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1. INTRODUCTION

Many problems in the literature of the diffusion of
heat perpendicular to the surfaces of parallel planes are
modeled by the heat equation [1-3]

X7 (x"y)x +af (x,)g(y) + hx, t) =y,

0<x<LO<t<T,r>0, - (1)
or equivalently
T
Yoex T ;:VX + af(x' t)g(}’) +h(x,t) = Yer
0<x<LO<t<T,r>0, .. (2)

where r,L and T are constants, f(x,t)g(y) + h(x,t) is the
linear heat source, y(x,t) is the temperature, and t is the
dimensionless time variable.

On the other hand, the wave type of equations with
singular behavior of the form
X7 (XY )x +af (x, ) g(y) + h(x, t) = Yy,

0<x<LO<t<T,r>0,

or equivalently

- (3)
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T
Vxx +;YX + af(x' t)g(}’) + h(x; t) = Yets
0<x<LO<t<T,r>0,

. (4)

will be examined as well, where f(x,t)g(y) + h(x,t) is a
linear source, t is the dimensionless time variable, and
y(x, t)

is the displacement of the wave at position x and at time t.

The singularity behavior that occurs at the pointx = 0
is the main difficulty in the analysis of equations (2) and (4).
In the recent literature there is many approximated methods to
get an analytical solution for the time-dependent Emden-
Fowler type of equations and wave-type equation with
singular behavior were presented by [4-7].

At the beginning of the 1980’s, Adomian [8-10]
proposed a new and fruitful method (hereafter called the
Adomian Decomposition Method or ADM) for solving linear
and nonlinear (algebraic, differential, partial differential,



Al-Rafidain Journal of Computer Sciences and Mathematics (RJICM), Vol. 17, No. 2, 2023 (79-92)

integral, etc.) equations [11-16]. It has been shown that this
method yields a rapid convergence of the solutions series to
linear and nonlinear deterministic and stochastic equations.
Recently, Mkhatshwa et al. [17] have presented a new
modification to the bivariate spectral collocation method in
solving Emden-Fowler equations. Naveen et al. [18] have
studied of fractional Emden-Fowler (FEF) equations by
utilizing a new adequate procedure, specifically the
g-homotopy analysis transform method (g-HATM).

The main objective of this paper is to apply the combined
Laplace transform method and Adomain decomposition
method (LT-ADM) to obtain approximate-exact solutions for
different models for the time-dependent Emden-Fowler type of
equations and wave-type equation with singular behavior at
x = 0. While the VIM [19] requires the determination of the
Lagrange multiplier in its computational algorithm, LT-ADM
is independent of any such requirements, LT-ADM handles
linear and nonlinear terms in a simple and straightforward
manner without any additional requirements.

APPLICATIONS OF LT-ADM TO
EMDEN-FOWLER OF PDES

Taking the Laplace transform on both sides of Egs. ..(2)
and (4) gives
r

SLIy(x, 0] = ¥(x, 0) + LIAC, ] + Lyeel + £[-32]

+aLl[f (x,t)Ny(x,t)], ..(5)
and
s2 LIy (x, )] = sy(x,0) + y,(x,0) + L[~(x, )] + L[]

T
L[y + allf G ONy (0], . (6)

where Ny(x,t) = g(y).

Simplifying and taking the inverse Laplace transform on both
sides of Egs. (5) and (6) we get

y(x,t) = L7157 y(x,0)] + L71s71L[h(x, t)]

r
+L71s7 L]yl + L7Es7IL [;yx]

+aLl 1s7IL[f (x, t)Ny(x, )], (7

and
y(x,t) = L71s 7 y(x,0) + L7572y, (x,0)

T
+L7 s 2L[A(x, )] + L7172 L]y, ] + L71s72L [;yx]

+aLl ts72L[f (x, t)Ny(x, t)]. ..(8)
The Adomian technique [7-9] consists of approximating the
solution as an infinite series

y(x,6) = 2 Yalx, 1), -
and decomposmg the nonlinear operator N as
Ny(x,0) = Z An, - (10)

where A, are ponnomlaIs (called Adomian polynomials) of
Yor Y1, --» Yn [7-9] given by

An = n'd)l"[ (Z””)l , n=012,.. .
A=0

The proofs of the convergencg of the series Yo ¥, and
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Yo Ay are given in [20-24].
Substituting the equation (9) and (10) into the Egs. (7) and (8)
yieIds

Zyn(x £) = L7557 [y G, 0] + L7557 LG, )]

Z(mxx(x 0 Z(mx(x t)l

, . (11)

“sTiL +L71slL

+al ls71 L

An

and

Z Y6, 8) = L7157 y(x,0) + L7572y, (x, 0)

Z(yn)xx(x t)l

+L7 s 2L[h(x, )] + L71s72 L

£Z(yn)x(x, t)l

+L71s72L

+aLl ts™2L . (12)
n=

From the Eq. (11), the iterates are then determined in the

following recursive way

Yo(x,t) = L7 y(x, 0)] + L7*s 1 L[h(x, t)],

yn+1(x' t) = L_ls_l L[(yn)xx(xv t)]

LT L2 () (0]

+al ls7t L[f(x, t)A,], n=0 .. (13)
and from Eq. (12), the iterates are then determined in the
following recursive way
Yo(x,t) = L7157 1y(x,0) + L7157 2y,(x,0)

+L71s72L[h(x, )],
yn+1(x' t) = L_ls_z Ll;ﬂ(yn)xx(xv t)]
LTS L - () x|
+al 1s72 L[f(x, t)A,], n=0 . (14)

Thus, all components of y can be calculated once the A,, are
given for n = 0,1, ... . We then define the n-term approximant

to the solution y by ¢, [y] = X7 y; with lim ¢,[y] =y

1Il. APPLICATIONS AND NUMERICAL

RESULTS

In this section, we examine distinct models with singular
behavior at x = 0, two linear time-dependent Emden-Fowler
type of equations, two linear models of wave-type equation and
one model nonlinear. To show the high accuracy of the
approximate solution results (LT-ADM) and the Padé
approximation (PA) of order [N/M] compared with the exact
solution, the absolute errors between them are defined as
follows:
AE; = |Exact Solution — (LT — ADM)|,
AE, = |Padé Approximation — (LT — ADM)|.

