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This study presents a new algorithm for effectively solving the nonlinear fractional
Korteweg-de Vries-Burger equation (NFKDV-B) using a hybrid explicit finite difference
technique with the Adomian polynomial (HEFD). The suggested technique addresses the problem
of accurately solving the FKDV-B equation with fractional nonlinear space derivatives in
numerical solutions. Numerical results are obtained by comparing the exact solution with absolute
and mean square errors. The fractional time and space derivatives are estimated using two widely
used techniques: the Caputo derivative and the shifted Grinwald-Letnikov (G-L) formulas.

Using a test problem to asses the HEFD method accuracy against the exact solution and
the conventional explicit finite difference (EFD) method. The results exhibit excellent agreement
between the approximate and exact solutions at different time values. The findings highlight the
effectiveness of the proposed method across a range of fractional derivative values when

compared to the exact solution and conventional explicit finite difference methods.
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1. INTRODUCTION

Fractional differential equations (FDEs) and their
applications in various branches of science and engineering
have attracted increasing attention in recent years [1]. FDEs,
including fractional derivatives and integrals, provide a
robust mathematical framework for understanding complex
physical and chemical processes [2]. Fractional derivatives
have applications in diverse areas, such as fractal theory,
quantum economics, fluid dynamics, viscoelasticity, and
control systems [3].

Our research specifically focuses on the nonlinear fractional
Korteweg-de Vries-Burger equation (NFKDV-B), which
extends the well-known Korteweg-de Vries-Burger equation
by incorporating fractional derivatives [4]. This equation
arises from studying various physical phenomena that exhibit
nonlinearity and dispersion effects. The introduction of
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fractional derivatives allows for the modeling of nonlocal
behavior and memory effects, enhancing the accuracy of the
representation of complex systems [5].

The FKDV-B equation can be expressed mathematically as:
u?+euuf+uu§f+nuzfx=0,0<a,BSl. @))]
where o and B represent the order of fractional derivatives,
u(x, t) represents the dependent variable, and ¢, u, and n are
coefficients governing the strengths of the nonlinear,
dispersive, and dissipative terms, respectively[6].

The FKDV-B equation exhibits intriguing mathematical
properties and dynamics, supporting various solution types,
including solitary waves, compactions, and localized
structures[7]. Due to their utility in characterizing wave
phenomena in fluid dynamics, nonlinear optics, and plasma
physics, these solutions have attracted great attention [8].
The fractional derivatives make analytical solutions for the
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FKDV-B equation difficult. Thus, numerical methods and
approximations are necessary for solving the equation[9].
The finite difference[10], spectral, and fractional derivative-
specific numerical approximations are used[11]. The
Adomian decomposition method (ADM) has become famous
for solving fractional differential equations (FDES).
Decomposing the FDE into simpler sub-problems allows this
method to approximate solutions efficiently [12].

FDEs model complex phenomena because fractional
differentiation orders capture nonlocal and memory effects in
system  dynamics.  Fractional derivatives in the
decomposition process allow the ADM to handle these
unique characteristics[13]. The ADM relies on fraction
differential equation specific Adomian polynomials. These
numerical methods reveal the dynamics of the FKDV-B
equation, helping us understand its complex behavior and
model complex physical systems.

In this research, we propose a new hybrid method that
combines the finite difference method with the Adomian
polynomial to address the nonlinear term in the FKDV-B
equation. This hybrid technique provides an innovative
treatment for handling the nonlinearities present in the
equation, enhancing the accuracy and efficiency of the
solution.

2. Main Concepts

Caputo derivative and the shifted G-L formula are widely
utilized for approximating fractional derivatives. In the
shifted G-L formula discretizes the derivative operator
through  finite  differences, facilitating  numerical
approximations. Conversely, the Caputo derivative defines
the fractional derivative as an integral of the function's
derivative, effectively capturing the behavior associated with
fractional orders. These methods are instrumental in
accurately modeling nonlocal and memory effects within
fractional calculus applications [14].

