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ABSTRACT
The aim of this work is to study the complex dynamics of the family

F:{ks”‘hiz(z) , A >0}, of transcendental meromorphic functions. We prove
z

that certain intervals are contained in J(f) or in F(f ) and we prove that Julia
set contains R* WiR™ and show that Fatou set of the functions in F contains
certain components for different values of 4 > 0 . We characterize Julia set
of f, e F , for different values of A >0, as the closure of the escaping

points, and use this characterization to give computer images for these sets.

Keywords: complex dynamics, Julia set, Fatou set.

sinh2 2
A

3
z

Jlsall Alslal 5afrall Aualisal

ol has ool
cilualilly pulal) agle 44l
Jeasal dadls
2009/10/4 :J s g 2009/5/12 :235u) g
oaildll
Aoaidl  ASijpappall Jlsal Ablal aieddl Ll Ay g il e il
degana ) o dgkiad) el G dime i wem},ﬂ“:z(z), >0 F={

@ Llsa degene o (o Gapin WS gl degena (Al Gl o s (b W
Laladl) o8 Caliddly dime cilisSe e (gind gild degenn o oayie L& RTUIRY e
b Bl degene DUl Ll o Won aalaal liay Jasielld I diLayL . 2> 0
A>0 dded) ad Ciiddl LWL sa AN Ll lgd e Al gaiel) elead
casalall Aaclsy paalad) o3g) Hsum slacy Chagll 3a aadiciag
. 5l degana ¢ Wea Ao gana ¢ afaal) Lualinl) tdalisd) LS

109



Salma M. Faris

1. Introduction:

In the early of twentieth century, the iteration theory of complex
functions originated in works of Julia and Fatou. There had been a long
period of inactivity after that. During the end of 20-th century, a renewed
interest in the study of iteration theory started due to beautiful computer
graphics and a wide ranging applications in engineering and science
associated with it [1,2,3,4,8, 10]. Iteration occurs in many parts of
mathematics. For example many algorithms of numerical mathematics
based on it. Given a set D and a function f : D — D the iterates of f are

defined by f* = f and f" = fof "' for n>1.The main problem in iteration
theory is to study the behavior of the sequence< f ”>as n goes to infinity.

In iteration theory, for complex dynamical systems, most of the works have
been centered around the dynamics of entire and rational functions.
However, in comparison to the investigations of entire and rational
functions, not much works have been done in this direction for
transcendental meromorphic functions.

The initial works on study of transcendental meromorphic functions
started at 80-th by Devaney, Keen, Bergweiler, and others [2,6,7]. The
central objects studied in complex dynamical systems of a function is its
Julia and Fatou sets. The Fatou set of a function f, denoted by F(f), is
defined to be the set of all complex numbers where the family of iterates
{f": n>0 } of f forms a normal in the sense of Montel . Recall that the
family F={f": n>0 } of complex maps defined on open set U of C called
normal if every infinite sequence in F contains a subsequence which either:
converges uniformly on a compact subset of U, or converges uniformly to oo
on U[4].

2. Definitions:

Julia set (or chaotic set), denoted by J(f), is the complement of F(f). The
escaping points set of meromorphic function f(z), denoted by I(f), is defined
by IN={zeC:f™(2) >0 asn—>wand f™(z) 2o }.

A point we C is said to be critical point of fif f'(z) =0. The value
f (w) corresponding to a critical point w is called a critical value of f. A
point veC is called asymptotic value of f if there is a continuous
function «(t) satisfying that tliﬂgf(a(t)):v. A singular value of f is

defined to be either critical value or asymptotic value of f . Finally the

function f is called critically finite if it has a finite numbers of critical and
asymptotic values.
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3. Helping Results:

Let B be a class of meromorphic functions having bounded singular
values. In this work, we need the following characterization given by Zheng
[10], for transcendental meromorphic functions:

Theorem (3.1): Let f, eB, thenJ(f)= ﬁ
sinh?(z) In

Z3

In [5], we studied the real dynamics of the family F= A

present work we study the complex dynamics of this family. We show that
the functions in this family are non-critically finite and all the critical values
are bounded. We characterize the Julia set of f, € F, as the escaping points

of f,,1(f,), for various values of A>0. For different values of the

parameter A >0, we prove that Julia and Fatou sets contains certain
intervals. Finally we use the characterization of Julia set to give computer
images of Julia set for different value of A4 >0

