=0
It is clear that

H*(G;x)=% YH (uG;x)+1p E)

ueV (G)
Let G, and G, be two disjoint connected graphs of orders p, and
P, respectively. Moreover, let W be the vertex obtained by identifying the
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vertex U of G, with the vertex vV of G, in order to construct the
compound graph G, @ G,. The compound graph G, : G, is obtained by
introducing a new edge joining the vertex u of G, with the vertex v of G,.

Now, we are ready to present formulas for H (G, ® G,;X) and
H*(G1 :G,; X) in terms of H*(Gl;x) and H*(GZ;X).

Theorem 3.1 If G;and G, are disjoint connected graphs, then

H™ (G, #G,;x)=H (G;;x)+ H (G,;x)+ H (u,G,;x). H'(v,G,;X)
—H™(u,G,;x) = H (v,G,;X).

Proof: Let S,t be any two vertices of G, ® G, suchthat d_ . (S,t) =K.

G10Gy
We will consider the following cases:

(1) If s,teV(G,), then C (G, ® G,;k)=C"(G,,k), which produces
the polynomial H™(G,; X).

) If s,teV(G,), then C (G, #G,;k)=C"(G,,k), which produces
the polynomial H™(G,; X).

(3) seV(G,) and t eV(G,): In this case, any longest induced (S,t)-
path P will contain the vertex w. If P’ is a longest (s,w)-path and P" is
alongest (t,w)-path with (V (P"))= P’ and (V (P"))=P", then

V(P)=V(P)UV(P"),and (V(P))=(V(P)UV(P")),

because no vertex of P’ other than w is adjacent with a vertex of P”",
other than w.

Therefore P’ e P"=(V(P))=P.

Hence, dél,Gz (s,t)= dél (s,w)+ dgz (t,w).

This produces the polynomial H™(u,G;;x). H™(v,G,; X). Notice that
the polynomial H*(u,Gl; X) is counted twice in the Cases (1) and (3),

and also H ™ (v,G,; X) is counted twice in the Cases (2) and (3).

Now, adding the polynomials obtained from the cases (1), (2) and (3), we
get the required result. m

Theorem 3.2 If G, and G, are disjoint connected graphs, then
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H™(G, :G,,x)=H (G, x)+ H (G, x)+x.H"(u,G; x). H (v,G,; X).
Proof. Let S, be any two distinct vertices of the compound graph
G, : G,. We consider the following cases:

(1) If s,teV(G,), then we get the polynomial H *(Gl; X).

(2) If s,t eV (G,), then we get the polynomial H™(G,;x).

(3) seV(G,) and t eV (G,): In this case, any longest (S,t)-path will

contains the edge uv, and as in the proof of Theorem 6(Case 3), this
produces the polynomial

x.H ™ (u,G,;x). H(v,G,; X)
Now, adding the polynomials obtained from the cases (1), (2) and (3), we
get the required result. m

Definition 3.3 Let G, and G, be disjoint connected graphs of orders p,
and p,, respectively. Let G be the i copy of G,. The Corona
G, ©G,, is the graph[13] constructed from G, U p,G, with additional
edges UMY {Viu ‘u eV(Géi))},

as depicted in Fig. 3.1, in which V (G, ) = {Vl,v2 yeny V }

L V]
It is clear that

p(Gl ®G2) = p1(1+ p2)= P,

q(Gl QGZ) = q(G1)+ pl(p2 +q(Gz))=q
G G Gépl)

and

Fig. 3.1 The Corona G, OG,,
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The next theorem computes the detour Hosoya polynomial of the corona
G, 0G,.

Theorem 3.4 Let G, and G, be two disjoint connected graphs, then
H'(G, ©G,;x)=(1+p,x)’H (G ;x) + pH (G, X)
= PP X(1+ p,X)-

Proof. Let S,t be any two distinct vertices of G, © G, . We will consider
the following cases:

Case 1. If S,t €V (G;), then we get the polynomial H " (G;; X).

Case 2. If s,t eV (GY), for i=12,..., P, , then we get the polynomial
p,H (G x).

Case 3. sV and t=v; (or s=Vv;and teVV)fori,j=12,..,p;,

then
(i) If i = j, then we get the polynomial p, p,X.

(ii) If 1 J, then we get the polynomial 2 p, X[H*(Gl; X) - pl]'
Case 4. If SeVZ(i) and teVz(j) for i, j=1,2,..., p;, 1 # ], then we get

the polynomial p%XZ[H “(Gy;x) = pl].
Now, adding the polynomials obtained from the above cases and
simplifying, we get the required result. m
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