2.1 Finite Difference Method.

The finite difference technique is a widely used numerical

method for approximating derivatives and solving

differential equations. It involves discretizing the domain of
interest into a set of grid points and replacing the derivatives
in the original equation with finite difference
approximations. Now, Let H represent the spatial mesh size
where H = (L — a)/n, and 7 = t/m be the amount of time
increase (time step size) write them as: x; = a +iH,7; =
jTui =u(x,t) for i=0,1,..,n and j =0,1,..,m. In

Fractional Derivative orders need to use the following

formulas:

- The forward finite difference formula with the Caputo
derivative is used to approximate the time-fractional
derivative [15]

6“u(x,t) T~

at*  r(2- a)zf 0
with setting b; = (j + 1)1 @

u(xl-,tk+1 j)—u(xi,tk_j)]. ...(2)

1 (Z
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- For fraction space derivatives use the standard G-L
formula as following[14] :

BY _ 1 i+l
(ux)i _H_[;Zk ng L k+1°

..(3)

2.2 The Adomian Polynomials:

The Adomian polynomials can be determined for all
nonlinearities [13]. In this nonlinearity, the general formula
of Adomian polynomials 4; yields:

4= 5oz, 2 w)| =
[dm (Zmo/llu (x, t)) DB(Z‘”O/P u; (x, t))] i>0...(4)

Where Df represents the S order derivative . For easier
computations using the Maple software to get as many
polynomials as we need :

Ay = uODfu0

A = ulDqu + uODfu1

A, = uszuO + ulDfu1 + uOD,'fu2

Az = u3Dfuo + uszu1 + ulDfuz + uonu3

In generals :

i .
A, = (Z,‘;:,- T Dfu{‘1+">. ...(5)
n=0

3. Methodology

In this section, we proposed the HEFD to get numerical
aproximation to Eqution (1). The HEFD method which has a
tretment for the fraction nonlinear term in FKDV-B equation
as will derive its formula and an algorithm for it.

3.1 Mathematical Formulation of the Proposed Method:
The FKDV-B Eqution (1) approximated at the mesh point
(xi, Tj4+1) as follows:

First replacing the time-fractional derivative in Eqution (1) by
Caputo derivative (2) in the forward finite difference formula.
In the second and third terms the fractional space derivatives
are approximated by the standard G-L formula (3) as follows:

()’ ..(6)

(uxxx3ﬁ)j =$Z;c+10gk Ui _jt1r (1)
The nonlinear term is approximated using the Adomian
polynomials formula (5) by replacing the derivative in the
term by the standard G- L formula (3) as follows :

Forj=0 , Ay = (u0)! (G5 Z6% 9 () _ysr)
Forj=L 4 = ()} (—z&:logk Wol s ) +
(wo)! G T 98 (W) ]_in)

For =2, 42 = ()] (55 2% 96 ()]s +

i (1
W) (552 95 )l sy ) + @od! (5 b 08 )y )-
And so on. In general

=L yi+1 2B, j
- HzBZk 09k Wi—j+1-
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j— 1
Ay = T o) (52 gl i), (8
Now by compensation equations (2,6,7) and (8) in equation
1) Produce :
F(Tz o bk[u(xl,‘r]+1 k) u(xi,‘rj_k)] +
e X 0(u)’ *"“( ST gl iy, ) +
Mﬁz;cﬂo gk k41 nﬁz;cﬂo giﬁ l] k+1°
By simple calculationsand let 9 =T'(2 — ) t%:
uxi, 7j41) = ulxo 7)) = oy befu(xi j1-4) —
ux, 7o)] - wz L) (5T gl i) -

9
up T g u o ul -(10)

(9)

9
L k+1 _nHTBZ?lng i—fe+1
Formula (10) represent the Hybrid explicit finite difference
technique with Adomian polynomial for nonlinear term.

3.2 Algorithm of Hybrid Method:

Input: a, B, e, pandn , number of space fragmentation
n and for time m.

Step 1: Find the values of space step size H = (L — a)/n,

. . t
and time step size T = -

Step 2: Evaluate 9 =T(2 —a) 1%, nr, =
9

HTB .

Step 3: Compute the initial condition fori = 0,1,2,...,n
ux,0) =uy(x) , a<x<L.

Step4:Forall j =1,23,...,m—1.

Step5:Set i =1,3,...,n

SetA; =0; A, =0; A;=0; A, =0;A; = 0; A = 0.

Step 6: Compute forall k = 0,1,2, ..., i + 1

Ay = Ay + (mDF x M

AZ = A2 + (_1)k

Ay = A+ (_1)k

Ay =AMy + u’l k+1°

As = As + (AA,) .
Step 6: Compute fork = 1,2, ...,j + 1.
As = Ao + ((k + D — k29 [u(xi, taa—i) — ulxi7io)] -
Step 7: Use the formula in equation (10) to evaluate the
numerical solution of equation (1):
u(xi,TjH) = u(xl-,rj) —Ng — 9 Asg — pIA,
Step 8: Print the numerical solution u(x, t).