With a precision of 20 digits, the computations related


https://www.sciencedirect.com/topics/mathematics/homotopy

Al-Rafidain Journal of Computer Sciences and Mathematics (RJICM), Vol. 17, No. 2, 2023 (79-92)

to the examples were carried out using the Maple 18 package.

A. TIME-DEPENDENT EMDEN-FOWLER TYPE

Problem 1. Solve the following linear Emden—Fowler type
equation [4,5,7] by using LT-ADM
2

yxx-t-;yx — (6 —4x? —cost)y = y,, ..(15)
with the initial condition

y(x,0) = e** .. (16)
The exact solution for this problem is

Yexace (€) = X Hsint, .. (17)

Taking the Laplace transform on both sides of equation (15)
gives

2
SELY (0] = Y06, 0) + L] + £ ]2 3]

—L[(6 — 4x% — cos t)y]. ..(18)
Simplifying and taking the inverse Laplace transform on both
sides of equation (18) we get
Y, t) = L7 y (e, 0)] + L7 Lly,]

2
+L7ts71L [;yx] —L7ts71L[(6 — 4x? — cost)y], ...(19)
Substituting the equation (9) into the equation (19) yields

Z Yo, t) = L7557 y(x, 0]

i(yn»x(x, t)l
"=,
EZ(y,ax(x. t)]

(6 — 4x? — cost) Z v (x, ).

From the equation (20), the iterates are then determined in the
following recursive way

Yo(x,t) = L7 y(x, 0],
Va1 (X, t) = L_ls_zl LI xx (x, )]
L5 L] )|
—L7ts7L L[(6 — 4x% — cos )y, (x,t)]. n=0 ..(21)
Following the algorithm (21), the iterations are given by
Yolx, ) = e*,
yl(x: t) = L71s7H L[(yo)xx(x:é)]
+ L5 L2 0]
—L71s7 L[(6 — 4x?% — cos t)y, (x, B)],
=e* sin t,
V2 (x,t) = L71s7H L[(yl)xx(x:é)]
+ LT L[S )]

—L7 157t L[(6 — 4x% — cost)y, (x, )],
= 1exz
2

+L71s71 L

+L71s71 L

“lg-i g ..(20)

- Eexz cos?(t),
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2
ys (0 t) = L7157 L10) G, O] + L7157 £ S 0)(, )
—L71s7 L[(6 — 4x% — cost)y, (x, )],

=z e*” sin3(t),

2
Y400 0) = L7157 LI (O] + L7057 L2 0, )|
—L71s71 L[(6 — 4x? — cost)y3(x, t)],
= %exz sin*(t),
2
ys (0 0) = L7157 L0, O]+ L7157 L] 000,
—L71s7 L[(6 — 4x% — cost)y,(x,1)],

1
=—¢e* sin%(t),

T 120

and etc., obtaining the rest of the iterations in this manner.
As a result, the series form of the approximate solution is

9o, t) = Z i (2, 1)

1 .
= 55" {[-22cos*(¢) + cos*(¢) + 141] sin(t)

+5 cos*(t) —70 cos?(t) + 185}.
This series has the closed form as n — oo gives ex’¥sint o
yExact(x: t) = ex2+sint'
which is the exact solution of the problem 1.
In Table 1 show a comparison of the numerical results applying
the LT-ADM (¢¢(x,£)) and the Padé approximants (PA) of
order [6/6] with the exact solution (ygqc. (x, £)) obtained

[6/6] = pe(x)

qe (x)
where

De(x) = ag + a;x + ax? + azx® + ayx* + agx® + agx®,
= 1.6151282029 + 0.8075641014x?
+0.1615128202x* + 0.0134594016x°,

qe(x) = 14 byx + byx? + byx® + byx* + bsx® + bgx®,
= 1.00 — 0.5000000000x2 + 0.1000000000x*
—0.0083333333x°.

As shown in (Cherruault and Adomian, 1993) [23], the
necessary condition for the convergence of the method is that
[lVns1llz < llyall, forall n. In Figure 1, we represent the plot of

“ﬁ“*ﬁ”z forn = 0,1, ...,8. In Figure 2, a very good agreement is

shown between the exact solution (Ygxqc:(x,t)) with a
continuous line and the LT-ADM (¢, (x, t)) with the symbol o.
In Figure 3, we present the contour plot in 2D on the (x,t) —
plane for the exact solution (Ygxec:(x,t)) and the LT-ADM

(¢6(xt t))

Problem 2. Solve the following linear Emden—Fowler type
equation [4,5,7] by using LT-ADM

2
yxx+;yx_(5+4x2)y=Yt+(6_5x2_4x4)' (22)

with the initial condition



Al-Rafidain Journal of Computer Sciences and Mathematics (RJICM), Vol. 17, No. 2, 2023 (79-92)

y(x,0) = x2 + . ..(23)
The exact solution for this problem is
Vexace(t) = x* + e, ..(24)

