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This study presents a new algorithm for effectively solving the nonlinear fractional 

Korteweg-de Vries-Burger equation (NFKDV-B) using a hybrid explicit finite difference 

technique with the Adomian polynomial (HEFD). The suggested technique addresses the problem 

of accurately solving the FKDV-B equation with fractional nonlinear space derivatives in 

numerical solutions. Numerical results are obtained by comparing the exact solution with absolute 

and mean square errors. The fractional time and space derivatives are estimated using two widely 

used techniques: the Caputo derivative and the shifted Grünwald-Letnikov (G-L) formulas. 

Using a test problem to asses the HEFD method accuracy against the exact solution and 

the conventional explicit finite difference (EFD) method. The results exhibit excellent agreement 

between the approximate and exact solutions at different time values. The findings highlight the 

effectiveness of the proposed method across a range of fractional derivative values when 

compared to the exact solution and conventional explicit finite difference methods.
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1. INTRODUCTION  
Fractional differential equations (FDEs) and their 

applications in various branches of science and engineering 

have attracted increasing attention in recent years [1]. FDEs, 

including fractional derivatives and integrals, provide a 

robust mathematical framework for understanding complex 

physical and chemical processes [2]. Fractional derivatives 

have applications in diverse areas, such as fractal theory, 

quantum economics, fluid dynamics, viscoelasticity, and 

control systems [3]. 

Our research specifically focuses on the nonlinear fractional 

Korteweg-de Vries-Burger equation (NFKDV-B), which 

extends the well-known Korteweg-de Vries-Burger equation 

by incorporating fractional derivatives [4]. This equation 

arises from studying various physical phenomena that exhibit 

nonlinearity and dispersion effects. The introduction of 

fractional derivatives allows for the modeling of nonlocal 

behavior and memory effects, enhancing the accuracy of the 

representation of complex systems [5].  

The FKDV-B equation can be expressed mathematically as: 

𝑢𝑡
𝛼 + 𝜀 𝑢𝑢𝑥

𝛽
+ 𝜇𝑢𝑥𝑥

2𝛽
+ 𝜂𝑢𝑥𝑥𝑥

3𝛽
= 0 , 0 < α , β ≤ 1.             (1) 

where α and β represent the order of fractional derivatives, 

𝑢(𝑥, 𝑡) represents the dependent variable, and 𝜀, 𝜇, and 𝜂 are 

coefficients governing the strengths of the nonlinear, 

dispersive, and dissipative terms, respectively[6]. 

The FKDV-B equation exhibits intriguing mathematical 

properties and dynamics, supporting various solution types, 

including solitary waves, compactions, and localized 

structures[7]. Due to their utility in characterizing wave 

phenomena in fluid dynamics, nonlinear optics, and plasma 

physics, these solutions have attracted great attention [8]. 

The fractional derivatives make analytical solutions for the 
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FKDV-B equation difficult. Thus, numerical methods and 

approximations are necessary for solving the equation[9]. 

The finite difference[10], spectral, and fractional derivative-

specific numerical approximations are used[11]. The 

Adomian decomposition method (ADM) has become famous 

for solving fractional differential equations (FDEs). 

Decomposing the FDE into simpler sub-problems allows this 

method to approximate solutions efficiently [12]. 

FDEs model complex phenomena because fractional 

differentiation orders capture nonlocal and memory effects in 

system dynamics. Fractional derivatives in the 

decomposition process allow the ADM to handle these 

unique characteristics[13]. The ADM relies on fraction 

differential equation specific Adomian polynomials. These 

numerical methods reveal the dynamics of the FKDV-B 

equation, helping us understand its complex behavior and 

model complex physical systems. 

In this research, we propose a new hybrid method that 

combines the finite difference method with the Adomian 

polynomial to address the nonlinear term in the FKDV-B 

equation. This hybrid technique provides an innovative 

treatment for handling the nonlinearities present in the 

equation, enhancing the accuracy and efficiency of the 

solution. 