2o =2 and
—F T2 = gan

T3 =

l —-k+1
(2B) ((25) 1)..((2B)- k+1)
k! l k+1 "
(3B) (BB)- 1) (BB)—k+1) o
k! l —-k+1"

4. Numerical Application.
The exact solution of the FKDV-B equation (1) proposed by
Cevikel[6]:

_12bv* bv?

U(x,t) = 25u

) vxB . 6v3 t& [ vxP . 6v3 t&
%e SUT(+B) "125u2 T(1+a) ) 4 p4c e \SHTA+B) 12542 T(1+a)

xPB 6v3 t%
R (sur(1+6) m)

. (11)
)

where b and c are arbitrary parameters, I'(-) is the gamma
function. In Tables 1 and 2, compare the numerical results of
the EFD method and the HEFD method with the exact
solution by using the absolute error (ABSE) and mean square
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error (MSE)[16]:
ABSE = |U;(x,t) — u;(x, t)|.

Yo Ui t)—uy(x, f))2
MSE =

Taking the FKDV B equatlon as in the form equation (1)
with

, - 6v3 t%
_12bv" "\12542 T(1+a)
_ 250
u(ar t) - 6v3 ta

2 )spsc o (mirarm)
%e 12502 T(1+a) ) 4 pyc e \12502 T(A+a)

v LB 3 @
_12bv e 5ul‘(1+8) 1zsu2 r(i+a)
250

u(L,t) =

)
|
112)
)

2 vLB 6v3 t% _ vLB ov3 t&
%e SuT(A+B) 1252 T(A+a)) 1 pyc ¢ \SHTA+B) 12542 T(1+a)

and the initial condition:
: At
_12bvZ T\SuTG+B)

u(x,0) = 2on

O S 2
When equation (1) is solved by using the formula in Equation
(10), the results are shown in Tables 1 and 2 . In all
computations we fixed b=c=10, e=—-6,u=3,1=
6,a =0 and L = 40, taking various values of a and 8 and
at different times, so we focus on the effectiveness of the
proposed technique by comparing it with EFD method and
the exact solution. All computations evaluate using the
Matlab 2021a software.

Table 1. Compares the HEFD and EFD Methods with
the Analytic Solution with values of « = 0.75,8 = 0.25 and various times

,a<x<L. .(13)

Time 0.5 Time=1.0 Time=1.5
X | ABSE HEFD ABSE EFD | ABSE HEFD ABSEEFD | ABS HEFD  ABSE EFD
0 0 0 0 0 0 0
4 | 5.0918E-04 5.6682E03 | 19350E-04 8.7712EL3 | 14742E03  1.0524E02
8 | 5.3600E-04 5.3171E03 | 8.4678E-04 8.2486E03 | 3.0737E03  9.9340E03
12 | 5.5107E-04 5.0656E03 | 12677E-03 7.8759EL03 | 4.0799E03  9.5136E03
16 | 5.6052E-04 4.8717E03 | 1.5658E-03 7.5896EL3 | 4.7798E03  9.1907E03
20 [ 5.6703E-04 4.7152E03 | 1.7891E-03 7.3587E03 | 5.2973E03  8.9304E03
24 | 5.7184E-04 4.5846E03 | 19630E-03 7.1664E03 | 5.6961E03 8.7135E03
28 | 5.7561E-04 44730E03 [ 2.1022E-03 7.0020EL3 | 6.0127E03  8.5279E03
32 | 5.7864E-04 4.3748E03 | 2.2163E-03 6.8493E03 | 6.2692E03  8.33522EL3
36 [ 5.9256E-04 4.1903E03 | 2.3209E-03 6.4374E03 | 6.5544E03  7.8352E03
40 0 0 0 0 0 0
MSE | 15294E-04 13166E03 | 4.6874E-04 2.0480E03 | 13788E03  2.4796E03

Table 2. Compares the HEFD and EFD Methods with
the Analytic Solution with values of « = 0.5, = 0.5 and various times

