On sπ-Weakly Regular Rings

Raida D. Mahmood raida.1961@uomosul.edu.iq College of Computers Sciences and Mathematics University of Mosul Received on: 04/07/2006

Abdullah M. Abdul-Jabbar

abdullah.abduljabbar@su.edu.krd College of Sciences University of Salahaddin

Accepted on: 24/12/2006

ABSTRACT

A ring R is said to be right(left) $s\pi$ -weakly regular if for each $a \in R$ and a positive integer n, $a^n \in a^n R a^{2n} R (a^n \in R a^{2n} R a^n)$. In this paper, we continue to study $s\pi$ -weakly regular rings due to R. D. Mahmood and A. M. Abdul-Jabbar [8]. We first consider properties and basic extensions of $s\pi$ -weakly regular rings, and we give the connection of $s\pi$ -weakly regular, semi π -regular and π -biregular rings.

Key words: weakly regular rings , reduced rings , π -biregular rings.

حول الحلقات النتظمة بضعف من النمط ۶π

د.عبدالله محمد عبدالجبار	د.رائدة داؤد محمود
كلية العلوم	كلية علوم الحاسوب والرياضيات
جامعة صلاح الدين	جامعة الموصل
تاريخ القبول: 2006/12/24	تاريخ الاستلام: 2006/07/04
خص	المذ

يقال للحلقة R أنها يمنى (يسرى) منتظمة بضعف من النمط - $s\pi$ إذا كان لكل $R = a \ e$ و عدد صحيح موجب n و $a^n \in a^n \ Ra^{2n} R$. هذا البحث هو استمرار لدراسة الحلقات المنتظمة بضعف من النمط - $s\pi$ في المصدر [8] R. D. Mahmood و R. و المعلوم النمط - $s\pi$ و أعطاء العلاقة بين كما تم توسيع الخواص الأساسية للحلقات المنتظمة بضعف من النمط - $s\pi$ ، وتم أعطاء العلاقة بين الحلقات المنتظمة بضعف من النمط - $s\pi$ و الحلقات شبه المنتظمة النمط - π و الحلقات المنتظمة من النمط م- م و الحلقات المنتظمة من النمط - $s\pi$ م و الحلقات المنتظمة بضعف من النمط - $s\pi$ و الحلقات المنتظمة

. π- bi الكلمات المفتاحية: حلقة منتظمة بضعف , حلقة مختزلة , الحلقات المنتظمة من النمط . 1. Introduction

Throughout this paper rings are associative with identity. For a subset X of a ring R, the right annihilator of X in R is $r(X) = \{ r \in R : xr = 0, for all x \in X \}$. J(R), Y(R) and N will stand respectively for the Jacobson radical, right singular ideal of R and the set of all nilpotent elements. A ring

R is called right (left) s-weakly regular if for each $a \in R$, $a \in aRa^2 R$ ($a \in Ra^2 Ra$). This concept was introduced by V. Gupta [4] and W. B. Vasantha Kandasamy [10]. As a generalization of this concept the authors in [8] defined $s\pi$ -weakly regular ring that is a ring such that for each $a \in R$ and a positive integer n, $a^n \in a^n R a^{2n} R (a^n \in R a^{2n} R a^n)$. In the present work we develop further properties of $s\pi$ -weakly regular rings, and we give the connection of $s\pi$ -weakly regular rings with other rings. Recall that:

- (1) R is called reduced if it has no nonzero nilpotent elements.
- (2) According to Cohn [3], a ring R is called reversible if ab = 0 implies ba = 0 for a, b ∈ R. Obviously every reduced ring is reversible. It is easy to see that R is reversible if and only if right (left) annihilator in R is a two-sided ideal.

2. sπWR-Rings

In this section we continue to study $s\pi WR$ -rings and we establish relation between such rings, semi π -regular and π -biregular rings.

Definition 2.1[8]:

R is called right(left) $s\pi WR$ -ring if for each $a \in R$, there exists a positive integer n = n(a), depending on a such that $a^n \in a^n R a^{2n} R$ ($a^n \in R a^{2n} R a^n$). R is called $s\pi WR$ -ring if it is both right and left $s\pi WR$ -ring.

Recall that, a right ideal P of a ring R is said to be completely prime if for all a, $b \in R$ such that $ab \in P$, then either $a \in P$ or $b \in P$.

Proposition 2.2:

If R is a right $s\pi WR$ -ring and $r(a^n) \subset r(a)$, for every $a \in R$ and a positive integer n. Then every completely prime ideal of R is maximal.

