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ABSTRACT
The main objective of this paper is the development of a
new parallel integration algorithm for Solving Boundary Value
Problem (BVPs) in Ordinary Differential Equation, (ODESs). This
algorithm is suitable for running on MIMD computing systems.
We will analysis the stability and error control of the developed
algorithm .We shall also consider the treatment of stiff boundary
value problems by developed technique.
Keywords: Ordinary Differential Equation (ODEs), parallel
integration algorithm, stability, error control, stiff boundary value
problems.

Abialil) ctalaall (2 dua Al al) Jilowad Bauds Algia e lgd
daliey)

Tupdl) LS
eagall deals
2002/09/01 :0) gsdl 5 2002/02/16 D5 s
seildl
prdll Bilse ol Ljlgie B203s ddpha skt g8 (o)l Canll 130 Caa
e Alsie laals & 2ill el dualaeY) doboalinl) Vsl 8 dsesanl
Lrald uhpy o L (aaly of (o8 Baaatie Clibee @) Sliuls) MIMD g50
222 83 Gk oAbl Gaead w39 dapbll Usall e )kl 4]

47



Bashir M. Khalaf

A ylally Adlal) Lasiil) ardl) Jilese dallee st LS . pan )l Jolally clinedl)
Sl

b Alsie Aanla (AalaeY) Ll calall ¥ alaal) rdgalidal) alalsl)
Adlal) desianll il Jile (Uadll e k)

Introduction

Numerical solution of BVPs in ODEs is a very active
research area. Mostly the numerical solution of these problems
takes a lot of computer time, specifically, if the integration
interval is very large or if the system describing the problem
consists of a large number of differential equations or if the
problem is a stiff problem (consult the following references for
more detail Cash (1995), Khalaf (1988, 1990), Khalaf and Al-
Wajih (2000), Khalaf and Al-Murshid (2000). Hence the
objective of this research is the development of a new parallel
algorithm which combines parallel integration processes with
parallel interpolation to estimate the unknown BCs.

The developed algorithm is suitable for running on a
MIMD (Multiple instruction streams with Multiple Data streams)
computer (Flynn (1972)), Khalaf, (1990), Meiko (1989), and
Khalaf (1995)).

MIMD Computer Consists of several processors, each
processor has its own memory and processing unit. These
processors communicate through a suitable communication
network. (for more detail, see Meiko (1989), Khalaf (1990), Al-
Wajih (1999) and Al-Murshid (2000)). In MIMD computer each
processor can carry out its own set of instructions, often on its
own set of data, independently of all the other processors. Such
computers usually number their (more complex) processors in
tens rather than thousands that may be found in SIMD (Single
Instruction Stream with Multiple Data Stream) computers.
MIMD computers are well suited to algorithmic parallelism in
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which problems can be separated into concurrent independent
processors (Brocklehurs, 1992).

1-The Numerical Methods for BVPs:

The well - known numerical methods for solving BVPs in ODEs
are:

1) Finite difference methods (Fd), ii) shooting methods and iii)
collocation methods. Finite difference methods based on dividing
the given interval of the independent variable by nodes and then
approximating the differential equation by a given finite
difference formulas at each node and this will produce a set of
algebraic equations mostly non - linear which can be solved by
Newton iteration or one of its alternatives (for more detail see
Khalaf (1988)). To get accurate results by using these methods
we have to increase the number of nodes which will produce a
great number of algebraic equations which increase the
complexity of the solution and takes a lot of computer time.
Mostly, the iteration process will diverge because the
approximation processes at the nodes will create noisy data and
this noise can be accumulated by iteration processes and render
the solution meaningless.

Shooting methods based on dividing the integration
interval to n subintervals. At the beginning of each subinterval,
values estimated for the given dependent variables then the
ODEs of the problem integrated in the subinterval, by using the
estimated values and then at the end of each subinterval the
corresponding estimated and integrated values of corresponding
depended variables are matched, i.e. at the end of each
subinterval matching functions are defined. The estimated values
can readjusted by Newton iteration or one of its alternatives. The
problem with these methods is that the estimated values need to
be very close to real solution, otherwise the iteration processes
will diverge. (For more detail see for example Keller (1988),
Khalaf (1988, 1990)). For Collocation methods see Asher et al.
(1.988), and Khalaf (1997)) based on approximating the solution
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of the ODE by a linear combination of a set of independent
simple functions. The coefficients of the combination can be
estimated ( using the boundary conditions BCs and substituting
the differentiation of the approximate solution at given nodes of
the independent interval) by Newton methods or by some other
iterative methods. Hence the iteration will diverge at most if
there are noises or error in combination coefficients so that we
try here to develop a new method for solving BVDs in ODEs
which uses integration’s and interpolation instead of iteration
processes. The new methods are more suitable for running on
MIMD computers, (see KLhalaf and Matti (2001) and Khalaf
and Sawoor (2002)

