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ABSTRACT

In this work we present a new algorithm of gradient descent type, in
which the stepsize is computed by means of simple approximation of the
Hessian Matrix to solve nonlinear unconstrained optimization function. The
new proposed algorithm considers a new approximation of the Hessian
based on the function values and its gradients in two successive points along
the iterations one of them use Biggs modified formula to locate the new
points. The corresponding algorithm belongs to the same class of
superlinear convergent descent algorithms and it has been newly
programmed to obtain the numerical results for a selected class of nonlinear
test functions with various dimensions. Numerical experiments show that
the new choice of the step-length required less computation work and
greatly speeded up the convergence of the gradient algorithm especially, for
large scaled unconstrained optimization problems.

KEYWORDS: Unconstrained optimization, line search, Biggs Variable
Metric Update, gradient descent algorithm.
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1. Introduction

This Paper considers the unconstrained minimization problem
min f(x) ...(1)

xeR"

where the objective function f is a twice continuously differentiable

function from R"intoR. For problem (1) Barzilai and Borwein [1] and
Fletcher,R. [7] suggested an algorithm which essentially is a gradient one,
where the choice of step-size along the negative gradient is derived from a
two point approximation to the Hessian of f at x, considering D, =y,1 as
an approximation to the Hessian of f at x,; they chose the parameter y,
such that
D, =argmin|Dv, -y, |, ..(2)

where v, =X, —X,, and y, =-Vf(x,)—Vf(x,,) yielding

T
BB Vk yk
Ve =——+ ...(3)
‘ Ve Vi
With this parameter the basic iterations of the (BB) method may be
given the following iterative scheme:

1
Xk+l=xk_FVf(Xk) ...(4)

Mainly,the sequence {xk} generated by the (BB) method uses two
initial vectors x, and X, .Having in view its simplicity and numerical

efficiency for well-conditioned problems, the (BB) method has received a
great deal of attention. However, like all steepest descent and conjugate
gradient methods, the (BB) method becomes slow when the problems
happens to be more ill-conditioned [1].Neculai Andrei (NA) [10] suggested
another gradient descent method for unconstrained optimization (its details
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give in section 2 of this paper).In contrast with (BB) method a simple
interpretation of the secant equation for the step- length is computed. Here,
in this paper, we are going to develop numerical techniques described by
Dixon [6] and Biggs [2]. The central notion is the estimation of dominant
degree of a one dimensional convex function. Previously their estimate have
been quite successfully used as the basis of a line search process indeed it is
not performing explicit minimizations along every search direction may
require more than one function evaluation per iteration to obtain a
satisfactory reduction f , but if we have some measure of the non-quadratic

function f in the directions then we can attempt to improve upon the

simple estimate of the second directional derivative and hence update the
matrix H, using more accurate information .

2. Neculai Andrei (NA) Algorithm:

Neculai Andrei (NA), 2005 suggested a procedure for computing an
approximation of the Hessian of the function f at x, which can be
considered to get the step-size along the negative gradient considered the
initial point x, where f(x,) and g,=Vf(X,) can immediately be
computed. Using the backtracking procedure (initialized with a=1 he
computed the step-length «, which the next estimate X, =X,—a,09,is

computed, where a gain he computed f(x,)and g, =Vf(x,).So the first
step is computed using the backtracking along the negative gradient. So the
point

Xiog = X+, 0, , k=012,.. ...(5)
and

f (X)) = f(Xk)_“knggk+%akzngV2f(Z)gk ...(6)

where z €[X,, X..,]. Having in view the local character of the searching
procedure and that the distance between x, and X, is small enough he
choose z=Xx,,, and y(x.,)l as an approximation of the V*f(x,,,) ,where
7(X,,) € R.This is computed using the local information from point x,,
therefore the parameter

2 1
7(Xk+1):T—_2[f(xk+1)_f(xk)"'aknggk] ..(7)
k 9k O

was used to compute the next estimation X,,, = X,,; + &,.,,0,,, .10 determine
the step size «,, , he suggested
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1
D@, (@) = f(X%.1) 0041 i +§a27(xk+l)gl;r+1gk+1 ...(8)

observing that @,.(0)= f(x.,) and ®;,,(0)=-g,,,9,, <0.Therefore
®, ,(a) is a convex function for all «>0. To have a minimum
for®, , () the parameter y(x,,,) must have a positive value. Considering
for the moment that y(x,,,) >0, then from @, ,(«)=0yields:

1
Ay =—— ...(9)
“ 7 (Xia)
As the minimum of @, , yields
i i 1 2
Dy, (1) = F(X 1) —m||gk+1”2 ...(10)

which show that if y(x,.,)>0,then the value of function f is reduced. If
not the algorithm, will restart. This suggests
ak+1 = arg Qj{] f (Xk+l - gk+l) .. (11)

Using the back tracking procedure to complete the algorithm he
considered this situation when y(x,,,)>0. If f(x.,,)-f(x)+0,9, <0

then the reduction f(x,,)— f(x,)is greater than «, g, g, .In this case, the
step-size o, will be changed as ¢, +7, in such a manner that

f (X0) = F(X) + (e +7,)9,9, >0 ..-(12)
To get a value for 7, the parameter 6 > 0is chosen small enough, and 7, ,
may be considered as:

2
Tha =7 [f(xk+1)_f(xk)+aknggk]+5 ...(13)
k Ik
and a new value for y(x,.,) can be computed as :
2 1
7 (Xa) = g[f(xk+1)_f(xk)"'(ak""?k)g:gk] ...(14)

9,9y (4 +m,)
2.1. Neculai Andrei Algorithm (NA):

Corresponding (NA) gradient descent algorithm may be listed as
follows:
Stepl: select x,edomf and compute f(X,),9,=Vf(x,) and

o, =arg mip f(x,). Compute x =X,—,0, ,f(x;,) and g,=Vf(x)
setk =0.
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Step2: Test for convergence. If |g,,,[<1x107° then stop; otherwise

continue .
Step3: Compute the (scalar) approximation y(x,,,)of the Hessian of

function f at x, ., as

2 1
7 (Xei1) =T——2[f (X,0) — F(X )+, gggk]

k Yk Qi
Step4: If yp(x,,,)>0then select &>0and compute a new value for
7(X,,,)as equation (14) where 7, is given by equation (13) where & is
select ¢ >0 enough small.

Step5: Compute the initial step-size as equation (9) with which a
backtracking procedure is performed in the next step

Step6: Using a backtracking procedure, determine the step-length «, ., as
equation (11).

Step7: Update the variables:

T
gk+lgk+1
Xk+2 = Xk+l + ak+1gk+l ) dk+2 = _gk+l +77k+1 T dk+1

k+1J k+1

set k =k +1and go to step2.
3. A new proposed Algorithm for solving problem (1)

In this section we are going to suggest another procedure for
computing an approximation of the Hessian of the function f at x, which

can be considered to get the step-size along the negative gradient for (NA)
algorithm for equation(10) which shows that if y(x,.,) > Othen the value of

function f is reduced .This enable us to determine a step-size «,,, as

defined in equation(11) using the new way to backtracking procedure. To
complete the algorithm we must consider the situation when »(x,,,)>0 if

f(%..)— f(x)+a.0,9, <Othen the reduction f(x,,,)— f(x,)is greater
that «,g,g,.In this case we use Biggs VM-Update as backtracking
procedure to make the step-size ¢,as ¢, +n,in such a manner that :this
suggests a

f (%) = F (%) + (e +7,)9, 9, >0
value forn, , as

77! _ VI;ryk (15)
k - “ee
AV Geq + 2V, Gy —B(F (X0) = F (%))
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and

1 .
— if n, >05
ne=Ang ...(16)
0 otherwise
where y,,=0,,—-9, ,k=0,12,.. and the new value of»(x,,;)>0 can
be computed as:

O L
o nggk (a +1,)

7 [f(X,)— (X)) + (e, +77k)nggk]

3.1. The new suggested Algorithm (New):

In order to increase the efficiency of algorithm (NA), cubic line search
rule is used to find the best value of the step-size used Biggs VM parameter
[2] is used as backtracking procedure in order to locate the new hybrid line
search to f as shown below:

Stepl: Select x, edomf and compute f;,g, and o, =arg miln(x0 -a,0,) -

Now compute x;, f,and g,setk =0.
Step2: Test for convergence, i.e if |g,,.[<1x10°then stop; otherwise

continue.
Step3: Compute the (scalar) approximation y(x,,,)of the Hessian of

function f at x,,, as:

2 1
7 (Xei1) =T——2[f (Xeia) — f(Xk)+aknggk]'

k Yk O
Step4: if y(X,,,) <O0then compute a new value for y(x,,)as
2 1

nggk (a +1,)

7(Xe1) = g[f(xk+1)_f(Xk)"'(ak"'nk)nggk] Where 7, is

given by
n = — VY _
Wi G T 2% 9 —6(T (%) = T(x))
Moreover,if 7, >0.5then 7, is given by

L it 505
Me =91
0 otherwise
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If available storage is exceeded then employ a restart option either with

k =N Orgg+1gk+1 > gl;r+lgk’
Step5: Update the variables:
Xk+2 = Xk+l + ak+lg k+11 dk-¢—2 =—0 ket 77k+1d k+1
Set k =k +1, go to step2

Now theoretically,to ensure that the new algorithm has a super-linear
convergence let us consider the following theorems in the next section.

3.2. The convergence analysis of the new suggested Algorithm:

In the following section let us consider the convergence analysis of
this proposed algorithm .Assume that f is strongly convex and the sublevel

set {xeDomf : f(x)< f(x,)} is closed .Strong convexity of f on S
involves the existence the constants m and M such that
ml <V*f(x) <Ml forall xeS. A consequence of strong convexity of f on

S is that we can bound f~as
1 2 1 2
f(X)——|VE(X)||. < " < f(X)———||Vf (X (17
(9= [Vt 0] (9= V1 ()] a7
For more details see [11],[12].

3.2.1. Theorem

For strongly convex function the new algorithm with backtracking has
a superlinear, convergence and

k-1
F)— 7 <(IC)(f (%)~ ) ..(18)
where 0<a’'<05 and O0<s<1 , C, =1-min{2ma’2ma's"}<1 and

p, =1 is an integer ( p;, =1,2,...) given by the backtracking procedure).

Proof:
First we can write f(x,,,) as:

(400 = F(4) - (@5 @y )oil. (19)

with a —a’y(x,,)/2is a concave function, and for all 0<a <1/y(X,.,),
a-a’y(X,.,)!2 > al2.Hence

2
gk”z

f(xk+1)S f(Xk)_%”gknj < f(xk)_a’a

The backtracking procedure terminates either with « =1 or with ¢ =s™ ,
where p, is an integer.

Therefore
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f (Xe) < F (%) —minda’, a's™ Y, [
Having in view that for strongly convex function
||gk||§ >2m(f(x,)—f") it follows that whereC, =1—min{2ma,2ma's™}.
Since C, <1 the sequence f(x,)with Biggs VM-parameter has a
superlinear convergent, like a geometric seriesto f~.

3.2.2. Theorem:

For every k=01,... , »(X,,,)generated by the New Algorithm, is
bounded away from zero.

Proof:
For every k=0,,... we know that f(x,,,)— f(x,)+e, 9,9, >0(Since

7(X,.,) generated by the new algorithm)
Therefore f(x,)— f(X.,) <9, 9, and hence we have:

2 2(f(x)—-f(X.)) _ 2 Zak(nggk)
P = a), 2 _20(9:0)
o Qy akz(nggk) Qy O‘kz(nggk)z

4. Numerical results:

In this section we report some numerical results obtained by a newly-
programmed FORTRAN. Implementation of the above gradient descent
algorithms for 24 test functions with different dimensions (specified in the
Appendix)[12].

The comparative performances of the algorithms are taken in the usual
way by considering both the total number of function evaluations (NOF)
and the total number of iterations (NOI).

In each case the convergence criterion is that the value of

|l9,,]| <1x10™° the cubic fitting technique, published in its original from by

Bunday [3] is used as the common linear search sub program for :

(1) The Original algorithm published by Neculai Andrei (NA).

(2) The new proposed algorithm(New)
The numerical results in Table (1) give the comparison between the (New)
and (NA) algorithms for different dimensions of test functions. Wile Table
(2) gives the percentage of improvements of NOI and NOF. The important
thing is that the new algorithm is very robust in many situations especially
for large—scale unconstrained optimization problems; When the iterative
process reaches the same precision.
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Table (1): Comparison between the new algorithms and Neculai Andrei
(NA) algorithm. Using different value of N .