Proof:

Let P be a completely prime ideal of R and J any ideal of R such that $P \subset J$. Then, there exists $x \in J$ and $x \notin P$. Since R is right $s\pi WR$ -ring, there exist b, $c \in R$ and a positive integer n such that $x^n = x^n b x^{2n} c$ and $x(1-b x^{2n}c) = 0$ (since $r(a^n) \subset r(a)$). So, $x(1-b x^{2n}c) = 0 \in P$. Since $x \notin P$ and P is completely prime ideal of R, so $(1-b x^{2n} c) \in P \subset J$, and hence $(1-b x^{2n} c) \in J$. Hence $1-b x^{2n} c + b x^{2n} c = 1 \in J$ and therefore, J = R. Consequently P is a maximal ideal of R.

Theorem 2.3:

If R is a right s π WR-ring and I is an ideal of R, then R/I is s π WR-ring.

Proof:

Let R be a right $s\pi WR$ -ring. Then, there exist $b,c \in R$ such that $a^n = a^n b a^{2n} c$, for some positive integer n. Now,

$$(a + I)^{n} (b + I) (a + I)^{2n} (c + I) = (a^{n} + I) (b + I) (a^{2n} + I) (c + I)$$

= $a^{n} b a^{2n} c + I$
= $a^{n} + I$.

Therefore, R/I is a right s π WR-ring. \blacklozenge

Now, the following result is given in [7] and [1].

Lemma 2.4:

Let R be a reduced ring. Then, for every $a \in R$ and every positive integer n,

(1) $r(a^n) = \ell(a^n)$. (2) $a^n R \cap r(a^n) = 0$. (3) $r(a) = r(a^n)$.

Theorem 2.5:

Let R be a reduced ring. Then, R is a right $s\pi WR$ -ring if and only if $R / r(a^m)$ is $s\pi WR$ -ring, for every $a \in R$ and a positive integer m. **Proof:**

Assume that R / r(a^m) is a right s π WR-ring, for every a \in R and a positive integer m. Now,

 $a^{n} + r(a^{m}) = (a^{n} + r(a^{m})) (b + r(a^{m})) (a^{2n} + r(a^{m})) (c + r(a^{m})).$

= $a^n b a^{2n} c + r(a^m)$. Then, $a^n - a^n b a^{2n} c \in r(a^m)$, this implies that $a^m (a^n - a^n b a^{2n} c) = 0$ and hence 1- $b a^{2n} c \in r(a^{m+n}) = r(a^n)$ since R is reduced. So, $a^n (1 - b a^{2n} c) = 0$ and $a^n = a^n b a^{2n} c$. Therefore, R is a right s π WR-ring.

Conversely, assume that R is a right s π WR-ring. Then, by Theorem 2.3, R / r(a^m) is an s π WR-ring. \blacklozenge

Next we consider the Jacobson radical, the right singular ideal of a and the set of all nilpotent elements N of right $s\pi WR$ -ring.

Theorem 2.6:

Let R be a right $s\pi WR$ -ring. Then,

- (1) J(R) = N
- (2) If R is a reduced, then Y(R) is a nilideal of R.

Proof:

- (1) Let $0 \neq x \in J(R)$. Then, there exist b, $c \in R$ and a positive integer n such that $x^n = x^n b x^{2n} c$. Then, 1- b $x^{2n} c$ is invertible. Therefore, there exists an invertible element u such that (1- b $x^{2n} c$) u = 1. Multiply from the left by x^n , we obtain $(x^n x^n b x^{2n} c) u = x^n$. Whence it follows that $x^n = 0$, so $x \in N$ and $J(R) \subseteq N$. Since $N \subseteq J(R)$. Thus, J(R) = N.
- (2) Let a be a nonzero element in Y(R). Then, r(a) is an essential right ideal of R. Since R is right sπWR-ring, there exist b, c ∈ R and a positive integer n such that aⁿ = aⁿ b a²ⁿ c. Consider r(aⁿ) ∩ b a²ⁿ R, let x ∈ r(aⁿ) ∩ b a²ⁿ R. Then, aⁿ x = 0 and x = b a²ⁿ t, for some t ∈ R. So, aⁿ b a²ⁿ t = 0, then aⁿ = 0. Thus, a²ⁿ = 0 and hence b a²ⁿ t = 0, yields x = 0. Therefore, r(aⁿ) ∩ b a²ⁿ R = 0. Since r(aⁿ) is a nonzero essential right ideal of R, then b a²ⁿ = 0 and hence a²ⁿ = 0. Thus, aⁿ = 0. So, Y(R) is a nilideal of R.

Recall that, a ring R is called right(left) semi π -regular [1] if for every a \in R, there exists b \in R and a positive integer n such that $a^n = a^n b$ and $r(a^n) = r(b)$ ($a^n = b a^n$ and ℓ (a^n) = ℓ (b)).

The following theorem gives the conditions of $s\pi WR$ -ring to be semi π -regular.

Theorem 2.7:

If R is a reversible, $s\pi WR$ -ring and $a^{2n} R = R a^{2n}$, for every $a \in R$ and a positive integer n, then R is semi π -regular.