2-The new method:
Let us consider a two point BVP (this will not affect the
generality of the method):
y'=1fxyy).y@=ayb)=8xe(ab) (21)
The above problem can be reduced to the following system.
Y1=Y,
y2 =f(x,y1,¥),y:(@)=a,y(b) = B (2.2)

To integrate system (2.2) in the interval (a,b) we need a
value of y,(a) which is unknown. To get this value, we proceed
as follows:

Process 1: estimate a value S; for y,(a) and integrate the system
(2.2) in the interval (a,b), we get yi(b) =- m;.

Process 2: estimate another different value 82 for y2(a) and
integrate the system (2.2) in the interval (a,b), we get yi(b) =my,
and so on

Process n: estimate another different value Sn for y,(a) and
integrate the system (2) in the interval (a,b) , we get yi(b) =m..
Hence we get the following table of data:
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Y2 (a) So Sl 52 - - Sn

y1(b) Mo m; mp - - mh
we can write the above table as:

y1(b) Mo m; m; - -
Mp

yo(a) So S1 S, - - Sn

Then by using Newton divided difference formula for
interpolation,we can find the value of y,(a) corresponding to

y1(b)=p by:

p(B)=So+(B-mo)A So+ (p-mo) (P-ml) A 28 +. ..
+( B -Mo)( B-m)... (B -Mns) A "So

And the approximate value of y;(a) corresponding
to y1(b)= B is y2(a)=p(B)

3-Parallelising of the Algorithm

It is clear from the last section that the integration
processes 1,2,3,..,n are independent processes. Hence each
integration process can be carried out in a processor, i.e. each
integration process can be assigned to one of the processors of a
MIMD computer, which consists of p processors. If p>n then
integration processes can be speeded up by Sy=n, where S;, is the

speed-up factor and defined as follows:

Total execution time of the task in a single processor

S, =
P Total time of the execution of the task in p processors
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iIf p<n and n/p=r (r is a positive integer) then the
integration processes can be speeded-up approximately by the
factor Sp=r. It is also clear that finding A.S,, A.Si, ...,\.Sy.1 are
independent processors, so that they can be calculated
simultaneously. Calculation of A2S,, APS:... A?S,, are
independent so that they can be calculated in parallel and the
higher order calculation AXS;, i=0,1,...,n-k, k=3,...,n, S;=S(m;) can
be done similarly.

4-Testing the new method
In this section we try to show the effectivenesses of the
new method for solving linear BVVPs and non - linear BVPs:
Example (I): (Linear Problems)
y"=-y' +2y,y(0)=l, y(l)=e, y=e*
We can reduce the problem to the following form:
= Y2 yi
=-y2+2yly;
y1(0)=1
yi(1)=e
To integrate the above system by the new method, we give
the following values for y,(0): -1,0,2,3, and we integrate the

system by Euler method using step size h=0.5 we get the
following table:

Si=y,(0) -1 0 2 3
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Mi=yi(1) 0.75 15 3 3.75

We rewrite the above table as:

y1(1) y2(0) AB;

0.75 1 AB,=1.333

15 0

3 ) Ab,=1.333
AB,=1.333

3.75 3

y2(0)=-1+(e-0.75)(1.33)+0=1.624
Where the exact value of y2(0) is 1.

The accuracy of the final value of y,(0) can be increased
by reducing the step size and increasing the number of
estimations or the accuracy can be increased by using higher
order integration methods.

Example (2): (a non - linear problem) Consider the following

nonlinear BVPs:
1

y"'=6y?, y(0)=0, y()=I, y(x) = x*

To integrate the system by the new method we need estimation
for the unknown BC which is y'(0). The result obtained by the
method for y'(0) is 0.671 and the exact value is 0. The accuracy
of the result can be increased by: i) reducing the step size h. ii) by
increasing the number of estimation and iii) by using a higher
order integration method.

