The n-Hosoya Polynomials of the Square of a Path and of a Cycle

Ahmed M. Ali
ahmedgraph@uomousl.edu.iq

Department of Mathematics
College of Computer Science and Mathematics
University of Mosul, Mosul, Iraq

Received on: 02/06/2013
Accepted on: 16/09/2013

ABSTRACT

The n-Hosoya polynomial of a connected graph G of order t is defined by:

\[H_n(G; x) = \sum_{k=0}^{\delta_n(G)} C_n(G,k)x^k \]

Where, \(C_n(G,k) \) is the number of pairs (v,S), in which |

\[|S| = n - 1, \quad 3 \leq n \leq t, \quad v \in V(G), \quad S \subseteq V(G) \]

such that \(d_n(v,S) = k \), for each \(0 \leq k \leq \delta_n = \text{diam}_n(G) \).

In this paper, we find the n-Hosoya polynomial of the square of a path and of the square of a cycle. Also, the n-diameter and n-Wiener index of each of the two graphs are determined.

Keyword: n-diameter, n-Hosoya polynomial, n-Wiener index, path square and cycle square.
1. Introduction:

The \textbf{n-distance} \cite{1} in a connected graph $G = (V, E)$ of order t is the minimum distance from a singleton, $v \in V$ to an $(n-1)$-subset S, $S \subseteq V$, $3 \leq n \leq t$, that is, $d_n(v, S) = \min \{d(v, u) : u \in S\}$, $3 \leq n \leq t$.

It is clear that $d_n(v, S) = 0$ when $v \in S$,
\[d_n(v, S) \geq 1 \] when $v \not\in S$.

The \textbf{n-Wiener index} of a connected graph $G = (V, E)$ is the sum of the minimum distances of all pairs (v, S) in the graph G, that is:
\[W_n(G) = \sum_{(v, S) \in V \times S, |S| = n-1} d_n(v, S), \quad 3 \leq n \leq t. \]

The \textbf{n-diameter} of G is defined by:
\[\text{diam}_n G = \max \{d_n(v, S) : v \in V(G), |S| = n-1, S \subseteq V(G)\}. \]

Now, let $C_n(G, k)$ be the number of pairs (v, S), $|S| = n-1, 3 \leq n \leq t, v \in V$, $S \subseteq V$, such that $d_n(v, S) = k$, for each $0 \leq k \leq \delta_n = \text{diam}_n(G)$, then the \textbf{n-Hosoya polynomial} of G is defined by:
\[H_n(G; x) = \sum_{k=0}^{\delta_n} C_n(G, k)x^k. \]

We can obtain the n-Wiener index of G from the n-Hosoya polynomial of G as follows:
\[W_n(G) = \frac{d}{dx} H_n(G; x) \Big|_{x=1} = \sum_{k=1}^{\delta_n} k C_n(G, k). \]

For a vertex v of a connected graph G, let $C_n(v, G, k)$ be the number of $(n-1)$-subsets S of vertices of G such that $d_n(v, S) = k$, for $n \geq 3, 0 \leq k \leq \delta_n$. The \textbf{n-Hosoya polynomial} of the vertex v, denoted by $H_n(v, G; x)$, is defined as:
\[H_n(v, G; x) = \sum_{k=0}^{\infty} C_n(v, G, k)x^k. \]

It is clear that for all $k \geq 0$,
\[\sum_{v \in V(G)} C_n(v, G, k) = C_n(G, k), \]
and
\[\sum_{v \in V(G)} H_n(v, G; x) = H_n(G; x). \]

For more information about these concepts, see the References \cite{1, 2, 5, 6}.

The next lemma will be used in proving our results.

\textbf{Lemma 1.1:} \cite{1} Let v be any vertex of a connected graph G. If there are r vertices of distance $k \geq 1$ from v, and there are s vertices of distance more than k from v, then, for $n \geq 3$, ...
The n-Hosoya Polynomials of the Square of a Path and of a Cycle

\[C_n(v, G, k) = \binom{r+s}{n-1} - \binom{s}{n-1}. \]

...(1.1)

Definition 1.2: Let G be a connected non-trivial graph. The square G^2 of the graph G, introduced by Harary and Ross [7], has $V(G^2) = V(G)$ with u, v adjacent in G^2, whenever $1 \leq d_G(u,v) \leq 2$.