In [5],it was shown that the critical parameter value of the family F is
A, =1.2203, and we proved the following theorem :

Theorem (3.2): Let f, € F. Lt To be set of backward orbit of the pole z=0,
then: 1.For 0<A< A, f :(x) —a, forx e (a,r,)/T,,

f ()~ -a, forxe (-r,~a) T,. Forxe{(0,a) L (1, )} f :(x) S

and,forXE{(—a,O)u(—oo,—rA)}fZ(X)—)—oo, where o« is a positive
solution of the equation f,(x)=r,, a, is an attracting fixed point of
f.(x)and r, is a repelling fixed point of f,(x).

2.Fori=4, f :(x) — x forx e (i, %) /T,and f,(x) - —x forx e (—x,—u)/T,

Moreover f :(x) — oo for

x € {(0, 1), (X, )} T, and f(x) = —o for x e {((= o0, x ) (—=1,0))/T, }.,
where x, and -x, are the rationally indifferent fixed points of f,(x).and u
is a positive solution of the equation f,(x) =X,

3 Fort > f 2)(x) — oo forx e (0,00) /T, and f"(x) — —oo for x € (~0,0)/T,.

The following theorem gives a classification of the periodic
components of the Fatou set of a function f. Recall that a maximal
connected domain U contained in the Fatou set of a function fis called a
component of F(f) .
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Theorem (3.3)[9].

Let f be a complex function. Let U be a periodic component, of period
p, in the Fatou set of f. Then one of the following possibilities is true:
1. U contains an attracting periodic point z, of period p. Then for zeU

zeU ™ (z) > z,asn — oo and U is called the basin of attraction of
Z, -

2. U contains a periodic point z,, f " (z) —z, as n — oo for zeU and
f(”(z,) =1. In this case U is called Parabolic domain.

3. There exists an analytic homeomorphisim ¢:U — D, where D is the

unit disk, such that o f ™ op™(z) = ez for some a € R/Q.In this case

U is called Siegel disk.
4. There exists an analytic homeomorphisim ¢:U — A, where

A={zeC:l<|z<r}and r>1, such that @of®op™(z)=e"""z for
some « € R/Q. In this case U is called Herman ring.

5. There exists z, €U such that f™(z) >z, as n—>o for zeU but
f ™ (z,) is not defined. In this case, U is called Baker domain.

If U is not periodic, then U is called wandering domain, i.e. if U is
wandering domain, then U™ =U" forall m=n.

Theorem (3.4)[10]: Let f be a transcendental meromorphic function and let
D={U,,U,,..,U, ,}be a n-periodic cycle of components of F(f) . Then:

1. If D is a cycle of attracting basins or parabolic domains, then some U,
k=1,2,...,n-1, must intersects the set of singular values.

2. if D is a Siegel disks or Herman rings, then Uk is a proper subset of the
closure of the forward orbits of the singular values, for each k=1,2,...,n-1.

4. Main Results:

In the following, we study the complex dynamics of the family F starting
with the following proposition:

Proposition (4.1): Let f, eF , then the function f,(z) is non-critically

finite and all the singular values of it are bounded.
sinh?(z)
Z3

If we derive the function f,(z)=Ax and solve the equation

f,(z) =0, then one can easily show that f,(z) has infinite number of
critical values, two of them are real and the other are purely imaginary.
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Moreover, if we assume that {iy,:ne N} is the sequence of imaginary

- 2 -
critical value then Xismh 3(|y)| < z” <AM, where M =max{l/y>:ne N}.
ly Yn
Therefore the function f;(z) is non-critically finite and all the singular values
of it are bounded.

Theorem (4.2): Letf=f, € F, thenJ()=1(f).

Proof: By proposition (4.1), f, €B, where B is the class of meromorphic
functions having bounded singular values. Then, by theorem (3.1),
JH=1(F).

Theorem (4.3): let f, € F. Then

1. For 0<A< 4, the intervals {(-r,,—a)u(a,r,)}/T, contained in
F(f,), and the intervals (0,a)wu (r,,) are contained in J( f,).

2.For A=4, {(-u—x)u(x,u)}/ T, contained in the Fatou set of f,,
F(f,), and {(0, ) U (x,,0)} are contained in the Juliasetof f, JJ(f,).
3.For 4 >4, J(f,)contains R* UIiR".