Proof:

Let R be $s\pi WR$ -ring. Then, for every $a \in R$, there exist b, $c \in R$ and a positive integer n such that $a^n = a^n b a^{2n} c$. Since $b a^{2n} \in R a^{2n} = a^{2n} R$. So, $a^n = a^{3n} h c$, for some $h \in R$. This implies that $a^n = a^n a^{2n} t$ (set t = hc). If we set $y = a^{2n} t$, then $a^n = a^n y$. It only remains to show that $r(a^n) = r(y)$. Let $x \in r(a^n)$, then $a^n x = 0$ and $x a^n a^n t = 0$, so $x a^{2n} t = 0$ and x y = 0. Hence $x \in \ell(y) = r(y)$ and $r(a^n) \subseteq r(y)$. On the other hand, let $z \in r(y)$, then y z = 0and $a^{2n} r z = 0$, this implies that $a^n a^{2n} t z = 0$, so $a^n z = 0$, thus $z \in r(a^n)$ and $r(y) \subseteq r(a^n)$. Therefore, $r(a^n) = r(y)$ and R is a right semi π -regular ring in the same method we can easily show that R is a left semi π -regular.

A ring R is called π -biregular [9] if for any $a \in R$, R a^n R is generated by a central idempotent, for some positive integer n.

We begin by stating following lemma, which will be used in proof of our main result.

Lemma 2.8:

A ring R is π -biregular if and only if for every $a \in R$, R $a^n R \oplus r(a^n) = R$, for some positive integer n.

Proof:

See [9]. ◆

Proposition 2.9:

Let R be a reduced ring. Then, R is an $s\pi WR$ -ring if and only if R is a π -biregular ring.

Proof:

Assume that R is π -biregular ring. Then, by Lemma 2.8, $R = r(a^n) \oplus R a^n R$. Since R is reduced, then $r(a^n) = r(a^{2n})$ for every positive integer n and hence $R = r(a^{2n}) \oplus R a^n R$. In particular, $1 = b + t_1 a^{2n} t_2$, for some t_1 , $t_2 \in R$ and $b \in r(a^n)$. So, $a^n = a^n t_1 a^{2n} t_2$. Therefore, R is s π WR-ring.

Conversely, assume that R is $s\pi WR$ -ring, then for every $a \in R$, there exist $t_1, t_2 \in R$ such that $a^n = a^n t_1 a^{2n} t_2$, for some positive integer n. This implies that $a^n = a^n t_1 a^n a^n t_2$. So, $a^n = a^n t_1 a^n t$ ($t = a^n t_2$), for some $t \in R$. Thus, $a^n R = a^n R a^n R$. Also, by [8, Theorem 2.7], $R = r(a^n) \oplus R a^{2n} R$. Thus, $R = r(a^n) \oplus R a^n R$. So, by Lemma 2.8, R is π -biregular ring.

3. Commutative sπ-Weakly Regular Rings

In this section, all our rings are commutative. We discuss some properties of $s\pi$ -weakly regular rings.

We now introduce the following lemma, which may be used frequently in the sequel.

Lemma 3.1:

A ring R is local if and only if for any elements $r, s \in R$ such that r + s = 1 implies that either r or s is a unit.

Proof:

See [6]. ♦

Theorem 3.2:

Let R be a local, $s\pi$ -weakly regular ring. Then, every element in R is either a unit or nilpotent.

Proof:

Assume that R is a local ring and $a \in R$. Since R is $s\pi$ -weakly regular, there exist x, $y \in R$ such that $a^n = a^n x a^{2n} y$, for some positive integer n. So, $a^n (1 - x a^{2n} y) = 0$ and hence $a^n (1 - a^{2n} x y) = 0$. If $a^n = 0$, then a is nilpotent. If $1 - a^{2n} x y \neq 0$, and $a^n \neq 0$, then $1 - a^{2n} x y$ is a zero divisor, that is $1 - a^{2n} x y$ is non unit. Since $(1 - a^{2n} x y) + a^{2n} x y = 1$ by Lemma 3.1,

 $a^{2n} x y$ is a unit. This implies that a is a unit. If 1- $a^{2n} x y = 0$, then a is a unit. Which completes the proof. \blacklozenge

Proposition 3.3:

Let R be $s\pi$ -weakly regular ring. Then, each element of R is either a unit or zero divisor.