Time 0.5 Time=1.0 Time=1.5
X | ABSEHEFD ABSEEFD | ABSE HEFD ABSEEFD | ABS HEFD  ABSE EFD
0 0 0 0 0 0 0
4 | 1.7360E-03 4.2254E03 | 42372E-04 5.5302E03 | 1.0368E03  64541E03
8 | 13924E-03 3.1280E03 | 3.7567E-04 4.2850ED3 | 22014E03  5.1445E03
12 | 12442E-03  25047ED3 | 53173E-04 3.5692EL3 | 2.3299E03  4.3780ED3
16 | 1.1650E-03 2.0881E03 | 4.7981E-04 3.0815E03 | 2.1377E03  3.8464E03
20 | 1.1140E03 1.7844E03 | 3.5542E-04 27176E03 | 1.8407E03  34427ED3
24 | 1.0753E-03 1.5503E03 | 2.1063E-04 2.4299E03 | 1.5205E03  3.1181E03
28 | 1.0425E-03 13624E03 | 6.7525E05 2.1932E03 | 1.2107E03  2.8464E03
32 | 1.0114E03 12062E03 | 6.3917E-05 19895E03 | 9.2579E04  2.6094E03
36 | 1.0091E-03 1.0263E03 | 2.0013E-04 1.7310E03 | 6.6542E04  2.2980E03
40 0 0 0 0 0 0
MSE | 33258E-04 63134E04 | 93287E-05 8.9180E04 | 44892E04 1.0903E03
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The numerical results obtained from Tables 1 and 2
reveal that the hybrid approach employed in this study
surpasses the explicit finite difference method in terms
of accuracy and efficiency. Specifically, the hybrid
approach demonstrates superior performance when
utilizing the values of « = 0.75 and 8 = 0.25 for time
values 0.5, 1, and 1.5. Moreover, the advantageous
properties of the hybrid approach are maintained even
when applying @ = 0.5 and g = 0.5 , as observed in
Table 2. These findings highlight the effectiveness of
the hybrid approach in effectively handling the
nonlinearities of the equation, resulting in precise and
efficient solutions.

Q,.‘ Exact
h - -EFD
0108 1Y «~HEFD

0408 |\

e | T

Solytions
<]

0.102

01F

0.098
0

10 15 25 30 35 40

x-Bis
Figurel. HEFD and EFD with Analytic solution a =
0.9 and B = 0.1at Time=0.5

& -EFD

0.1
Exact
+-HEFD

Solutions
=
=1
8

0.06 b \‘e'f

o 5 10 15 20 25 30 35 40
X-axis

Figure2. HEFD and EFD with Analytic solution a =
0.5and 8 = 0.5at Time 1

Exam-
* & -EFD
o1y - ~HEFD

0 5 10 B xqs B 30 35 40

Figure 3. HEFD and EFD with Analytic solution @ =
0.25and f = 0.9 at Time=0.8

Furthermore, the comparison of the results
obtained from the hybrid technique, the explicit
method, and the exact solution can be observed in
Figures 1, 2, and 3 at different time instances,

considering various valuesof a and 8 (¢ > B, a = 8,
and a < ). These figures visually represent the
behavior and performance of the solutions generated by
the two methods. Additionally, Figures 4, 5, and 6
illustrate the overall behavior of the solutions across the
entire domain when g = 0.1 and a = 0.9. Analyzing
these figures enables a comprehensive assessment of
the hybrid technique's accuracy, efficiency, and
suitability in different scenarios.

Hybrid explicit Solution

© Solutionse

2

o, Pl

Time0s <7 Xeaxis
08 S~

Figure 4. HEFD method with @ = 0.9 and § = 0.1

Explicit Solution

o Solutions®

0.4 ~ 20

Time 06 o 10 X-axis
08

Figure 5. EFD method with & = 0.9 and 8 = 0.1

Exact Solution

Solutions

Figure 6. Exact Solution with @ = 0.9 and 8 = 0.1

5. Conclusion

In this research, a new hybrid technique proposes to combine
the finite difference method with the Adomian polynomial to
address the nonlinear term in the FKDV-B equation. This
hybrid approach provides an innovative treatment for
handling the nonlinearities present in the equation, enhancing
the accuracy and efficiency of the solution. By leveraging the
strengths of both methods, we aim to overcome the
limitations of traditional numerical techniques and obtain
more accurate approximations for the FKDV-B equation.
The finite difference method provides a robust framework for
discretizing the equation in space, while the Adomian
decomposition method polynomial offers a systematic and
efficient approach for solving the resulting linear sub-
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problems.

Acknowledgement
The research is supported by the College of Computer
Sciences and Mathematics, University of Mosul, Republic of
Iraq.

References

[l] M. L. Troparevsky, S. A. Seminara, and M. A. Fabio, “A review on
fractional differential equations and a numerical method to solve some
boundary value problems,” Nonlinear Syst. Asp. Recent Appl., 2019.

[2] R. Hilfer, Applications of fractional calculus in physics. World
scientific, 2000.

[3] B.Miller, K.S. and Ross, An introduction to the fractional calculus and
fractional differential equations, 1st ed. New York: Wiley-
Interscience, 1993.