Taking the Laplace transform on both sides of equation (22)
gives
sLLy(x,t)] = y(x,0) — L[6 — 5x? — 4x*]
2
+ Llye] + £ [;yx] — L[5+ 4xP)y].  ..(25)
Simplifying and taking the inverse Laplace transform on both
sides of equation (25) we get
y(x,t) = L7 y(x,0)] — L71s71L[6 — 5x% — 4x*]
2

+L7s7 L]y ]+ L7s7IL [;yx]

—L71s7IL[(5 + 4x?)y]. ..(26)
Substituting the equation (9) into the equation (26) yields

Z Yo (x, t) = L7157 y(x,0)] — L71s71L[6 — 5x% — 4x*]

n=0
(o) 2 (o)
pRCHMER = Onalx, t)l
n=0 n=0

(5 + 4x2) Z el 27

n=0
From the equation (27), the iterates by the ADM are then
determined in the following recursive way
Yo(x,t) = L7's [y (x,0)] — L7's 7 L[6 — 5x* — 4x*],
yn+1(x' t) =L71s7t L[Z(yn)xx(x: t)]
+Lls L [; ) (%, t)]

L7 L[(5 + 4xD)y, (x,t)]. n=0  ..(28)
From the equation (27), the iterates by the MADM are then
determined in the following recursive way

Yolx,t) = L7y (x, 0)],
yi(x,t) = —=L71s71L[6 — 5x2 — 4x%]

2
LS LI O] + £757 £ [2 0 )
~L71571 L[5 + 40)yy(x, D),
yn+1(x' t) = L_ls_l L[(yn)xx(xv t)]

2
L5 L2 0 0]

L7157 L[(5 + 4xD)y, (x,)]. n=>1 ..(29)
Following the algorithm (29), the iterations are given by
yo(x, t) = x2 + e*°,
yi(x, t) = te*’,

Y2 (x' t) = L_ls_l L[(yl)xx(x: t)]

2
LT L[S )]
L7 L[(5 + 4xD)y, (x, B)]
y3 (x' t) = L_ls_l L[(yz)xx(x'é)]
+ L5 L2 0]

L7 L[(5 + 4x)y, (x, t)]

+L71s71 L + L71s71L

—L71s71L

2
—t2e*”,
2

2
=—t3€x ,

6

82

2
Y4, 8) = L7157 L[5, 0] + L7057 L2 00000

2

1
L7 L[(5 + 4x®)y5(x, t)] = —t*e*",

24
2
ys (6 0) = L7157 L0, O]+ L7157 L] 000,
L7157 L[(5 + 4xD)y,(x, )] = %tse"z,

and etc., obtaining the rest of the iterations in this manner.
As a result, the series form of the approximate solution is

5
Do) = D I (1,0
n=0

1 5
—t>).
2! 3! 4! 5! )

This series has the closed form asn — oo gives x2 + e*"*, i.e.,
yExact(x' t) = x2 + ex2+t’
which is the exact solution of the problem 2.
In Table 2 show a comparison of the numerical results applying
the LT-ADM (¢¢(x,t)) and the Padé approximants (PA) of

order [6/6] with the exact solution (ygac (x, t)) obtained

_Ds (x)
[6/61 = ooty
where

De(X) = ag + a;x + ayx? + azx® + a,x* + asx® + agx®,
= 1.64869791666 + 2.00167795950x2
—0.12117580801x* + 0.09731569963x°,

qe(x) = 14 byx + byx? + byx® + byx* + bsx® + bgx®
= 1.0 — 0.392443000392x2 + 0.056977200156x*
—0.002955483352x°.

1 1 1
=x2+ex2(1+t+—t2+—t3+—t4+

As it is shown in (Cherruault and Adomian, 1993) [23], the
necessary condition for the convergence of the method is that
[1Vns1llz < llyall, forall n. In Figure 4, we represent the plot of

”ﬁ;;ﬁnz forn = 0,1, ...,8. In Figure 5, a very good agreement is
nli2

shown between the exact solution (ygyace(x,t)) with a
continuous line and the LT-ADM (¢, (x, t)) with the symbol o.
In Figure 6, we present the contour plot in 2D on the (x,t) —
plane for the exact solution (Ygyec:(x,t)) and the LT-ADM

(¢6(~xl t))

B. SINGULAR WAVE-TYPE EQUATIONS

Problem 3. Solve the following linear linear inhomogeneous
singular wave-type equation [4,5,7] by using LT-ADM

2
Ve + 2 Ve = (5 + 4x%)y =y, + (12x — 5x% — 4x°), ... (30)
with the initial conditions

y(x,0) = x° +e*’, y,(x,0) = e*’ - (31)
The exact solution for this problem is
yExact(t) =x*+ exz—t. (32)

Taking the Laplace transform on both sides of equation (30)
gives
s2L[y(x,£)] = sy(x,0) + y.(x,0) — L[12x — 5x3 — 4x5]
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2
+ Llye] + £ [;yx] —LI(5 + 4xD)y]. ... (33)
Simplifying and taking the inverse Laplace transform on both
sides of equation (33) we get
y(x,t) = L7157y (x,0) + L7 s 2y, (x,0)
—L71s72L[12x — 5x3 — 4x°]
2
+L71s72 L]y, ] + L7572 L [;yx]

—L71s72L[(5 + 4x?)y]. ..(34)
Substituting the equation (9) into the equation (34) yields

Z Yo (x,t) = L7157 1y(x,0) + L7572y, (x, 0)
n=0

—L71s72L[12x — 5x3 — 4x5]

i(yn»x(x. t)l

n=0

2 o
FACONE t)l

(5 + 4x2) Z ¥ (x, t)l.