 

2. Main Concepts 
Caputo derivative and the shifted G-L formula are widely 

utilized for approximating fractional derivatives. In the 

shifted G-L formula discretizes the derivative operator 

through finite differences, facilitating numerical 

approximations. Conversely, the Caputo derivative defines 

the fractional derivative as an integral of the function's 

derivative, effectively capturing the behavior associated with 

fractional orders. These methods are instrumental in 

accurately modeling nonlocal and memory effects within 

fractional calculus applications [14]. 

 

2.1 Finite Difference Method. 

The finite difference technique is a widely used numerical 

method for approximating derivatives and solving 

differential equations. It involves discretizing the domain of 

interest into a set of grid points and replacing the derivatives 

in the original equation with finite difference 

approximations. Now, Let H represent the spatial mesh size 

where 𝐻 = (𝐿 − 𝑎)/𝑛, and 𝜏 = 𝑡/𝑚 be the amount of time 

increase (time step size) write them as: 𝑥𝑖 = 𝑎 + 𝑖𝐻 , 𝜏𝑗 =

𝑗𝜏  , 𝑢𝑖
𝑗
= 𝑢(𝑥𝑖 , 𝜏𝑗) for 𝑖 = 0,1, … , 𝑛 and 𝑗 = 0,1, … ,𝑚. In 

Fractional Derivative orders need to use the following 

formulas: 

- The forward finite difference formula with the Caputo 

derivative is used to approximate the time-fractional 

derivative [15] : 
𝜕𝛼𝑢(𝑥,𝑡)

𝜕𝑡𝛼
=

𝜏−𝛼

Γ(2−𝛼)
∑ 𝑏𝑗[𝑢(𝑥𝑖 , 𝑡𝑘+1−𝑗) − 𝑢(𝑥𝑖 , 𝑡𝑘−𝑗)]
𝑘
𝑗=0 .  …(2) 

with setting 𝑏𝑗 = (𝑗 + 1)
1−𝛼 − 𝑗1−𝛼. 

- For fraction space derivatives use the standard G-L 

formula as following[14] : 

(𝑢𝑥
𝛽
)
𝑖

𝑗
=

1

𝐻𝛽
∑ 𝑔𝑘

𝛽
𝑢𝑖−𝑘+1
𝑗𝑖+1

𝑘=0 .         …(3) 

 

2.2 The Adomian Polynomials: 

The Adomian polynomials can be determined for all 

nonlinearities [13]. In this nonlinearity, the general formula 

of Adomian polynomials 𝐴𝑖 yields:  

𝐴𝑖 =
1

𝑖!
[
𝑑𝑖

𝑑𝜆𝑖
𝜙(∑ 𝜆𝑖∞

𝑖=0 𝑢𝑖)]
𝜆=0

=

1

𝑖!
[
𝑑𝑖

𝑑𝜆𝑖
(∑ 𝜆𝑖∞

𝑖=0 𝑢𝑖(𝑥, 𝑡))𝐷𝑥
𝛽(∑ 𝜆𝑖  𝑢𝑖(𝑥, 𝑡)

∞
𝑖=0 )]  , 𝑖 ≥ 0.  …(4) 

where 𝐷𝑥
𝛽

 represents the 𝛽𝑡ℎorder derivative . For easier 

computations using the Maple software to get as many 

polynomials as we need : 

𝐴0 = 𝑢0𝐷𝑥
𝛽
𝑢0  

𝐴1 = 𝑢1𝐷𝑥
𝛽
𝑢0 + 𝑢0𝐷𝑥

𝛽
𝑢1  

𝐴2 = 𝑢2𝐷𝑥
𝛽
𝑢0 + 𝑢1𝐷𝑥

𝛽
𝑢1 + 𝑢0𝐷𝑥

𝛽
𝑢2   

𝐴3 = 𝑢3𝐷𝑥
𝛽
𝑢0 + 𝑢2𝐷𝑥

𝛽
𝑢1 + 𝑢1𝐷𝑥

𝛽
𝑢2 + 𝑢0𝐷𝑥

𝛽
𝑢3   

⋮  
In generals : 

𝐴𝑛 = (∑ 𝑢𝑖
𝑗−1+𝑚

𝑗
0
𝑚=𝑗
𝑛=0

 𝐷𝑥
𝛽
𝑢𝑖
𝑗−1+𝑛

).    …(5) 

 

3. Methodology 
In this section, we proposed the HEFD to get numerical  

aproximation to Eqution (1). The HEFD method which has a 

tretment for the fraction nonlinear term in FKDV-B equation 

as will derive its formula and an algorithm for it. 