Notice that the square of complete graph, star graph, wheel graph, complete bipartite graph are complete graphs.

In [1,2,3,4], the n-Hosoya polynomials for many special graphs and many compound graphs are obtained. In this paper, we continue such works by obtaining the n-Hosoya polynomials of the square of paths and cycles.

2. The n-Hosoya Polynomial of the Square of a Path:

In this section, we obtained the n-Hosoya polynomial of the square P_t^2 of a path P_t of order t. We shall consider two main cases of P_t^2 according to the parity of t.

First Case: Even t, $t = 2r$, $r \geq 2$.

Let $P_t: u_1, u_2, u_3, \ldots, u_t$, then P_t^2 is shown in Fig.2.1, and by relabeling its vertices, we have Fig. 2.2 for P_{2r}^2.

Second Case: If t is odd, then there exists an integer r such that $t = 2r + 1$. The graph P_t^2 is shown in Fig.2.3.
Theorem 2.1: For \(t \geq 5 \) and \(n \geq 2 \), let \(r = \left\lfloor \frac{t}{2} \right\rfloor \), then,

\[
\text{diam}_n(P^2_t) = \begin{cases}
 r + 1 - \left\lfloor \frac{n}{2} \right\rfloor, & \text{for even } t, \\
 r + 1 - \left\lceil \frac{n}{2} \right\rceil, & \text{for odd } t.
\end{cases}
\]

Proof:

(1). Let \(t \) be even, then \(t = 2r \).

From Fig.2.2, we notice that \(\text{diam}(P^2_{2r}) = d(v_1, v_{r+1}) = r \), then \(\text{diam}_n(P^2_{2r}) = d_n(v_1, S) \), \(n \geq 2 \), where \(S \) consists of the first \(n-1 \) vertices from the sequence \(\{v_{r+1}, v_r, v_{r+2}, v_{r+3}, v_{r+4}, \ldots, v_2, v_1\} \).

Thus, if \(n \) is even, then

\[
S = \{v_{r+1}, v_r, v_{r+2}, v_{r+3}, v_{r+4}, \ldots, v_{r+\frac{n}{2}}, v_{r+\frac{n}{2}+1}\}, n = 4, 6, 8, \ldots, 2r.
\]

So, \(d_n(v_1, S) = r + 1 - \frac{n}{2} \).

If \(n \) is odd, then

\[
S = \{v_{r+1}, v_r, v_{r+2}, v_{r+3}, v_{r+4}, \ldots, v_{r+\frac{n+1}{2}}, v_{r+\frac{n+1}{2}+1}\}, n = 3, 5, 7, \ldots, 2r-1.
\]

So, \(d_n(v_1, S) = r + 1 - \frac{n+1}{2} \).

Therefore, \(\text{diam}_n(P^2_{2r}) = r + 1 - \left\lfloor \frac{n}{2} \right\rfloor \), for all \(n \geq 2 \).

(2). Let \(t \) be odd, then \(t = 2r+1 \).

From Fig.2.3, we notice that \(\text{diam}(P^2_{2r+1}) = d(v_1, v_{r+1}) = r \) (or \(d(v_1, v_{r+2}) \), or \(d(v_{2r+1}, v_{r+1}) \)), then \(\text{diam}_n(P^2_{2r+1}) = d_n(v_1, S) \), \(\lceil S \rceil = n-1, n \geq 2 \), where \(S \) consists of the first \(n-1 \) vertices from the sequence \(\{v_{r+1}, v_{r+2}, v_r, v_{r+3}, v_{r+4}, \ldots, v_2, v_1\} \).

Thus, if \(n \) is odd, then

\[
S = \{v_{r+1}, v_{r+2}, v_r, v_{r+3}, v_{r+4}, \ldots, v_{r+\frac{n-1}{2}}, v_{r+\frac{n+1}{2}}\}, n = 3, 5, 7, \ldots, 2r+1.
\]

So, \(d_n(v_1, S) = d(v_1, v_{r+\frac{n-1}{2}}) = r + 1 - \frac{n-1}{2} \).