n

=0
From the equation (35), the iterates by the
determined in the following recursive way
yo(x, t) = 5_15_13’(35' 0) + L_ls_ZYt(x' 0)
—L71s72L[12x — 5x3 — 4x5],
Y16, 6) = L7572 L[() x (%, )]

+Lls72p E ) (x, t)]

—L71s72L[(5 + 4xD)y, (x,t)], n = 0. ..(36)
and from the equation (35), the iterates by the MADM are then
determined in the following recursive way
Yolx, £) = L71s71y(x,0) + L7572y, (x, 0),
yi(x,t) = —L71s72L[12x — 5x3 — 4x5]

2
LTS LI (O] + £7572L [~ 00|
L5 L[(S + 47y, )
yn+1(x' t) = L_ls_z L[(yn)xx(xv t)]
2
#5722 [2 0 )

—L71572L[(5 + 4x?)y, (x,t)], n=>1. ..(37)
Following the algorithm (37), the iterations are given by

Yolx,t) = x3 + e* (1-10),

x2 1 2 1 3
yi(x,t) =e (51: _Et ),
Y2 (x: t) =L1s7! L[(yl)xx(x: t)]

+L7sTHL E ()« (x, t)] — L7s7THLI(5 + 4x D)y, (x, )],

= exz (1t4 — 1t5),

+L71s72 ¢

+L71s72L

—L71s72L ..(35)

ADM are then

and etc., obtaining the rest of the iterations in this manner.
As a result, the series form of the approximate solution is

2
ba(x,t) = z Yo (x, )

83

1 1 1 1
— .3 x? (1 _ 42 43 4 44 45
=x+e (1 t+2!t 3!t +4!t S!t).
This series has the closed form as n - oo gives x3 + et ie.,

2_
yExact(x: t) =x3 +e* t‘

which is the exact solution of the problem 3.
In Table 3 show a comparison of the numerical results applying
the LT-ADM (¢3(x,£)) and the Padé approximants (PA) of

order [8/8] with the exact solution (ygqc (x, £)) obtained

__DPs (x)
[8/81 = qs(x)’
where

pe(x) = ag + a;x + ax? + azx® + aux* + agx® + agx®
+a;x” + agx®,
= 0.606510416666 + 0.262060995314x
+0.391636911511x2 + 1.185271981523x3
+0.547567047241x* — 0.293159163274x°>
—0.106761586249x° + 0.056786924510x7
+0.013384260296x8,
and
qg(x) = 1+ byx + byx? + byx® + byx* + bsx® + bgx®
+b,x7 + bgx8,
= 1.0 + 0.432079957925x — 0.354278342549x?
—0.126607905949x3 + 0.044690718235x*
+0.011339781178x° — 0.001496072086x°
—0.000105216313x” — 0.000098674559x5.

As it is shown in (Cherruault and Adomian, 1993) [23], the
necessary condition for the convergence of the method is that
l¥ns1llz < llynll, forall n. In Figure 7, we represent the plot of

”lylg;ﬁ”z forn =10,1,...,8. In Figure 8, a very good agreement is
nll2

shown between the exact solution (ygyace(x,t)) with a
continuous line and the LT-ADM (¢ (x, t)) with the symbol o.
In Figure 9, we present the contour plot in 2D on the (x,t) —
plane for the exact solution (Ygxec:(x,t)) and the LT-ADM

(¢3(x, t))

Problem 4. Solve the following linear Emden—Fowler type
equation [4,5,7] by using LT-ADM

4
Vex + P N (18x + 9x*)y = v, — 2 — (18x + 9x*)t?,(38)
with the initial conditions

y(x,0) =e* y,(x,0)=0 ..(39)
The exact solution for this problem is

3
Vexace(t) = t>+e*. .. (40)

Taking the Laplace transform on both sides of equation (38)
gives
s2LLy(x, )] = sy(x,0) + y(x,0) + L[2]

+L[(18x + 9xM) 2] + Llye] + £ E yx]

—L[(18x + 9x*)y]. .. (41)
Simplifying and taking the inverse Laplace transform on both
sides of equation (41) we get
y(x,t) = L7171y (x,0) + L7 572y, (x,0) + L71s72L[2]

+L71s72L[(18x + 9xM)t2] + L7572 L]y, ]
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4
+L71s72L [;yx] — L71s72L[(18x + 9xH)y]. ... (42)
Substituting the equation (9) into the equation (42) yields

Z Y6, 8) = L7157 y(6,0) + L7572y, (x, 0)

+L71s72L[2] + L7 s72L[(18x + 9x*)t?]

S Ot t)l
&
iZ(yn)x(x, t)l

(18x + 9x%) Z v (x, t)l

From the equation (43), the iterates ADM are then determined

in the following recursive way

Yo(x,t) = L7571y (x,0) + L7 572y, (x,0) + L™1s72L[2]
+L71s72L[(18x + 9x*)t?],

yn+1(x' t) = L_ls_: L[(yn)xx(xv t)]

#5722 [ 0 )

—L71s72L[(18x + 9xY)y, (x, )], n =0 .. (44)
and from the equation (43), the iterates MADM are then
determined in the following recursive way
yO(x t) - L L _1Y(xl O) + L_ls_ZYt(x, 0),
yi(x,t) = L7s72L[2] + L7172 L[(18x + 9x*)t?]