Neculai Andrei algorithm (NA)

OF FU-l\rllczti:ll—ON NOI(NOF) new algorithm (NEW) NOI(NOF)
Test 12 | 36 | 360 | 1080 |4320] 8640 |10000| 12 | 36 | 360 |1080]4320[8640]10000
315|391 | 531 | 287 |989 | 873 |1118| 68 | 68 | 68 | 82 | 82 | 97 | 97

1 | GEN-Center) "l 51 |62 | 42 |102| 94 | 110 | 13|13 |13 |14 | 14 | 15 | 15
) GEN- | 26| 26|30 | 30 | 30| 30 | 30 |26 | 26 | 26 | 26 | 26 | 26 | 26
Shallow | 7 | 7|8 | 8 |8| 8 |8 |7 | 7|7 |7 |7]|7]|7

58 | 58 | 63 | 63 | 63 | 63 | 63 | 27 | 27 | 27 | 27 | 27 | 27 | 27

3 | GEN-Beal | 37| 17 | 15| 18 |18 | 18 |18 |7 | 7| 7| 7|7 |7 | 7
80 | 80 | 86 | 90 |90 | 90 | 90 |58 | 61|61 | 61|68 68| 68

4 |GEN-Powell| 53 | o3 | 25 | 26 | 26| 26 | 26 |16 | 17 | 17 | 17 | 19 | 19 | 19
|40 | 43 |43 | 43 | 43| 43 | 43 |27 | 27 |27 | 27 |27 | 27 | 27

5 | GEN-Cubic | 16| 13 |17 | 12 |11 | 11 | 11 |6 | 6| 6|6 | 6| 6| 6
| 21|22 21| 16 | 18| 20 | 20 |22 |19 |20 | 16 | 18 | 19 | 20

6 |EX-penality | " | o 15 | 4 | 4| 4 | 4 |l6|5|5|alalala
48 | 74 | 84 | 373 | 133 | 134 | 142 | 31|22 122 | 53 | 29 | 39 | 41

7| Nondquart | 13| 51 | 51 | 30 |28 | 31 | 32 | 8|6 | 31 | 15| 8 | 10 | 10
: 202020 20 [20] 20 20 |7 |7 7 |7 7|77

8 |EX-himmble| 5" | o1 6l e 15 | 6 | 6 |22 2 2|22 2
o | GEN.oso | 12| 173320 547 [1007] 1714 | 1599 102 |123[ 228 |526 | 905 1474 1597
P |17 | 29 | 70 | 129 |227| 382 | 374 | 16 | 26 | 54 |128207 | 327 | 347

20 | 21 | 21| 21 |21 ] 21 | 21 |18 (18] 18 | 18 | 18| 18 | 18

10| ETETF ' o1 6|16 6 |6| 6 | 6 |5|5|5|5|5]|5]| 5
) 8| 88| 8 | 8] 8 | 8 |8|8| 8 |8|8]| 8] 8

11| Digonalé | o | 5 | 5| 2 2| 2 |2 |22l 2 22|22
7 (7 (7| 17 (7| 17 | 17 |17 (7| a7 |17 |17 | 17 | 17

12 1 GEN-strail | "5 | 5 |5 | 5 |5 | 5 | 5 |5|5|5|5|5|5]| 5
13 | Full tesian | 29 |20 |20 [ 20 [20 [ 20 [20 [7[7[ 7 [7 7|77
6| 6|6| 6|66 |6 |2|2]l2]2]2]2]2

. 717 7] 7 |16] 16 | 16 |6|6] 6 | 6|6 | 6 6

4 Digonal7 | 5 | 5 | 5| 2 3| 3 [ 3 |2|2]2]2|2]2]2
) 6| 66| 6 | 6] 6 |6 6|66 6|6 6] 6

15 Digonal8 | o | 5 | o | 52 [ 2| 2 | 2 |2 2|2 2|22/ 2
. 22 |22 [ 25| 25 | 25| 25 | 25 | 16|16| 16 | 16 | 16 | 16 | 16

16 Sincos 7178 8|8| 8 | 8 |s5|s5|5|5]|5]|5] 5
17 EX- 20| 20 | 20| 20 | 20| 20 | 20 |14 |14| 14 | 14 |14 | 14 | 14
Denschnb 6 6 6 6 6 6 6 4 | 4 4 4 4 4 4