 

3.1 Mathematical Formulation of the Proposed Method: 

 The FKDV-B Eqution  (1) approximated at the mesh point 

(𝑥𝑖 , 𝜏𝑗+1) as follows: 

First replacing the time-fractional derivative in Eqution (1) by 

Caputo derivative (2) in the forward finite difference formula.  

In the second and third terms the fractional space derivatives 

are approximated by the standard G-L formula (3) as follows: 

(𝑢𝑥𝑥
2𝛽)

𝑗

𝑖
=

1

𝐻2𝛽
∑ 𝑔𝑘

2𝛽
𝑢𝑖−𝑘+1
𝑗𝑖+1

𝑘=0 .                                        …(6) 

(𝑢𝑥𝑥𝑥
3𝛽)

𝑖

𝑗
=

1

𝐻3𝛽
∑ 𝑔𝑘

3𝛽
𝑢𝑖−𝑘+1
𝑗𝑖+1

𝑘=0 .                              …(7) 

The nonlinear term is approximated using the Adomian 

polynomials formula (5) by replacing the derivative in the 

term by the standard G-L formula (3) as follows : 

For j=0   ,  𝐴0 = (𝑢0)𝑖
𝑗
(
1

𝐻𝛽
∑ 𝑔𝑘

𝛽(𝑢0)𝑖−𝑘+1
𝑗𝑖+1

𝑘=0 )  

For j=1   , 𝐴1 = (𝑢1)𝑖
𝑗
(
1

𝐻𝛽
∑ 𝑔𝑘

𝛽(𝑢0)𝑖−𝑘+1
𝑗𝑖+1

𝑘=0 ) +

(𝑢0)𝑖
𝑗
(
1

𝐻𝛽
∑ 𝑔𝑘

𝛽(𝑢1)𝑖−𝑘+1
𝑗𝑖+1

𝑘=0 )  

For j=2, 𝐴2 = (𝑢2)𝑖
𝑗
(
1

𝐻𝛽
∑ 𝑔𝑘

𝛽(𝑢0)𝑖−𝑘+1
𝑗𝑖+1

𝑘=0 ) + 

(𝑢1)𝑖
𝑗
(
1

𝐻𝛽
∑ 𝑔𝑘

𝛽(𝑢1)𝑖−𝑘+1
𝑗𝑖+1

𝑘=0 ) + (𝑢0)𝑖
𝑗
(
1

𝐻𝛽
∑ 𝑔𝑘

𝛽(𝑢2)𝑖−𝑘+1
𝑗𝑖+1

𝑘=0 ).   

And so on. In general  
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𝐴𝑗 = ∑ (𝑢)𝑖
𝑗−𝑚+1

(
1

𝐻𝛽
∑ 𝑔𝑘

𝛽(𝑢)𝑖−𝑘+1
𝑗−𝑚𝑖+1

𝑘=0 )𝑚
𝑗=0 .                …(8) 

Now by compensation equations (2,6,7) and (8) in equation 

(1) Produce :  
𝜏−𝛼

Γ(2−𝛼)
∑ 𝑏𝑘[𝑢(𝑥𝑖 , 𝜏𝑗+1−𝑘) − 𝑢(𝑥𝑖 , 𝜏𝑗−𝑘)]
𝑗
𝑘=0 +

𝜀 ∑ (𝑢)𝑖
𝑗−𝑚+1

(
1

𝐻𝛽
∑ 𝑔𝑘

𝛽(𝑢)𝑖−𝑘+1
𝑗−𝑚𝑖+1

𝑘=0 )𝑚
𝑗=0 +

𝜇
1

𝐻2𝛽
∑ 𝑔𝑘

2𝛽
𝑢𝑖−𝑘+1
𝑗𝑖+1

𝑘=0 + 𝜂
1

𝐻3𝛽
∑ 𝑔𝑘

3𝛽
𝑢𝑖−𝑘+1
𝑗𝑖+1

𝑘=0 .          …(9) 