Proof:

Let a be a non zero divisor in R and R is $s\pi$ -weakly regular, there exist elements x, $y \in R$ and a positive integer n such that $a^n = a^n x a^{2n} y$. So, $a^n (1 - x a^{2n} y) = 0$ and hence $a^n (1 - a^{2n} x y) = 0$. Since a is a non zero divisor, then a^n is nonzero divisor. Therefore, $1 - a^{2n} x y = 0$, which implies that $a^{2n} (x y) = 1$. Hence $a^{2n} x y = a (a^{2n-1} (x y)) = 1$. Thus, a is a unit. \blacklozenge **Theorem 3.4:**

If P is a prime ideal of a ring R and R / P is $s\pi$ -weakly regular ring. Then, P is a maximal ideal.

Proof:

Let $a \in R$. Then, $a + P \in R / P$, since R / P is $s\pi$ -weakly regular, there exist b + P, $c + P \in R / P$ and a positive integer n such that

 $a^{n} + P = (a^{n} + P) (b + P) (a^{2n} + P)(c + P)$

 $a^n + P = a^n b a^{2n} c + P$. So, $a^n - a^n b a^{2n} c \in P$ and hence $a^n (1 - b a^{2n} c) \in P$. Since $a^n \notin P$, then $(1 - b a^{2n} c) \in P$, gives

 $1 + P = b c a^{2n-1} a + P$

= (b c a^{2n-1} + P) (a + P), this shows that a + P has an inverse. Thus, R/P is a division ring. Whence P is a maximal ideal.

Corollary 3.5:

If R is an $s\pi$ -weakly regular ring, then every prime ideal of R is maximal.

Proof:

Let P be a prime ideal of R. Since R is $s\pi$ -weakly regular ring, then by Theorem 2.3, R/P is $s\pi$ -weakly regular. Thus, by Theorem 3.4, P is a maximal. \blacklozenge

Lemma 3.6:

If I is a primary ideal, then \sqrt{I} is prime.

Proof:

See [5]. ◆

Lemma 3.7:

Let I be an ideal of R. If \sqrt{I} is a maximal ideal of R, then I is primary ideal.

Proof:

See [2]. ◆

Theorem 3.8:

If R is s π -weakly regular ring and I is an ideal of R, then I is primary if and only if \sqrt{I} is prime.

Proof:

If I is primary, then by Lemma 3.6, \sqrt{I} is prime.

Conversely, suppose that \sqrt{I} is prime. Since R is s π -weakly regular ring, then by Corollary 3.5, \sqrt{I} is maximal. Therefore, by Lemma 3.7, I is primary.

The following result is the relationship between $s\pi$ -weakly regular ring with it is ideals by adding the condition that every ideal of R is completely semi-prime.

Theorem 3.9:

If every ideal of R is completely semi-prime, then R is s π -weakly regular if and only if for each ideal I of R, I = \sqrt{I} holds.

Proof:

Let R be s π -weakly regular. It is obvious that $I \subseteq \sqrt{I}$. Now, let $b \in \sqrt{I}$, then $b^n \in I$ and hence $b^{2n} \in I$, for some positive integer n. Now, $b^n = b^n t_1 \ b^{2n} t_2$, for some $t_1, t_2 \in R$. Since $b^n \in I$ and every ideal of R is completely semi-prime, then $b \in I$. Therefore, $\sqrt{I} = I$.

Conversely, assume that $I = \sqrt{I}$, for each ideal I of R. If we set $I = a^n R a^{2n} R$, for some positive integer n. Therefore, $a^n R a^{2n} R = \sqrt{a^n R a^{2n} R}$. Now, $a^{3n} \in a^n R a^{2n} R$, then $a^n \in \sqrt{a^n R a^{2n} R} = a^n R a^{2n} R$. So, $a^n \in a^n R a^{2n} R$. $a^{2n} R$. Whence R is s π -weakly regular.

REFERENCES

- [1] Al-Kouri M. R. M. (1996), On π -regular rings, M. Sc. Thesis, Mosul University.
- [2] Burton, D. M. (1967), Introductuin to Modern Abstract Algebra, Addison-Wesley Publishing Company, Inc.
- [3] Cohn P. M. (1999), Reversible rings, Bull. London Math. Soc., 31, Pp.641-648.
- [4] Gupta, V. (1984), A generalization of strongly regular rings, Acta. Math. Hung., vol. 43 (1-2), Pp. 57-61.
- [5] Hungerford, T. W.(1974), Algebra, Holt Rinehart and Winston, Inc.
- [6] Lambek J. (1966), Lectures on rings and modules, Blaisdell Publishing Co., London.
- [7] Mahmood, A. S. (1990), On von Neumann regular rings, M. Sc. Thesis, Mosul University.
- [8] Mahmood R. D. and Abdul-Jabbar A. M., sπ-weakly regular rings, Accepted In Raf. J. Of Comp. Sc. And Math.
- [9] Naoum, F. S. (2004), On π -regular rings, Ph. D. Thesis, Mosul University.
- [10] Vasantha Kandasamy, W. B. (1993), s-weakly regular group rings, Arch. Math. (BRNO), 39-41.