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ABSTRACT
The aim of this paper is to extend several known results on
GPF —rings. m-regular rings, PF-rings and GP-ideals are also
considered. Among other results we prove that: If R is a uniform
ring, then R is a GPF-ring if and only if every element of R is
either non-zero divisor or nilpotent.
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1. INTRODUCTION

Throughout this paper R denotes a commutative ring with
identity and module means unitary R-module. Recall that (1) an
ideal | of the ring R is said to be pure if for every acl, there
exists bel such that a = ab [2];(2) R is called =-regular if for
every aeR, there exists a positive integer n such thata" € a"Ra";
(3) An R-model M is called general right principally injective (
briefly GP-injective )if,for any 0=a <R, there exists a positive
integer n such that a"#0 and any R-homomorphism of a"R into M
extends to one of R into M [4]; (4) For any acR, ann(a) will
denote the annihilator of a; (5) For any ideal | of R, R/l is a flat
R-module if and only if for every ael, there exists bel such that
a=ab [6] ;(6) R is called quniform ring if every non-zero ideal of
R is an essential ideal;(7) Z(R) and J(R) will stand respectively
for the singular ideal of R, and the Jacobson radical of R.

2.GPF-RIGS (BASIC PROPERTIES)

Recall that a ring R is said to be a PF-ring if for every
acR, the principal ideal aR is flat R-module .

A ring R is called generalized PF-ring (GPF-ring) if for
any acR , there exists a positive integer n such that a"R is a flat
R-module. Clearly every PF-ring is a GPF-ring[2] .

Recall the following result of Naoum [5].
Lemma 2.1: A ring R is a PF-ring if and only if for every aeR

ann(a) is pure ideal of R.
In [2] AL — Ezeh proved that:

Lemma 2.2: A ring R is a GPF-ring if and only if for every a
eR, there exists a positive integer n such that ann(a") is a pure
ideal.
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In [1]Aritico and Marconi proved that:

Theorem2.3.Aring R is a PF-ring if and only if
ann(a) +ann(b)=R, whenever ab =0

The next results generalize Theorem 2.3

Theorem 2.4: Aring R is a GPF-ring if and only if there exists a
positive integer n, whenever a"b = 0, ann(a")+ann(b)=R.

Proof. Let R be a GPF -ring, and Let 0 = a R, then there exists
a positive integer n such that ann(a") is pure . For any b <R, if
a"b=0, we claim that ann(a") + ann(b) =R. Suppose that ann(a") +
ann (b) # R, then there exists a maximal ideal M containing
ann(a") +ann(b), since a"=0, then be ann(a") by purity of
ann(a"), there exists ce ann(a") such that b=bc. This implies that
1-ce ann(b)c M, but ce ann (@") < M, whence 1M which
contradicts M= R. Consequently ann(a")+ann(b)=R. Conversely,
assume that ann(a")+ann(b)=R where a" b=0.

In particular c;+c,=1 for some c;eann(a") and c,eann (b) .
Multiplying by b, we get bc;=b. Hence ann(a") is pure ideal.
Therefore R is GPF-ring.

Following [3], an ideal | of the ring R is said to be
generalized pure ideal (GP-ideal) if for every ac| there exists
b eI and a positive integer n such that a"=a" b.

The following theorem characterizes GPF-ring in terms of
GP-ideal.

Theorem 2.5: Let R be a GPF-ring then for every a eR, ann(a) is
a GP-ideal.

Proof. Let 0 #aeR, and let beann(a).Since R is a GPF-ring, then
there exists a positive integer n such that ann(b") is
pure(Lemma2.2). Applying Theorm2.5, we get
ann(b™+ann(a) =R. In particular there exists c;eann(b") and
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c;eann(a) such that c;+c,=1 multiplying by b" we have b" c,=b".
Therefore ann(a) is a GP-ideal of R.

Next we consider the singular ideal of GPF-ring.
Proposition 2.6 Let R be a GPF-ring. Then Z(R) is a nilideal.

Proof. Let a be a non —zero element of Z(R) then ann(a") is pure,
for some positive integer n. We claim that ann(a") Na"R=(0).Let
X eann (@")Na"R. Then x a"= 0 and x = a"r for some reR. On the
other hand, since ann(a") is pure then there exists y eann(a") such
that x=xy. Whence x=a"ry=ra"y=0, yielding ann (a") N a" R=0.
Since a"<Z(R) ,then ann(a") is an essential ideal of R. Whence it
follows that a" R= 0, thus a"= 0. Z(R), therefore, is a nilideal.

3. THE CONNECTION BETWEEN GPF - RINGS AND
OTHER RINGS

In this section we give further properties GPF-ring and the
link between GPF-rings and other rings.

We shall begin this section with the following result,
which gives the connection between GPF-ring and PF-rings.