22 | 22 | 25| 25 | 25| 25 | 25 |16 |16] 16 | 16 | 16 | 16 | 16

18 | GEN-PSCL | 2| 7 | g | 5 |8 | 8 | 8 |5|5| 5 |5|5]| 5] 5
75 | 62 | 62 | 62 | 62| 66 | 66 |55|55] 55 | 55 | 55 | 55 | 55

19 | EX-BDL | 53 | 19 | 19| 19 | 19| 20 | 20 |16 |16] 16 | 16 | 16 | 16 | 16
20 sum 49 | 50 | 153 | 199 | 164 | 340 | 373 | 50 | 49| 95 | 175|124 | 161 | 239
7| 8 | 25| 35 | 23| 66 | 71 | 7 | 8| 18 | 27| 19| 24 | 45

32 32 32| 32 [32] 32 | 32 |27|27] 30 |30 |30 30 | 30

21 | BEXBD2 | 45|19 10| 10 |10] 10 |10 |8 |8| 9 |9 |lo]| o] 9
41 | 54 |1941]11450] 362 | 362 | 368 | 48 | 54 | 100 | 134 | 122 160 | 299

22 | BX-Sum2 | 2| 5" 1757736 |68 | 68 | 70 | 7 | 8| 18 | 24 | 19 | 24 | 50
11 | 16 | 37 | 55 |50 | 165 | 175 | 11 | 14| 24 | 50 | 57 | 44 | 44

23 |GEN-penall | 5" |\ ;" | g | 13 | 13| 35 | 37 | 3|3 | 6 |12 |14 | 11| 11
29 | 85 | 134 | 434 |201| 153 | 131 | 33| 35| 60 | 88 | 83 | 91 | 184

24 | GEN_penl2 | "s" | og | 44 | 142 | 65 | 49 | 41 | 9 |10] 15 |22 | 22| 23 | ;1
General TOTAL of |1100|1329(3706(13859(3422[ 4263 | 4428 | 700722 1058 | 14651768 2433 2869
244 | 291 | 405 | 574 | 674 | 874 | 784 |163|174| 256 | 342 | 405 | 536 | 621
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[ 2afunctions [ | [ [ [ [ [ [ [ [ [ [ [ |

Table (2): Percentage performance of the new proposed(NEW) algorithm
against Neculai Andrei (NA) algorithm for 100% in both NOI and NOF.

Cost
N 100% NEW
NOI 36.36
12 NOF 33.20
NOI 45.67
36 NOF 40.21
NOI 71.45
360 NOF 36.79
It is clear from the NOI 89.43 | two above Tables of
the numerical results | 1029 NOF 4042 | that the new proposed
algorithm is  very NOI | 4833 | efficient and superior
on the standard (NA) 4320 NOF 39.91 algorithm.  Namely
there are about (35- NOI | 42.93 | 89)% improves of
NOI for all | 8640 | NOF | 3867 | dimensions also there
are (20-40)% NOI 35.21 | improvement of NOF
for all iterations. 10000 | NOF | 20.79

5. Conclusions:

In this Paper, a new gradient descent algorithm is proposed in which
the step-length is computed by backtracking using a simple approximation
of the Hessian based on the function values in two successive points along
the iteration using Biggs [2] parameter.

Numerical experiments show that new algorithm converge
superlinearly and faster. It is more efficient than Neculai Andrei (NA)
algorithm in many situations. The new algorithm is expected to solve ill-
conditioned problems and it is clear that any procedure for step-length
computation does not change the superlinear convergence property of the
new algorithm. The convergence rate depends greatly on the condition
number of the Hessian of the minimizing function. For well conditioned
convex function both algorithms are doing well, while for ill-conditions
problem the new algorithm is doing well .Also, the initial step in
backtracking procedure of the new algorithm is lower than the
corresponding initial step of (NA) algorithm.

Finally, (NA) has a linear convergence rate while the new algorithm
has superlinear rate of convergence.
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6. APPENDIX

All the test functions used in this paper are from general literature
see[12],[5]:
1. Generalized Cantral Function:

n/4

f(x) = Z[(eXp(xm =3) = X4i5)" +100(Xy5_, — X4 1)" +(@rctan(Xy; —Xg;))* + X4i—3:|’

i=1
X, =[1.,2.2.2.,...1.2..2.2].