If \(n \) is even, then

\[
S = \{v_{r+1}, v_{r+2}, v_r, v_{r+3}, v_{r+4}, \ldots, v_{r+\frac{n}{2}}, v_{r+\frac{n}{2}+1}\}, n = 4, 6, 8, \ldots, 2r.
\]

So, \(d_n(v_1, S) = d(v_1, v_{r+\frac{n}{2}}) = r + 1 - \frac{n}{2} \).

Therefore,

\[
\text{diam}_n(P^2_{2r+1}) = r + 1 - \left\lceil \frac{n}{2} \right\rceil, \text{ for all } n \geq 2.
\]
Remark: Throughout this work, we assume that \(\left(\frac{a}{b} \right) = 0 \), if \(a < b \).

Theorem 2.2: For any \(n \geq 3 \), the n-Hosoya polynomial of \(P_i^2 \), \(t \geq 6 \), is given by:

\[
H_n(P_i^2;x) = \sum_{k=0}^{\delta_n} C_n(P_i^2,k)x^k,
\]

Where, \(\delta_n = \text{diam}_n(P_i^2) \),

\[
C_n(P_i^2,0) = \binom{t-1}{n-2}, \quad \text{...}(2.2.1)
\]

\[
C_n(P_i^2,1) = \binom{t-1}{n-1} - 2\left[\binom{t-3}{n-1} + \binom{t-4}{n-1} \right] - (t-4)\binom{t-5}{n-1}, \quad \text{...}(2.2.2)
\]

\[
C_n(P_i^2,k) = 2\left[\binom{t-2k}{n-1} + \binom{t-2k+1}{n-1} + (t-4k+2)\binom{t-4k+3}{n-1} \right]
- 2 \sum_{i=0}^{2} \binom{t-4k+i}{n-1} - (t-4k)\binom{t-4k-1}{n-1}, \quad 2 \leq k \leq \left[\frac{\delta_n}{2} \right]. \quad \text{...}(2.2.3)
\]

\[
C_n(P_i^2,k) = 2\left[\binom{t-2k}{n-1} + \binom{t-2k+1}{n-1} \right], \quad \left[\frac{\delta_n}{2} \right] + 1 \leq k \leq \delta_n. \quad \text{...}(2.2.4)
\]

Proof: It is clear that \(C_n(P_i^2,0) = \binom{t-1}{n-2} \).

From Fig.2.2, we notice that in \(P_i^2 \), there are two vertices of degree 2, two vertices of degree 3, and \(t - 4 \) vertices of degree 4. Thus, using formula (1.4.5) in [1], we obtain (2.2.2).

For each vertex \(w \) and given \(k \), let

\[
S_1(w,k) = \{ v \in V : d(w,v) = k \} ,
\]

\[
S_2(w,k) = \{ v \in V : d(w,v) > k \} .
\]

First, we shall prove (2.2.3) and (2.2.4) for **even** \(t \), assuming \(t = 2r \), \(r \geq 4 \). It is clear, from Fig. 2.2, that for \(n \geq 3 \),

\[
C_n(v_i,P_i^2,k) = C_n(v_{i+1},P_i^2,k), \quad \text{...}(2.2.5)
\]

for \(i = 1,2, \ldots, r \). Therefore, for \(2 \leq k \leq \delta_n \),

\[
C_n(P_i^2,k) = 2 \sum_{i=1}^{r} C_n(v_i,P_i^2,k). \quad \text{...}(2.2.6)
\]

Now, let \(2 \leq k \leq \left[\frac{\delta_n}{2} \right] \), in which \(\delta_n \) is determined by Theorem 2.1, that is

\[
\delta_n = r + 1 - \left[\frac{n}{2} \right].
\]

Since, \(n \geq 3 \), then \(\delta_n \leq r - 1 \), for \(r \geq 4 \).
But, in proving (2.2.3), we assume that $\delta_n \geq 4$.