[4] L Podlubnv, “Fractional differential equations academic press,” San
Diego, Bost., vol. 6, 1999.

[5] M. S. Hashemi and D. Baleanu, Lie symmetry analysis of fractional
differential equations. CRC Press, 2020.

[6] A. Cevikel, “New exact solutions of the space-time fractional KdV-
burgers and nonlinear fractional foam drainage equation,”Therm. Sci.,
vol. 22, no. Suppl.1, pp. 15-24, 2018, doi:10.2298/TSCI170615267C.

[71 H. M. Ahmed, “Numerical Solutions of Korteweg-de Vries and
Korteweg-de Vries-Burger’s Equations in a Bernstein Polynomial
Basis,” Mediterr. J. Math., vol. 16, pp. 1-28, 2019.

[8] R. Shah, U. Farooq, H. Khan, D. Baleanu, P. Kumam, and M. Arif,
“Fractional view analysis of third order Kortewege-De Vries
equations, using a new analytical technique,” Front. Phys., vol. 7, p.
244, 2020.

[91 M. M. Khader and K. M. Saad, “Numerical studies of the fractional
Korteweg-de Vries, Korteweg-de Vries-Burgers’ and Burgers’
equations,” Proc. Natl. Acad. Sci. India Sect. A Phys. Sci., vol. 91, pp.
67-77, 2021.

[10] A. Yokus, “Numerical Solutions of Time Fractional Korteweg--de
Vries Equation and Its Stability Analysis,” Commun. Fac. Sci. Univ.
Ankara Ser. Al Math. Stat., vol. 68, no. 1, pp. 353-361, 2019.

[11] L. Zada and 1. Aziz, “The numerical solution of fractional Korteweg-
de Vries and Burgers’ equations via Haar wavelet,” Math. Methods
Appl. Sci., vol. 44, no. 13, pp. 10564-10577, 2021.

[12] K. Diethelm and N. J. Ford, “Analysis of fractional differential
equations,” J. Math. Anal. Appl., vol. 265, no. 2, pp. 229-248, 2002.

[13] J. H. de S. Prates and D. M. Moreira, “Fractional derivatives in
geophysical modelling: Approaches using the modified Adomian
decomposition method,” Pure Appl. Geophys., vol. 177, no. 9, pp.
43094323, 2020.

[14] C.LiandF. Zeng, “Finite difference methods for fractional differential
equations,” Int. J. Bifurc. Chaos, vol. 22, no. 04, p. 1230014, 2012.

[15] P. Zhuang and F. Liu, “Implicit difference approximation for the time
fractional diffusion equation,” J. Appl. Math. Comput., vol. 22, pp. 87—
99, 2006.

[16] J. H. Mathews and K. D. Fink, Numerical methods using MATLAB,
vol. 4. Pearson prentice hall Upper Saddle River, NJ, 2004.

109

Korteweg-De Aata Jad diagall dugiiall cild gl 43
Al & 4y sl Viries-Burger

$ 9 dllana paMAl daa Guaallie aainall
Jha gall Aaala / clpdaly ) g gaalal) o gle A4
drekhlass-alrawi@uomosul.edu.iq  almutasim@uomosul.edu.iq

16/8/2023 :Jsll Gl 25/6/2023 :p30u) gl

ailal)
Korteweg-de Aatas Jal sa0a d0a )53 A all oda a8
L iy Jd 5% (NFKDV-B) kil 2 Vries-Burger
Aa yitall Al (e 50l 3 gan Badie g Aimgall dny el Apginall il 5 3l
i) A 353 53 FKDV-B aalaad dpasall Jslall 483 e lla
Glaall thall Clas A (e aall il e Jgasal)
eliadl) Cliidia g 4y yusll (e 3 ABiGa Gy oy | e i) Unddl o gia s
Sl Jde o Grinwald-Letnikov 4ssas Caputo —a s aladinly
Ay pall gl Dl 5 Hall A8y Hha g da gumall Jal) ae Leti jlia Al Caafd
e ol Adliae o vie 488N g A TN Jolall cp e g s il jelas
Cliital Ailide a8 die Aa el Al Allad o s puall gl b
Aoy prall dpgiall il 5 il 43 Hla 5 o sanaall Jally L Jlia 5 4y sl
2220 {NFKDV-B dabes ¢ Zingall dugiiall il g jall ¢ dsalidal) cilalsl)
.Griinwald-Letnikov dasa ¢ Caputo iy a5 ¢l sal 3 g0


mailto:drekhlass-alrawi@uomosul.edu.iq