2. Generalized Shallow Function:
n/2

f(x)= Z(XzzH —X) + (= %y)%
i=1
X, =[-2.,-2.,..,—2.,-2.].
3. Generalized Beale Function:
f(x) = f:[l.S— Xo + (@ —x,) + [2.25— Xoiy (A — X2, )]2 + [2.625— Xp, (1— X3, )]2,

X, =[1.,0.8.,....1.,0.8]..

4. Generalized Powell function:
n/3

f(0) = B3 [t -sin(25%) -exp[-(:2% ~ 2)°]},
Xp =[0.1.2....,0.1.2]

5. Generalized Cubic function:
n/2

f(x) = Z[lOO(XZi — X5 1)% + @A —x5,)%],

X, =[-1.21...,-1.21].
6. Extended Penalty Function:

f(x)= Ii(xi -1)? +(Zn: x{ —0.25)°,

X, =[1..2.,..,n] .

7. Non dquart Function (cute):
n-2

f(X) = (Xl _X2)2 +Z(Xi +Xig t xn)4 +(Xn—1 _Xn)z’

X, =[1.,~L..1.,—11].

8. Extended Himmelblau Function:
n/2

f(x) = Z(xzzifl + X, —11)2 + (xZif1 +x2 - 7)2 ,
i=1

X, =[1.11.1,...1.11.1].
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9. Generalized OSP (Oren and Spedicato) Function:

f(x) :{Zn:ixf}z,
X, = [1.,...:1.].

10. Extended Three Exponential Terms Function:
n/2

f(X) = (EXP(Xyi_y + 3%, —0.1) +exp(Xy_; —3Xy —0.1) +exXp(—X,_;, —0.1)),

i=1
X, =[0.1,0.1,...,0.1,0.1].
11. Diagonal 6 Function:

(9 = 2 Exp(x) - L+ X)),

X, =[1.1...,1.1].

12. Generalized Strail Function:
n/2

f(x)= Z(Xzzi—l —Xy)? +100(1— X,;_,)? |

i=1
Xo =[-2.,...—2.].
13. Full Hessian Function:

f(x){ixi] 3% exp() 26— 10),
X, =[1.1.,..,1.1].

14. Diagonal 7 Function:

F(0) =3 (€xp0%) 26— X7).

X, =[1.1.,...,.1.1].
15. Diagonal 8 Function:

f(x)= Zn:xi exp(x,) —2x, — x>,

i=1

Xy = [1.1...1.1].
16. SINCOS Function:
n/2

f(x)= Z(XZZi—l + X3 + Xpi1 %) +8IN% (Xy ;) + €08 (Xy)
i—2

X, =[3.,0.1,...,3.,0.1].
17. Extended Denschnb Function :

46



An Efficient Line Search Algorithm for Large Scale Optimization

n/2

f(x)= Z(Xzi—l —2)% + (Xp0 —2)* X5 + (X +1)%,
i=1

X, =[0.1,0.1,...,0.1,0.1].

18. Generalized pscl Function:
n-1

O =D (¢ + X2 + X X;,,) +sin?(x) +cos’(x;) ,
i=2

X, =[3.,0.1...,3.,0.1].

19. Extended Diagonal BDI Function:

n/2

F0) =i =1) (x2y +x2 —2) +(@P(Xy ~ ) =Xy ),

X, =[0.1,0.1...,0.1,0.1].
20. Generalized Sum of Quatrics (SUM) Function:
F(x) =Y (x —i)*,

i=1

Xo =[2.,...,2.].
21. Extended Block-Diagonal BD2 Function:

n/2

f(x)= Z(Xzzi—l + X5 = 2.+ (@XP(Xyiy —1) + X5 —2.)%,
i=1

X, =[1.5,2.,...,1.5,2.].

22. Sum of Quatrics (SUM) Function:

F) =2 06",
i=1

X, =[1.1.,...,1.1].
23. Generalized Penall Function:

f(x)= Zn:(xi ~1)? +eps(x”* —0.25)°,

X, =[1.,2.,...,n] , eps =1.E-5.
24. Generalized Penal2 Function:

f(x)= Zn:eps(xi —~1)? +(x? —0.25)%,

X, =[1.,2.,...,n] , eps =1.E-5.
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