4
L2 L) 6 O] + £7572 L[S 0D (1, 0)]
—L71s72L[(18x + 9x) y, (x, B)],
Yne1(x, ) = L_ls_: L) xx (x, )]
L5 L[2 0 0]

—L71s72L[(18x + 9xM)y, (x, )], n>1 ..(45)
Following the algorithm (45), the iterations are given by

yo(x, t) = eX3i
3 3
y(x,t) = Et”‘x + Zt‘*x‘* + t2,
y,(x,t) = L7572 ﬁ[(}ﬁ)xx(x' )]
L5 77L [ 00|
—L71s72L[(18x + 9xY)y, (x, 1)],

1s=2 ¢

+L71s72L

—L71s72f .. (43)

2 1t 9 9
=__t6 2 ____t6 5__t4 __t6 8__t4 4’
Pt T0xY 1ot Y TRt Tt Tatx
ys3(x,t) = L7152 L[(yz)xx(x'él‘t)]
+ L7520, 00|
—L71s72L[(18x + 9xM)y, (x,1)],
3 207 9 2 1t6
= 48_Z2"" 8,3 £8x6 652 — —
40" 560 HEVT R 10 x
270 849 4 T 46y £8x12 4 — 6x8
2ol T gt toggg X gt

Ya(x,t) = L7172 LI(y3) e (2, 8)]
4
+L7572L ] () 0)|
—L71s72L[(18x + 9xM) y5 (x, 1)],
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t1°x7

81 th 13

t8 + 27
112

8X6

th 4
350" * T

410,10 _ 7
X T 140

2800
10,.16 81 4 1

2240 ’

T1120° * T 22400°

and etc., obtaining the rest of the iterations in this manner.
As a result, the series form of the approximate solution is
4

bs(x,t) = z Yo (x, )

n=0

6 39 27
— 24 X104 410 4 27 07410
. e* 1758x 3507 112"
410410 _ 13410 _ 16410
700 2800 22400

M . - 3 .
This series has the closed form as n — oo gives t* + e*’, i.e.,

yExact(x: t) =t?+ QX3

which is the exact solution of the problem 4.

In Table 4 show a comparison of the numerical results applying
the LT-ADM (¢s(x,£)) and the Padé approximants (PA) of

order [5/5] with the exact solution (ygqc (x, £)) obtained
[6/6] = pe(x)

q6(x)
where

De(x) = ag + a;x + ax? + azx® + ayx* + agx® + agx®
= 1.250 — 0.002811453703x + 0.000006112998x?2
+0.374999986804x3 — 0.000930611750x*
+0.000002065597x° + 0.104166662198x°,

and
qe(x) = 14 byx + byx? + byx3 + byx* + bsx® + bex®
= 1.0 — 0.002222377248x + 0.000004830870x?
—0.500000010426x3 + 0.000932965969x*
—0.000001993762x5 + 0.083333337626x°.

In Figure 10, a very good agreement is shown between the exact
solution (Vg qc: (x, t)) with a continuous line and the LT-ADM
(¢ps(x,t)) with the symbol o. In Figure 11, we present the
contour plot in 2D on the (x, t) — plane for the exact solution

(Vgxace (x,t)) and the LT-ADM (¢g(x, t)).

C. NONLINEAR MODELS

Problem 5. Solve the following nonlinear Emden—Fowler type
equation [4,5,7] by using LT-ADM

5 y
Vax + i (24t + 16t%x%)eY — 2x%e2 = y,,
0<t<1 ... (46)
with the initial conditions
y(x,0)=0 ..(47)
The exact solution for this problem is
Vexact (%, ) = —=2In(1 + tx?). .. (48)

Taking the Laplace transform on both sides of equation (46)
gives

5
SELYCo 0] = y(x,0) + Ll + £ 23]
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—L[(24t + 16t2x2)N,y(t)] — L[2x2N,y(t)].  (49) yo(x,t) =0,
where N, y(t) = e¥® and N,y(t) = e¥®/2, 1 11 [E ]
Simplifying and taking the inverse Laplace transform on both y1068) = L755 LI (0)ax O ] + L7574 X o)« (1)
sides of equation (49) we get —L7 s7T1L[(24t + 16t%x%)Ag] — L71s71L[2x%B,],
v, t) = L7y (x, 0)] + L7157 Ly ]

16
y = —2x%t+ 12t + ?xzﬁ,
+L757L 2y - L5l @ae + 16625 N, (0]

5
Y2 (5,0) = L5 LI (6 O + £757L 2 00400,

L7157 L[2x2 N,y ()], ...(50)
Substituting the equations (9) and (10) into equation (50) —L7sTIL[(24t 4 16t2x?)A,] —L‘lsz‘gL[szBl],
y!oelds o = —12t% + x*t? — 20x%t3 + 88t* —?x”'t4
Z yn.(x' t) = [’_ls_l[y(xl 0)] + L_IS_1L Z(yn)XX(x’ t)] +64—x2t5 + gx‘ltb’
n=0 _ o n=0 9 5
0522 00 y5 (6 0) = L5 L0, O]+ L7857 L 2 00,000
* =0 —L7sTIL[(24t + 16t2x2)A,] — L1571 L[2x2B,],
C 44 243 2 6+3 4 444
—L7ls7IL| (24t + 16t2x2)z,4n = —xt® — -x%t° — 132t* + 26x*t
L =0 5012 188 640
[ i " BT x%t® + Exﬁts —Tx"t6 + 768t°
—L7lsTL szan : - (5D 54784 1024 1024,
| n=0 + 3xt—21xt+ x*t
From the equation (51), the iterates by the ADM are then 40696
determined in the following recursive way 51 x6t?,
Yolx, t) = L7 y(x,0)], . L
Y (6 8) = L7151 L[5, 0] Y42, 6) = L5 L[ O] + L7574 2 0 )
+L1gm1g [E D) (x, t)] —L71s7IL[(24t + 16t%x%)A5] — L71s71L[2x2%B,],
X 1 50 1964
—L71s71L[(24t + 16t%x?)A,,] = §x8t4 + 44t* — ?x‘*t“ + szts
—L7'sTIL[2x?By]. - (52) 154 . 26584 . 76 11072 , .
For the nonlinear terms X t> - z t - X t°+ T t
RN o and N 534088 , , 47752 ., 1431364 ,
My=e'=) A and Ny=ei=) B, 105~ 105~ 35
, n=0 . . . n=0 33476 160448 2194432
the Adomian polynomials are given in [8-10] as follows: + 315 x8t8 + 31 t® + 189 x2t?
Ao =%, 107648 , , 6375424 , ., 243968 .,
= 0 —_ —_
e 1 16334 ) 16364 245
A, = (yz +zy12) eYo, + 5 x6¢11 4 o1 x8¢12,