According to the given value of k, we partition $\{v_1,v_2, \ldots, v_r\}$ into the following four cases:

(1). For $i = 1,2, \ldots, k$, we notice, from Fig. 2.2, that:

$S_t(v_i,k) = \{v_{i+k},v_{2r+2-i-k}\}$,

$S_2(v_i,k) = V(P_t^2) - \{v_1,v_2, \ldots, v_{r+k},v_{2r+2-i-k},v_{2r+3-i-k}, \ldots, v_{2r}\}$.

Thus,

$|S_t(v_i,k)| = 2$, $|S_2(v_i,k)| = t+1-2k-2i$.

So, by Lemma 1.1, we have, for $i = 1,2, \ldots, k$,

$C_n(v_i,P_t^2,k) = \binom{t+3-2k-2i}{n-1} - \binom{t+1-2k-2i}{n-1}$. \hspace{1cm} \text{(c1)}$

(2). For $i = 1,2, \ldots, k-1$, we obtain, from Fig. 2.2,

$S_t(v_{r+1-i},k) = \{v_{r-i+1},v_{r+k+1}\}$,

$S_2(v_{r+1-i},k) = V(P_t^2) - \{v_{r-k+i+1},v_{r-k+i+2}, \ldots, v_{r},v_{r+1}, \ldots, v_{r+2k}\}$.

Thus,

$|S_t(v_{r+1-i},k)| = 2$, $|S_2(v_{r+1-i},k)| = t-2k-2i$.

So, using Lemma 1.1, we obtain, for $i = 1,2, \ldots, k-1$,

$C_n(v_{r+1-i},P_t^2,k) = \binom{t+2-2k-2i}{n-1} - \binom{t-2k-2i}{n-1}$. \hspace{1cm} \text{(c2)}$

(3). For v_{r-k+1}, we have

$S_t(v_{r-k+1},k) = \{v_{r+1},v_{2r+2-k},v_{r+1-2k}\}$,

$S_2(v_{r-k+1},k) = V(P_t^2) - \{v_{r+2k+1},v_{r+2k+2}, \ldots, v_{r},v_{r+1}, \ldots, v_{r+2k}\}$.

Thus,

$|S_t(v_{r-k+1},k)| = 3$, $|S_2(v_{r-k+1},k)| = t-4k$.

So, using Lemma 1.1, we get,

$C_n(v_{r-k+1},P_t^2,k) = \binom{t+3-4k}{n-1} - \binom{t-4k}{n-1}$. \hspace{1cm} \text{(c3)}$

(4). For $i = k+1,k+2, \ldots, r-k$,

$S_t(v_i,k) = \{v_{i-k},v_{i+k},v_{2r+k-i+1},v_{2r-k-i+2}\}$,

$S_2(v_i,k) = V(P_t^2) - \{v_{i-k},v_{i-k+1}, \ldots, v_{i+k},v_{2r-k-i+2},v_{2r-k-i+3}, \ldots, v_{2r+k-i+1}\}$.

Thus,

$|S_t(v_i,k)| = 4$, $|S_2(v_i,k)| = t-4k-1$.

Therefore, using Lemma 1.1, we get, for $i = k+1,k+2, \ldots, r-k$,

$C_n(v_i,P_t^2,k) = \binom{t-4k+3}{n-1} - \binom{t-4k-1}{n-1}$. \hspace{1cm} \text{(c4)}$

Thus, from (2.2.6) and summing up the formulas (c1)-(c4) we get for $2 \leq k \leq \left\lfloor \frac{\delta_n}{2} \right\rfloor$.

18
The n-Hosoya Polynomials of the Square of a Path and of a Cycle

$$C_n(P^2, k) = 2 \left\{ \sum_{i=1}^{k} \left[\frac{(t + 3 - 2k - 2i)}{n - 1} - \frac{(t + 1 - 2k - 2i)}{n - 1} \right] + \sum_{i=1}^{k} \left[\frac{(t + 2 - 2k - 2i)}{n - 1} - \frac{(t - 2k - 2i)}{n - 1} \right] + \left(\frac{t - 4k + 3}{n - 1} \right) - \left(\frac{t - 4k}{n - 1} \right) + (r - 2k) \left[\frac{(t - 4k + 3)}{n - 1} - \frac{(t - 4k - 1)}{n - 1} \right] \right\}. $$

$$= 2 \left\{ \left[\frac{(t - 2k + 1)}{n - 1} \right] - \left[\frac{(t - 4k + 1)}{n - 1} \right] + \left[\frac{(t - 2k)}{n - 1} \right] - \left[\frac{(t - 4k + 2)}{n - 1} \right] + \left(\frac{t - 4k + 3}{n - 1} \right) - \left(\frac{t - 4k}{n - 1} \right) \right\}. $$