Theorem 3.1: Let R be a GPF-ring, and let, J>=0. Then R/ is
PF-ring.

Proof. Let a+tJeR/J, acR. Since R is a GPF-ring, then there
exists a positive integer n such that ann(a") is pure. In order to
prove R/J is a PF-ring we need to prove that ann(a+J) is pure. Let
x+Je ann(a+J), then ax J. Since J?=0, we have (ax)?=a?x 2=0.
Whence x?eann(a?). But ann(a?) < ann (a") for n>1. On the other
hand, since ann(a") is pure, there exists yeann(a") such that x2
y=x2, and this implies that x?(y-1)=0. But [x (y-1)]*= x ?(y-1)>=0.
Thus x(y-1)eNcJ. Whence it follows that ( x+J )( y+J )= x+J
Since R/J is reduced,then ann(a"+J)=ann(a+J), whence it follows
that y+Jeann (a"+J )=ann ( a+J ) hence ann(a+J) is pure. R/J is,
therefore, a PF-ring.
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We now consider a necessary and sufficient condition for GPF-
ring to be m-regular.
Before stating this result, the following lemma is needed.

Lemma 3.2: For any acR, if ann(a") pure,
then ann (a") =ann (a"*%).

Proof. Obviously ann (a") < ann (a™?).

Let xe ann(a™?), then xa"!=0, which implies that xacann (a").
Since ann(a") is pure, there exists yeann(a") such that xa=yxa,
and this implies that xa"=yxa"=0. Hence xeann(a"). Therefore
ann(a"=ann(a").

Theorem 3.3: A ring R is & -regular if and only if R is a GPF-
ring with every maximal ideal is GP-ideal.

Proof. Let R be & -regular ring. Then for any aeR, there exists a
position integer n and beR such that a"=a?"b so 1-a"beann(a").
Now for any x eann(a"), x(1-a" b)=x, thus ann(a") is pure.
Therefore R is a GPF-ring.

Conversely, assume that R is a GPF-ring , and let 0 = a<R . then
there exists a positive integer n such that ann(a") is pure. We
claim that a" R+ann(a")=R. In fact, if not, there exists a maximal
ideal M containing a"R+ann(a"). On the other hand, since M is
GP-ideal , and a"eM , there exists beM , and a positive integer
m such that (a")=(a")™ b. Whence it follows that a"(1-b)=0, and
then we have 1-beann(a™). Applying Lemma 3.2, we get
ann(a")=ann(a"™). Whence 1l-beann(a"), yielding 1M which
contradicts M#R. Hence a"R + ann(a")=R, and R is, therefore,
7 -regular.

Our next result characterizes a uniform GPF-ring in terms of
nilpotent and non-zero divisor elements.

Theorem 3.4: Let R be a uniform ring. Then R is a GPF-ring if
and only if every element of R is either non —zero divisor or
nilpotent.
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Proof. Let R be a uniform GPF-ring, and let 0O#a<R, then there
exists a positive integer n such that ann(a") is pure. Now, for any
be ann(a"), there exists ¢ eann(a") such that b=bc. First we claim
that bRNann(c)=0. In fact, if not, let 0=xebRNann(c) then x=br
for some reR and cx=0. But cx=cbr=br=x=0, a contradiction. On
the other hand, since R is a uniform then either ann(c) =0 or
bR=0. If ann(c) =0, then a" c=0 gives a"= 0. Thus a is a nilpotent
element. Now, if bR= 0 then b=0, and hence ann(a")=0 .
Therefor, a is a non — zero divisor.

Conversely, for any aeR, if a is a non-zero divisor, then
ann(a")=0, which is pure. On the other hand, if a is nipoltent then
a™=0, for some positive integer m. So ann(a™)=R which is also
pure. Therefore, R is a GPF-ring

Finally we introduce the following result.

Proposition 3.5: Let R be a ring with every simple singular R-
module is GP-Injective. Then R is a GPF-ring.

Proof. Let 0OacR, and let a"b=0 for some positive integer n and
beR. Suppose that ann(a")+ann(b) =R, then there exists a
maximal ideal M containing ann(a")+ann(b). First suppose that M
IS not essential ideal of R, then M must be a direct summand, and
hence there exists an idempotent element Oze in R such that
M=ann(e). But a"b=0 gives a" ann(b) < ann(e) . Whence it
follows that a"e = 0, yielding ecann(a") < ann(e) which implies
that e=e?=0. Therefore M must be essential. Define f:a"R—R/M
by f(a"r)=r+M , for all reR. Now since R/M is GP-Injective, then
there exists ceR such that f(a"r)=c f (a"r), which implies that
1+M=f(a")=ca"+M. Whence 1-ca"eM and hence 1M which
contradicts M=R. Therefore ann(a")+ann(b)=R, where a"b=0.
Therefore R is a GPF-ring.
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