By simple calculations and let 𝜗 = Γ(2 − 𝛼) 𝜏𝛼: 

𝑢(𝑥𝑖 , 𝜏𝑗+1) = 𝑢(𝑥𝑖 , 𝜏𝑗) − ∑ 𝑏𝑘[𝑢(𝑥𝑖 , 𝜏𝑗+1−𝑘) −
𝑗
𝑘=1

𝑢(𝑥𝑖 , 𝜏𝑗−𝑘)] − 𝜀 𝜗 ∑ (𝑢)𝑖
𝑗−𝑚+1

(
1

𝐻𝛽
∑ 𝑔𝑘

𝛽(𝑢)𝑖−𝑘+1
𝑗−𝑚𝑖+1

𝑘=0 )𝑚
𝑗=0 −

𝜇
𝜗

𝐻2𝛽
∑ 𝑔𝑘

2𝛽
𝑢𝑖−𝑘+1
𝑗𝑖+1

𝑘=0 − 𝜂
𝜗

𝐻3𝛽
∑ 𝑔𝑘

3𝛽
𝑢𝑖−𝑘+1
𝑗𝑖+1

𝑘=0 .     …(10) 

Formula (10) represent the Hybrid explicit finite difference 

technique with Adomian polynomial for nonlinear term. 

3.2  Algorithm of Hybrid Method: 

 Input : 𝛼 , 𝛽, 𝜀 ,  𝜇 and 𝜂 , number of space fragmentation 

𝑛 and for time 𝑚. 

Step 1: Find the values of space step size H = (𝐿 − 𝑎)/𝑛, 

and time step size 𝜏 =
𝑡

𝑚
. 

Step 2: Evaluate  𝜗 = Γ(2 − 𝛼) 𝜏𝛼 , 𝑟1 =
 𝜗

𝐻𝛽
 , 𝑟2 =

 𝜗

𝐻2𝛽
 and 

𝑟3 =
 𝜗

𝐻3𝛽
 . 

Step 3: Compute the initial condition for 𝑖 = 0,1,2, . . . , 𝑛.  

𝑢(𝑥, 0) = 𝑢0(𝑥)    , 𝑎 < 𝑥 < 𝐿.  
Step 4: For all  𝑗 = 1,2,3, … ,𝑚 − 1. 

Step 5: Set  𝑖 = 1,3, … , 𝑛. 

Set Λ1 = 0; Λ2 = 0; Λ3 = 0; Λ4 = 0; Λ5 = 0; Λ6 = 0.  
Step 6: Compute for all 𝑘 = 0,1,2, … , 𝑖 + 1.  

Λ1 = Λ1 + (−1)
𝑘 ×

𝛽 (𝛽−1)…(𝛽−𝑘+1)

𝑘!
 𝑢𝑖−𝑘+1
𝑗

  . 

 Λ2 = Λ2 + (−1)
𝑘 ×

(2𝛽) ((2𝛽)−1)…((2𝛽)−𝑘+1)

𝑘!
 𝑢𝑖−𝑘+1
𝑗

 .  

Λ3 = Λ3 + (−1)
𝑘 ×

(3𝛽) ((3𝛽)−1)…((3𝛽)−𝑘+1)

𝑘!
𝑢𝑖−𝑘+1
𝑗

. 

Λ4 = Λ4 + 𝑢𝑖−𝑘+1
𝑗

 . 

Λ5 = Λ5 + (Λ4Λ1) . 
Step 6: Compute for 𝑘 = 1,2, … , 𝑗 + 1. 
Λ6 = Λ6 + ((𝑘 + 1)

1−𝛼 − 𝑘1−𝛼) [𝑢(𝑥𝑖 , 𝜏𝑗+1−𝑘) − 𝑢(𝑥𝑖 , 𝜏𝑗−𝑘)]  . 

Step 7: Use the formula in equation (10) to evaluate the 

numerical solution of equation (1): 

𝑢(𝑥𝑖 , 𝜏𝑗+1) = 𝑢(𝑥𝑖 , 𝜏𝑗) − Λ6 − 𝜀 𝜗 Λ5 − 𝜇 𝜗Λ2 − 𝜂 𝜗 Λ3 .   