Now, we give the proof of (2.2.4) for $\left\{ \frac{\delta_n}{2} \right\} + 1 \leq k \leq \delta_n$. Here, we have two cases:

(a). For $i = 1, 2, \ldots, r - k$,

$$S_i(v, k) = \{ v_{r + i}, v_{2r + 2 - i - k} \},$$

$$S_2(v, k) = V(P^2) - \{ v_1, v_2, \ldots, v_{r + k}, v_{2r + 2 - i - k}, v_{2r + 3 - i - k}, \ldots, v_{2r} \}. $$

Thus,

$$|S_i(v, k)| = 2, \quad |S_2(v, k)| = t + 1 - 2k - 2i. $$

So, by Lemma 1.1, we have, for $i = 1, 2, \ldots, r - k$,

$$C_n(v, P^2, k) = \left(\frac{t - 2k - 2i + 3}{n - 1} \right) - \left(\frac{t - 2k - 2i + 1}{n - 1} \right). $$

(b). For $v_{r + i - 1}, i = 1, 2, \ldots, r - k$, we have

$$S_i(v_{r + i - 1}, k) = \{ v_{r - k - i + 1}, v_{r + k + i} \},$$

$$S_2(v_{r + i - 1}, k) = V(P^2) - \{ v_{r - k - i + 1}, v_{r - k - i + 2}, \ldots, v_{r}, v_{r + 1}, \ldots, v_{r + k + i} \}. $$

Thus,

$$|S_i(v_{r + i - 1}, k)| = 2, \quad |S_2(v_{r + i - 1}, k)| = t - 2k - 2i. $$

So, by Lemma 1.1, we have, for $i = 1, 2, \ldots, r - k$,

$$C_n(v_{r + i - 1}, P^2, k) = \left(\frac{t - 2k - 2i + 2}{n - 1} \right) - \left(\frac{t - 2k - 2i}{n - 1} \right). $$

Therefore, using (2.2.6) and summing up (d1) and (d2), we get for $\left\{ \frac{\delta_n}{2} \right\} + 1 \leq k \leq \delta_n$.

19
\[C_n(P_t^2, k) = 2 \left(\sum_{i=1}^{t-1} \left(\begin{array}{c} t-2k-2i+3 \\ n-1 \end{array} \right) - \left(\begin{array}{c} t-2k-2i+1 \\ n-1 \end{array} \right) \right) + \sum_{i=1}^{t-1} \left(\begin{array}{c} t-2k-2i+2 \\ n-1 \end{array} \right) - \left(\begin{array}{c} t-2k-2i \\ n-1 \end{array} \right) \right) \\
= 2 \left[\left(\begin{array}{c} t-2k+1 \\ n-1 \end{array} \right) - \left(\begin{array}{c} t-2r+1 \\ n-1 \end{array} \right) + \left(\begin{array}{c} t-2k \\ n-1 \end{array} \right) - \left(\begin{array}{c} t-2r \\ n-1 \end{array} \right) \right] \\
= 2 \left[\left(\begin{array}{c} t-2k+1 \\ n-1 \end{array} \right) + \left(\begin{array}{c} t-2k \\ n-1 \end{array} \right) \right], \text{ because } n \geq 3. \\
\]

Second, the proofs of (2.2.3) and (2.2.4) for odd \(t, \ t = 2r+1, \ r \geq 3, \) are similar to the proofs of (2.2.3) and (2.2.4) for even \(t. \)

Hence, the proof of the Theorem is completed.