1
A =(y + Y1y +—y3)ey°, ’
3 R The 1 and etc., obtaining the rest of the iterations in this manner.

1 1 ; ; PR
A, = (y4 + iyzz +y,ys + Zylzy2 + ny) eYo, As a result, the series form of the approximate solution is

bo(x,t) = z Yo (x, )

and

By = e¥o/? 2 1 2
1 /2 = —2x2t+x4t2—§x6t3+5x8t4—§x10t5
B, =5 y.e¥’%, 1 2
21 11 +=x12¢6 — —x1%t7 + 0(x16t8).
B, = ( ¥, +__yz) eYo/2 3 7
% 212 2171 L 1’ This series has the closed form asn — oo gives —2In(1 + tx?),
B, = (_ ey, e 3>eJ/0/2’ ie.
3 123'3 22 yiyz 233171 . Vevaet (6 8) = —2In(1 + tx?),
B, = [—y n l(_yz +yy ) i _lyzy which is the exact solution of the problem 5.
L VA TRV IR Rty VIl Th et In Table 5 show a comparison of the numerical results applying

+i41y14] eYo/2, the LT-ADM (¢o(x,t)) and the Padé approximants (PA) of
zt4 order [4/4] with the exact solution (ygac (x, t)) obtained

Following the algorithm (52), the iterations are given by
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_ pa(x)
q4(x)

pa(X) = ag + a;x + ayx? + azx® + a,x*t,
= —0.000005854846 — 0.200005222322x2

—0.006872376973x*,

qs(x) = 14 byx + byx? + byx3 + byx*,

= 1.00 + 0.084428707272x% + 0.000906357179x*,

In Figure 12, a very good agreement is shown between the exact
solution (Vg qc: (x, t)) with a continuous line and the LT-ADM
(¢po(x, t)) with the symbol o. In Figure 13, we present the
contour plot in 2D on the (x, t) — plane for the exact solution

(Vxace (x,t)) and the LT-ADM (¢q(x, t)).

Table 1. Numerical results for problem 1 at t = 0.5

x Yexact (%, 1) be(x,t) AE, PA[6/6] AE,

0.0 1.615146296 1.615128202 1.809E-05 1.615128202 1.809E-05
0.1 1.631378786 1.631360511 1.827E-05 1.631360511 1.827E-05
0.2 1.681061667 1.681042835 1.883E-05 1.681042835 1.883E-05
0.3 1.767251541 1.767231744 1.979E-05 1.767231744 1.979E-05
0.4 1.895391737 1.895370504 2.123E-05 1.895370504 2.123E-05
0.5 2.073888896 2.073865663 2.323E-05 2.073865665 2.323E-05
0.6 2.315036695 2.315010761 2.593E-05 2.315010779 2.591E-05
0.7 2.636429497 2.636399962 2.953E-05 2.636400142 2.935E-05
0.8 3.063094068 3.063059754 3.431E-05 3.063061112 3.295E-05
0.9 3.630700259 3.630659586 4.067E-05 3.630668038 3.222E-05
1.0 4.390422827 4.390373644 4.918E-05 4.390418917 3.910E-06

Table 2. Numerical results for problem 2 at t = 0.5

x YExact(%,£) Pe(x, 1) AE, PA[6/6] AE,

0.0 1.648721270 1.648697916 2.335E-05 1.648697916 2.335E-05
0.1 1.675291194 1.675267606 2.358E-05 1.675267606 2.358E-05
0.2 1.756006862 1.755982555 2.430E-05 1.755982555 2.430E-05
0.3 1.893988415 1.893962862 2.555E-05 1.893962862 2.555E-05
0.4 2.094792334 2.094764928 2.740E-05 2.094764928 2.740E-05
0.5 2.367000016 2.366970029 2.998E-05 2.366970028 2.998E-05
0.6 2.723160693 2.723127219 3.347E-05 2.723127211 3.348E-05
0.7 3.181234472 3.181196351 3.812E-05 3.181196272 3.819E-05
0.8 3.766768365 3.766724074 4.429E-05 3.766723507 4.485E-05
0.9 4.516173712 4516121214 5.249E-05 4516117882 5.583E-05
1.0 5.481689070 5.481625587 6.348E-05 5.481608881 8.018E-05
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Table 3. Numerical results for problem 3 att = 0.5

x Yexace (X, ) d3(x, 1) AE, PA [8/8] AE,
0.0 0.606530659 0.606510416 2.024E-05 0.606510416 2.024E-05
0.1 0.613626394 0.613605947 2.044E-05 0.613605947 2.044E-05
0.2 0.639283645 0.639262576 2.106E-05 0.639262576 2.106E-05
0.3 0.690650250 0.690628100 2.214E-05 0.690628100 2.214E-05
0.4 0.775770322 0.775746567 2.375E-05 0.775746567 2.375E-05
05 0.903800783 0.903774790 2.599E-05 0.903774790 2.599E-05
0.6 1.085358235 1.085329220 2.901E-05 1.085329220 2.901E-05
0.7 1.333049833 1.333016790 3.304E-05 1.333016790 3.304E-05
0.8 1.662273798 1.662235408 3.839E-05 1.662235401 3.839E-05
0.9 2.092425114 2.092379609 4.550E-05 2.092379557 4.555E-05
1.0 2.648721270 2.648666244 5.502E-05 2.648665905 5.536E-05