Proof:
1.For 0 < A < 4, ,by theorem (3.2), for x € (a,r1;) /T, f :(x) — a,and

xe(-r,—a)/T,, f :(x) — —a,. Thus for x € (a,r,) /Ty, X is belong to the
basin of attraction of the attracting fixed point a,, B(a,).But
B(a,)cF(f,). Thus (r,,a) /T, < F(f,). Similarly (-« ,-r,) /T, < B(-
a,), where B(-a,) is the basin of attraction of -a,. Hence (—« ,—r,)
/T, cF(f,). Therefore for 0<A<A{(-r,,—a)u(ar)}T,cF(f,).
Also, by theorem (3.2) for xe { (0, 1) U (r,,©) HT,, f :(x) — 0. Hence, by
theorem (3.3), {(0,4) u(r,,©)}T, < J(f,). But the pole z=0 and its pre
images are contained in J(f,). Thus {(0,4) U (r;,) }is contained in J(f,)
2. For this case the proof is similar to that in part (1)

3. For A>4, by theorem (3.2), f:(X)—)OOfOI'XE(O,OO)/TO. Thus
(0,0) /T, is contained in J(f,). Since the pole z=0 and its pre images are
contained in J(f,), then R* is contained in J(f,). But f, maps iR" into

113



Salma M. Faris

R*. Thus J(f,) contains the positive parts of the real and
imaginary axes R™ UiR".

Theorem (4.4): For f, e F, we have the following:

1. For 0<A< 4, the Fatou set, F(f,), contains only two basins of
attraction B(a, ) and B(-a, ). Also, F( f,) has no any parabolic domains.

2. For A =4, F(f,) has no parabolic domains other than that associated
with the indifferent fixed points x, and —x, .

3. For A> 4, F( f,) has no basins of attraction, parabolic domains,
Siegel disks or Herman rings.

Proof:

1. For 0<A< 4. Let zeB(a,) , by theorem (3.2), f:(z) — a, . Hence
the sequence { f :(Z)} forms a normal family. Thus z € F( f,). Therefore
B(a,) c F(f,). Also, for any ye B(-a,), then f:(y) — —a,. Hence

{ f:(y)} forms a normal family. Thus y eF( f,).Therefore B(-a,) c

F(f,). Again by theorem (3.2) part (a), the forward orbits of all singular
values are either tend to a, or -a, or infinity. Hence by theorem (3.3),
F( f,) has no other basins. Also, by theorem (3.3) does not contains any
parabolic domains.

2. For A=24, by theorem (3.2), f :(x) — X, forx e (u,x) /T ,and
f (%) > eoforx e (x,%)/T, .

Define U, ={zeC: f r;(z) — X, @8 n — oo}, Then the indifferent fixed
points x, belongs to the boundary of U, . Hence U, is a parabolic domains
inF(f,).

Similarly, U, ={zeC: f :(z) — —X, @ n — oo}is a parabolic domain of
the indifferent fixed point —x . Again by theorem (3.2), the forward orbits
of all singular values of f, tends to x,, —X;, or infinity. Thus, using
theorem (3.3), F( f,).has no basins of attraction and has no parabolic
domains other than U andU, .
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3. For A > 4, by theorem (3.2), f:(x) — ooforx € (0,0)/T, . Therefore the

forward orbits of the critical values of f, are tend to infinity. Further, since

the asymptotic value 0 is also a pole. Thus the orbit of 0 is tend to infinity.
Hence, F( f,) has no any basins, parabolic domains, Siegel disks or Herman
rings.

Finally we give computer images for Julia sets of the functions in the family
F forO<A<4, A=4 and A>4 whered =1.2203is the critical

parameter value of the family F ,see[5].

We used simple algorithm with Matlab 6.5 Program. A window has been
selected in the plane and divided into k x k grids with width d, we choose a
large numbers N and M. For each grid point, compute the orbit up to
maximum iteration N. If, at i< N, the modulus of the orbit is grater than M,
then the grid point colored black and the iteration stopped. If not then
original grid point left white. The output generated by this algorithm black
and white pictures. The black points represent the approximated Julia set.

Julia set of the function ;SN2 ¢, _
z

Julia set of the function SN2 ¢, _ 4
z

Julia set of the function ,SM°@) p;
z
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