Corollary 2.3: The \(n \)-Wiener index of \(P_t^2 \) is given by:

\[W_n(P_t^2) = t \left(\begin{array}{c} t-1 \\ n-1 \end{array} \right) - 2 \left(\begin{array}{c} t-3 \\ n-1 \end{array} \right) + \left(\begin{array}{c} t-4 \\ n-1 \end{array} \right) - (t-4) \left(\begin{array}{c} t-5 \\ n-1 \end{array} \right) + \sum_{k=2}^n \delta C_n(P_t^2, k), \]

in which

\[C_n(P_t^2, k) = 2 \left[\left(\begin{array}{c} t-2k \\ n-1 \end{array} \right) + \left(\begin{array}{c} t-2k+1 \\ n-1 \end{array} \right) \right] + (t-4m+2) \left(\begin{array}{c} t-4k+3 \\ n-1 \end{array} \right) \\
- 2 \sum_{i=0}^{n-2} \left(\begin{array}{c} t-4k+i \\ n-1 \end{array} \right) - (t-4k) \left(\begin{array}{c} t-4k-1 \\ n-1 \end{array} \right), 2 \leq k \leq \left\lfloor \frac{\delta}{2} \right\rfloor, \]

\[C_n(P_t^2, k) = 2 \left[\left(\begin{array}{c} t-2k \\ n-1 \end{array} \right) + \left(\begin{array}{c} t-2k+1 \\ n-1 \end{array} \right) \right] + \left\lfloor \frac{\delta}{2} \right\rfloor + 1 \leq k \leq \delta. \n\]

3. The \(n \)-Hosoya Polynomial of the Square of a Cycle:

There are many classes of connected graphs \(G \) in which for each \(k, \ 1 \leq k \leq \delta, \)
\(C_n(v, G, k) \) is the same for every vertex \(v \in V(G); \) such graphs are called [2] vertex-\(n \)-distance regular graphs, and for the given value of \(n, \ 2 \leq n \leq t, \)
\(H_n(G; x) = tH_n(v, G; x), \) where \(v \) is any vertex of \(G \) and \(t \) is the order of \(G. \)

The graph \(C_t^2 \) is the square of a cycle of order \(t, \) shown in Fig. 3.1. We shall find the \(n \)-diameter, \(n \)-Hosoya polynomial, and \(n \)-Wiener index of \(C_t^2. \)
The n-Hosoya Polynomials of the Square of a Path and of a Cycle

Fig. (3.1) The Cycle Square C_t^2, $t \geq 6$.

Lemma 3.1: $\text{diam}_n(C_t^2) = \delta_n = 1 + \left\lfloor \frac{t - n}{4} \right\rfloor$, $n \geq 2$, $t \geq 6$.

Proof: Let $m = \left\lfloor \frac{t}{4} \right\rfloor$, then $t = 4m + r$, $r = 0, 1, 2, 3$.

For $r = 2$, C_t^2 is redrawn in Fig. 3.2.

Since, C_t^2 is vertex n-distance regular graph, then $\text{diam}_n(C_t^2) = e_n(v_i)$.

To find the n-eccentricity of v_i, we partition $V(C_t^2) - \{v_i\}$ into $S_1, S_2, \ldots, S_{m+1}$, where

$S_1 = \{v_2, v_3, v_1, v_{i-1}\}$,

$S_2 = \{v_4, v_5, v_{i-2}, v_{i-3}\}$,

$S_3 = \{v_6, v_7, v_{i-4}, v_{i-5}\}$,

\cdot

$S_j = \{v_{2j}, v_{2j+1}, v_{i-2(j-1)}, v_{i-2j+1}\}$,

\cdot

$S_m = \{v_{2m}, v_{2m+1}, v_{i-2m+2}, v_{i-2m+1}\}$,

$S_{m+1} = V(C_t^2) - \left(\bigcup_{j=1}^{m} S_j \cup \{v_i\}\right)$.

Ahmed M. Ali

Fig. (3.2). The Cycle Square C_t^2, $t = 4m + 2$, $m \geq 1$.

It is clear that each vertex of S_j, $1 \leq j \leq m$, is of (standard) distance j from v_1; and each of the other vertices (if exists) of C_t^2 (here in Fig. 3.2, we have \{v_{2m+2}\} = S_{m+1}$) is of the distance $m+1$ from v_1. Notice that if $t = 4m+1$, then S_{m+1} is empty, and if $t = 4m$, then S_{m+1} is empty and S_m consists of three elements; if $t = 4m+2$, $t = 4m+3$, then S_{m+1} consists of one, respectively two, elements.