Step 8: Print the numerical solution 𝑢(𝑥, 𝑡). 
 

4. Numerical Application. 

The exact solution of the FKDV-B equation (1) proposed by 

Cevikel[6]: 

𝑈(𝑥, 𝑡) =
−
12 𝑏𝑣2

25𝜇
  𝑒
−(

𝑣 𝑥𝛽

5𝜇 Γ(1+𝛽)
+

6𝑣3 𝑡𝛼

125𝜇2 Γ(1+𝛼)
)

 𝑏2

4𝑐
𝑒
(

𝑣 𝑥𝛽

5𝜇 Γ(1+𝛽)
+

6𝑣3 𝑡𝛼

125𝜇2 Γ(1+𝛼)
)
+𝑏+𝑐 𝑒

−(
𝑣 𝑥𝛽

5𝜇 Γ(1+𝛽)
+

6𝑣3 𝑡𝛼

125𝜇2 Γ(1+𝛼)
)

.  (11) 

where b and c are arbitrary parameters, Γ(∙) is the gamma 

function. In Tables 1 and 2, compare the numerical results of 

the EFD method and the HEFD method with the exact 

solution by using the absolute error (ABSE) and mean square 

error (MSE)[16]: 
𝐴𝐵𝑆𝐸 = |𝑈𝑖(𝑥, 𝑡) − 𝑢𝑖(𝑥, 𝑡)|.  

𝑀𝑆𝐸 =
√∑ (𝑈𝑖(𝑥,𝑡)−𝑢𝑖(𝑥,𝑡))

2𝑛
𝑖=0

𝑛
.   

Taking the FKDV-B equation as in the form equation (1) 

with  

𝑢(𝑎, 𝑡) =
−
12 𝑏𝑣2

25𝜇
  𝑒
−(

6𝑣3 𝑡𝛼

125𝜇2 Γ(1+𝛼)
)

 𝑏2

4𝑐
𝑒
(

6𝑣3 𝑡𝛼

125𝜇2 Γ(1+𝛼)
)
+𝑏+𝑐 𝑒

−(
6𝑣3 𝑡𝛼

125𝜇2 Γ(1+𝛼)
)
.

𝑢(𝐿, 𝑡) =
−
12 𝑏𝑣2

25𝜇
  𝑒
−(

𝑣 𝐿𝛽

5𝜇 Γ(1+𝛽)
+

6𝑣3 𝑡𝛼

125𝜇2 Γ(1+𝛼)
)

 𝑏2

4𝑐
𝑒
(

𝑣 𝐿𝛽

5𝜇 Γ(1+𝛽)
+

6𝑣3 𝑡𝛼

125𝜇2 Γ(1+𝛼)
)
+𝑏+𝑐 𝑒

−(
𝑣 𝐿𝛽

5𝜇 Γ(1+𝛽)
+

6𝑣3 𝑡𝛼

125𝜇2 Γ(1+𝛼)
)

.

}
 
 
 

 
 
 

(12) 

and the initial condition: 

 𝑢(𝑥, 0) =
−
12 𝑏𝑣2

25𝜇
  𝑒
−(

𝑣 𝑥𝛽

5𝜇 Γ(1+𝛽)
)

 𝑏2

4𝑐
𝑒
(

𝑣 𝑥𝛽

5𝜇 Γ(1+𝛽)
)
+𝑏+𝑐 𝑒

−(
𝑣 𝑥𝛽

5𝜇 Γ(1+𝛽)
)

 , 𝑎 ≤ 𝑥 ≤ 𝐿. …(13) 

When equation (1) is solved by using the formula in Equation 

(10), the results are shown in Tables 1 and 2 . In all 

computations we fixed 𝑏 = c = 10, ε = −6, μ = 3, η =
6 , 𝑎 = 0  and 𝐿 = 40, taking various values of α and β  and 

at different times, so we focus on the effectiveness of the 

proposed technique by comparing it with EFD method and 

the exact solution. All computations evaluate using the 

Matlab 2021a software. 
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The numerical results obtained from Tables 1 and 2 