Table 4. Numerical results for problem 4 at t = 0.5

x Yexace (X%, ) ds(x,t) AE, PA[6/6] AE,
0.0 1.250000000 1.250000000 0.0 1.250000000 0.0
0.1 1.251000500 1.250997162 3.337E-06 1.250997162 3.337E-06
0.2 1.258032085 1.258025566 6.519E-06 1.258025566 6.519E-06
0.3 1.277367802 1.277358691 9.111E-06 1.277358691 9.111E-06
0.4 1.316092398 1.316082178 1.022E-05 1.316082176 1.022E-05
05 1.383148453 1.383140361 8.092E-06 1.383140306 8.146E-06
0.6 1.491102379 1.491103020 6.417E-07 1.491102126 2.524E-07
0.7 1.659168761 1.659190908 2.214E-05 1.659180849 1.208E-05
0.8 1.918625110 1.918691962 6.685E-05 1.918604294 2.081E-05
0.9 2.323006564 2.323156969 1.504E-04 2.322516691 4.898E-04
1.0 2.968281828 2.968573358 2.915E-04 2.964422966 3.858E-03
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Table 5. Numerical results for problem5at t = 0.1

X yExact(xl t) ¢9 (xv t) AEl PA [4/4'] AEZ
0.0 0.000000000 -0.000005854 5.854E-06 -0.000005854 5.854E-06
0.1 -0.001999000 -0.002004901 5.900E-06 -0.002004901 5.900E-06
0.2 -0.007984042 -0.007990064 6.021E-06 -0.007990064 6.021E-06
03 -0.017919482 -0.017925649 6.167E-06 -0.017925649 6.167E-06
0.4 -0.031746698 -0.031752948 6.250E-06 -0.031752948 6.250E-06
05 -0.049385225 -0.049391374 6.149E-06 -0.049391374 6.148E-06
0.6 -0.070734287 -0.070739994 5.707E-06 -0.070739990 5.702E-06
07 -0.095674658 -0.095679407 4.748E-06 -0.095679387 4.728E-06
0.8 -0.124070781 -0.124073881 3.099E-06 -0.124073810 3.028E-06
0.9 -0.155773077 -0.155773712 6.353E-07 -0.155773497 4.201E-07
1.0 -0.190620359 -0.190617702 2.657E-06 -0.190617129 3.230E-06
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Fig. 1. Plot of ”l’;;;ﬁuz forn=0,1,..,8att = 0.5
nllz
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Fig. 2. Plot of yg,qc: (x, ) and ¢ (x, t) at t = 0.5
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Fig. 5. Plot the Yg,qc: (%, t) and ¢g(x, t) at t = 0.5
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Fig. 6. The contour plot in 2D (x, t) — plane for
Yexace (%, t) and ¢ (x, t)
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Fig. 13. The contour plot in 2D (x, t) — plane for yg.c: (x, t) and ¢o(x, t)

IV. CONCLUSIONS

Models of singular 1VPs of Emden-Fowler of partial
differential equations have been successfully solved using the
Laplace Transform-Adomian decomposition method. The
LT-ADM has a larger range of applications because of how
well it handled these models. Without the need of
transformation formulae or constraining assumptions, the
LT-ADM proposal has been applied directly. The LT-ADM
solution procedure is compatible with approaches that
provide analytical approximation in the literature. The LT-
ADM method has been put to the test by using it to find
approximate-exact answers for five problems. The outcomes
gained in each situation show how reliable and effective this
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Fig. 12. Plot of yg,ac:(x, t) and ¢po(x, t) at t = 0.1

strategy is. It has been demonstrated that error monotically
decreases with the integer n being increased.

Acknowledgement

The author would express they're thanks to College of
Computer Science and Mathematics, University of Mosul
to support this report.

References

[1]. H. T. Davis, Introduction to Nonlinear Differential and Integral
Equations, Dover Publications, New York, (1962).

[2]. S.Chandrasekhar, Introduction to the Study of Stellar Structure, Dover
Publications, New York, (1967).



Al-Rafidain Journal of Computer Sciences and Mathematics (RJICM), Vol. 17, No. 2, 2023 (79-92)

[3]. O. U. Richardson, The Emission of Electricity from Hot Bodies,
Longman's Green and Company, London, (1921).

[4]. Abdul-Majid Wazwaz, Analytical solution for the time-dependent
Emden-Fowler type of equations by Adomian decomposition method,
Appl. Math. Comput. 166 (2005), 638-651.

[5]. Randhir Singh and Abdul-Majid Wazwaz, Numerical solution of the
time dependent emden-fowler equations with boundary conditions
using modified decomposition method, Applied Mathematics &
Information Sciences, 10(2) (2016) 403-408.

[6]. Waleed Al-Hayani, Laheeb Alzubaidy and Ahmed Entesar, Solutions
of Singular IVP’s of Lane-Emden type by Homotopy analysis method
with Genetic Algorithm, Appl. Math. Inf. Sci., 11(2) (2017), 1-10.