Let k be the greatest positive integer such that the set $\bigcup_{i=k}^{m+1} S_i$ consists of at least $(n-1)$ vertices. Therefore, since $|S_i| \leq 4$.

$$4(k-1)+1+(n-1) \leq t,$$

$$4k \leq t-n+4,$$

$$k \leq \frac{t-n}{4}+1.$$

Therefore, $\text{diam}_n(C_t^2) = k = 1 + \left\lfloor \frac{t-n}{4} \right\rfloor$, (\because k is positive integer). #

Theorem 3.2: For any $n \geq 3$, the n-Hosoya polynomial of C_t^2, $t \geq 6$ is given by:

$$H_n(C_t^2; x) = \left(t-1 \right)_{n-2} + \sum_{k=1}^{\delta_n-1} \left(\binom{t-4k+3}{n-1} - \binom{t-4k-1}{n-1} \right) x^k + C_n(C_t^2, \delta_n)x^{\delta_n},$$

Where, $C_n(C_t^2, \delta_n)$ is determined in Remark 3.3, and δ_n is determined by Lemma 3.1.

Proof: Let S be a set of (n-1) vertices of $V(C_t^2)$ such that $v_1 \not\in S$, $v_i \in V(C_t^2)$ and $d_n(v_1, S) = k$, $2 \leq k \leq \delta_n-1$. Hence, S does not contain any vertex from \{v_{t-2k+3}, \ldots, v_{t-1}, v_1, v_2, v_3, \ldots, v_{2k-1}\}, (see Fig. 3.1), but S must contain, at least,
one vertex of \(\{ v_{2k}, v_{2k+1}, v_{t-2k+2}, v_{t-2k+1} \} \). Then, the number of vertices in \(C_{t}^2 \) of distance more than \(k \) from \(v_i \) is \((t-4k-1)\) and there are four vertices in \(C_{t}^2 \) of distance \(k \) from \(v_i \). Hence, by Lemma 1.1,

\[
C_n(v_i, C_{t}^2, k) = \binom{t - 4k + 3}{n - 1} - \binom{t - 4k - 1}{n - 1}, \quad \text{for } 2 \leq k \leq \delta_n - 1.
\]

Moreover, it is clear that

\[
C_n(v_i, C_{t}^2, 1) = \binom{t - 1}{n - 1} - \binom{t - 5}{n - 1}.
\]

Since \(C_n(v_i, C_{t}^2, k) = C_n(v_i, C_{t}^2, k), \ 2 \leq i \leq t, \) then

\[
C_n(C_{t}^2, k) = \begin{cases}
\binom{t - 4k + 3}{n - 1} - \binom{t - 4k - 1}{n - 1}, & \text{for } 1 \leq k \leq \delta_n - 1.
\end{cases}
\]

Remark 3.3: From Fig. 3-2, we can easily obtain \(C_n(C_{t}^2, \delta_n) \), for \(n \geq 3 \).

1. If \(t = 4m + 3 \), then,

\[
C_n(C_{t}^2, \delta_n) = \begin{cases}
t, & n = 3 \end{cases}; \quad n \geq 4.
\]

2. If \(t = 4m + 2, \ 4m + 1 \), then,

\[
C_n(C_{t}^2, \delta_n) = \begin{cases}
\binom{t - 4\delta_n + 3}{n - 1} - \binom{t - 4\delta_n - 1}{n - 1}, & n \geq 3.
\end{cases}
\]

3. If \(t = 4m \), then,

\[
C_n(C_{t}^2, \delta_n) = \begin{cases}
\binom{3}{n - 1}, & n = 3, 4 \end{cases}; \quad n \geq 5.
\]

Corollary 3.4: The \(n \)-Wiener index of \(C_{t}^2 \) is given by:

\[
W_n(C_{t}^2) = \sum_{k=1}^{\delta_n} k C_n(C_{t}^2, k), \quad \text{where } C_n(C_{t}^2, k), \ 1 \leq k \leq \delta_n \text{ is given in Theorem 3.2 and Remark 3.3}.
\]
REFERENCES