reveal that the hybrid approach employed in this study 

surpasses the explicit finite difference method in terms 

of accuracy and efficiency. Specifically, the hybrid 

approach demonstrates superior performance when 

utilizing the values of 𝛼 = 0.75 and 𝛽 = 0.25 for time 

values 0.5, 1, and 1.5. Moreover, the advantageous 

properties of the hybrid approach are maintained even 

when applying 𝛼 =  0.5 and 𝛽 = 0.5  , as observed in 

Table 2. These findings highlight the effectiveness of 

the hybrid approach in effectively handling the 

nonlinearities of the equation, resulting in precise and 

efficient solutions. 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Furthermore, the comparison of the results 

obtained from the hybrid technique, the explicit 

method, and the exact solution can be observed in 

Figures 1, 2, and 3 at different time instances, 

considering various values of 𝛼 and 𝛽 (𝛼 > 𝛽, 𝛼 = 𝛽 , 

and 𝛼 < 𝛽). These figures visually represent the 

behavior and performance of the solutions generated by 

the two methods. Additionally, Figures 4, 5, and 6 

illustrate the overall behavior of the solutions across the 

entire domain when 𝛽 = 0.1 and 𝛼 = 0.9. Analyzing 

these figures enables a comprehensive assessment of 

the hybrid technique's accuracy, efficiency, and 

suitability in different scenarios. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Conclusion 
In this research, a new hybrid technique proposes to combine 

the finite difference method with the Adomian polynomial to 

address the nonlinear term in the FKDV-B equation. This 

hybrid approach provides an innovative treatment for 

handling the nonlinearities present in the equation, enhancing 

the accuracy and efficiency of the solution. By leveraging the 

strengths of both methods, we aim to overcome the 

limitations of traditional numerical techniques and obtain 

more accurate approximations for the FKDV-B equation. 

The finite difference method provides a robust framework for 

discretizing the equation in space, while the Adomian 

decomposition method polynomial offers a systematic and 

efficient approach for solving the resulting linear sub-

 
Figure1. HEFD and EFD with Analytic solution 𝛼 =

0.9 and 𝛽 = 0.1at Time=0.5 

 
Figure2. HEFD and EFD with Analytic solution 𝛼 =

0.5 and 𝛽 = 0.5 at Time 1 

  
Figure 3. HEFD and EFD with Analytic solution 𝛼 =

0.25 and 𝛽 = 0.9 at Time=0.8 

 
Figure 4. HEFD method with 𝛼 = 0.9 and 𝛽 = 0.1 

 
Figure 5. EFD method with 𝛼 = 0.9 and 𝛽 = 0.1 

 
Figure 6. Exact Solution with 𝛼 = 0.9 and 𝛽 = 0.1 
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problems. 
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 الملخص 

معادلة   لحل  جديدة  خوارزمية  الدراسة  هذه   Korteweg-deتقدم 

Vries-Burger  ( الخطية  تقنية NFKDV-Bغير  باستخدام  فعال  بشكل   )

مع  متعددة حدود أدوميان. التقنية المقترحة مهجنة  الفروقات المنتهية الصريحة ال

بوجود المشتقات الكسرية   FKDV-Bتعالج مشكلة دقة الحلول العددية لمعادلة  

 غير الخطية . 

خلال   من  العددية  النتائج  على  الحصول  المطلق  تم  الخطأ  حساب 

. يتم تقريب مشتقة الزمن الكسرية ومشتقات الفضاء   ومتوسط الخطأ التربيعي

، على التوالي.    Grünwald-Letnikovوصيغة     Caputoباستخدام تعريف  

 . طريقة الفروقات المنتهية الصريحةقيمت التقنية بمقارنتها مع الحل المضبوط و

ب ممتاز بين الحلول التقريبية والدقيقة عند قيم مختلفة للزمن. يتظهر النتائج تقر

للمشتقات  مختلفة  قيم  عند  المقترحة  التقنية  فعالية  على  الضوء  النتائج  تسلط 

 . طريقة الفروقات المنتهية الصريحةو مقارنتها بالحل المضبوط و  الكسرية

متعددة ؛  NFKDV-Bمعادلة ؛  المهجنة الفروقات المنتهية    المفتاحية :الكلمات  

 . Grünwald-Letnikovصيغة ؛  Caputoتعريف  ؛  حدود أدوميان
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