[7]. Waleed Al-Hayani, Laheeb Alzubaidy and Ahmed Entesar, Analytical
solution for the time-dependent Emden-Fowler type of equations by
Homotopy analysis method with Genetic Algorithm, Applied
Mathematics, 8 (2017), 693-711.

[8]. Adomian G., Nonlinear Stochastic Operator Equations. Academic
Press, New York (1986).

[9]. Adomian G., Nonlinear Stochastic Systems Theory and Applications
to Physics. Kluwer Academic Publishers, Dordrecht, (1989).

[10]. Adomian G., Solving Frontier Problems of Physics: The
Decomposition Method. Kluwer Academic Publishers, Dordrecht,
(1994).

[11]. Waleed Al-Hayani, Luis Casasis, The Adomian decomposition
method in turning point problems, Journal of Computational and
Applied Mathematics, 177 (2005), 187-203.

[12]. Afrah S. Mahmood, Luis Casasls, Waleed Al-Hayani, The
decomposition method for stiff systems of ordinary differential
equations, Applied Mathematics and Computation, 167 (2005), 964—
975.

[13]. Afrah S. Mahmood, Luis Casasus, Waleed Al-Hayani, Analysis of
resonant oscillators with the Adomian decomposition method, Physics
Letters, A 357 (2006), 306-313.

[14]. Yasir Khan and Waleed Al-Hayani, A Nonlinear Model Arising in the
Buckling Analysis and its New Analytic Approximate Solution, Z.
Naturforsch. 68a, (2013), 355-361.

[15]. Abdul-Majid Wazwaz, R. Rach, Jun-Sheng Duan, Adomian
decomposition method for solving the Volterra integral form of the
Lane-Emden equations with initial values and boundary conditions,
Appl. Math. Comput. 219 (2013), 5004-5019.

[16]. Waleed Al-Hayani, Adomian decomposition method with Green’s
function for solving twelfth-order boundary value problems, Applied
Mathematical Sciences, 9(8), (2015), 353-368.

[17]. Mkhatshwa, Musawenkhosi P., Motsa, Sandile S. and Sibanda,
Precious., Numerical solution of time-dependent Emden-Fowler
equations using bivariate spectral collocation method on overlapping
grids, Nonlinear Engineering, 9(1), (2020), 299-318.

[18]. Naveen S. Malagi, P. Veeresha, B.C. Prasannakumara, G.D. Prasanna
and D.G. Prakasha, A new computational technique for the analytic
treatment of time-fractional Emden—-Fowler equations, Mathematics
and Computers in Simulation, 190, (2021), 362-376.

[19]. A. Yildirm, T. Ozis, Solutions of singular IVPs of Lane-Emden type
by the variational iteration method, Nonlinear Anal. 70 (2009), 2480-
2484.

[20]. Abbaoui K. and Cherruault Y., Convergence of Adomian’s method
applied to differential equations, Math. Comput. Model. 28 (5) (1994),
103-109.

[21]. Abbaoui K. and Cherruault Y., Convergence of Adomian's method
applied to nonlinear equations, Math. Comput. Model. 20 (9) (1994),
69-73.

[22]. Abbaoui K. and Cherruault Y., New ideas for proving convergence of
decomposition methods, Comput. Math. Appl. 29 (7) (1995), 103-108.

[23]. Cherruault Y. and Adomian G., Decomposition methods: a new proof
of convergence, Math. Comput. Model. 18 (12) (1993), 103-106.

[24]. Guellal S. and Cherruault Y., Practical formula for calculation of
Adomian’s polynomials and application to the convergence of the
decomposition method, Int. J. Biomed Comput. 36 (1994), 223-228.

92

Hlesa Jad laa gl Jolad) 48y b g (LY 935 (s gan
4 jad) A laldnl) e slaall B b g8 e BILAN) A4 Y )
Oaeily daaa dabld dlal) g
i sall drala /cibpdly N1 9 @ gaalal) o gle A4l

fatima.21csp40@student.uomosul.edu.iq
waleedalhayani@uomosul.edu.ig

2023/06/15 Jsill s 2023/05/2 S e b5

uadlall

Emden- ¢ 5t ¢ 4l Aboaliill cialaall ¢ Candl 134 b

QLA & gLl iy oo sall g sil) e Y alaall 5 6 e 3aa34l) Fowler

O ad) A8y yha 5 Y dysad aladiul Gllai el a3y = () 2ie

ZoaEtl) o BaM aladiul Qe = 0 e (pad galll DIKT il o glu il

T sl Y ALl 3 Jelis ilia Jae L) il sl Aalal

LSl il s a5 amy 3 Aalise 8 JSLE (pe Ailide o) 5 4380

el 138 ek 48 55 g dlla S 8

Jasnd 48y 5k cda sall £ 65 (e Aabaa ¢l g paay) Aalaa dualidal) cilalsl)

Ol 93l 3 gan il 4K ¢l o) DA Ay yha ¢ DY


https://www.sciencedirect.com/journal/mathematics-and-computers-in-simulation
https://www.sciencedirect.com/journal/mathematics-and-computers-in-simulation
https://www.sciencedirect.com/journal/mathematics-and-computers-in-simulation/vol/190/suppl/C
mailto:fatima.21csp40@student.uomosul.edu.iq

	Article information  Abstract
	II. APPLICATIONS OF LT-ADM TO EMDEN-FOWLER OF PDES
	III. APPLICATIONS AND NUMERICAL RESULTS
	Acknowledgement
	References