Example (3):

Let us consider the BVP:

y"=-xy'+3y+4.2x , y(0) - 0, y(1)=1.9, y{x)=x3 +0.9x
We can reduce the problem to the following form:
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y1=y2 y1(0)=0

y5, =-Xy,+3y,+4.2X y1()=1.9

This example can be solved by section (2) to get the value:
y2(2)=Yy2(0)=0.597992, where the exact value is y,(0)=0.9, i.e. the
error of the solution is 0.302008.

5-Improving the method by using higher order integration
methods

To solve example (1) by the method we give the following
value for y2(0): -1,0,2,3 using forward integrating process but we
integrate the system by a higher-order method, such as, fourth
order R-K method using step size h=0.5 ,we get the following
results:

Si=y»(0) -1 0 2 3

0471 | 1571 3771 | 4.871
Mi=y1(l)

We rewrite the above tables as:

Y1(0) |Y2(0) AS, AZS, AS,
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0.471 |-1 0.90909
1.571 |0 0.9090 0
0.9090 0
3.77 |2 0
4871 |3

P(B)=So+(B-Mo)A So+ (B -Mo) (B -mi) A *So+( B -mo)( B-mi) (B —
my) A3So

= _1+(e-0.471)(0.9090909)+0

-.p(B)=1.043

And since the exact value of y,(0) is 1, i.e. the error of this
method is 4.29817x102,

So that the effectiveness of a higher-order integration method is
Clear.

6-Improving the method by backward integration
techniques:

To improve the performance of the parallel integration and
interpolation method for BVPs , we have used Backward
integrating processes to estimate the value of unknown boundary
condition (BC) y2(a) . This improvement is done by integrating
the system from b to a by using negative step size - h,h >0 .
The 2nd - order boundary - value problem (BVP):

y'=f(x,y,y) . a<x<b

y(@)=a,y(0)=p (6.1)
Can be reduced to a system of equations of the form :
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yi= Y2 y1(@) = a
=f(x,yn, ¥2)  yi(b)=B vy,

To integrate system (6.2) in the interval (a,b) we need a
value of y,(a) Which is unknown. To get this value we proceed
as follows:

Process (I): estimate a value S; for y,(b) and integrate the system
(6.2) from b to a by using negative step size-h , h > 0 i.e. using
one of the single-step method such as Euler method, we get:

y2(8) =n

Process (2): estimate another different value S, for y,(b) and
integrate the system (6.2) from b to a by using negative stepsize
-h,h>0 i.e. using one of the single-step method such as Euler
method, we get y,(a) =r, ,and so on

Process (n): estimated another different value Sn for y,(b) and
integrate the system (6.2) from b to a by using negative step size
-h,h>0 i.e. using one of the single-step method such as Euler
method, we get y,(a) =1,

Hence we get the following table of the data:

Syab) |Se S |S: |.. s
ri=yi(a)

o ‘rl ‘rz ‘ In

Then by using Newton divided difference formula for
interpolation we can find the value of y,(a) corresponding to
y1(b) = B. Here we do not need the conversion of the table.
Y2=p(B)=ro+( B -So) A 1o +( B -So)( B -Si) A ro+...+

(B-So)(B-S1)(B-S2)...(B-Sn-1)An "'ro and the approximate
value of y2(a) corresponding to yi(b)= B is y2(a)=p(p)

6-1 Parallelising of the Backward integration algorithm
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It is clear from the last section that the integration
processes 1,2,3,..., n are independent processes. Hence each
integration process can be carried out in a processor, i.e. each
integration process can be assigned to one of the processor of a
MIMD computer that usually number their processors in tens
rather than thousands that may be found in single instruction
stream with multiple data stream computers, which consists of p
processors, if p>n then integration processes can be speeded-up
by Sp=n, where Sp is the speed-up factor and defined as follows:

Total execution time of the task in single processor

p=

Total time of the execution of the task in p processors

If p<n and n/p=m (m is a positive integer) then the
integration processes can be sped up by the factor Sy=m. It is also
clear that finding A ro, A r1,..., A 1 are independent processors,
so that they can be calculated simultaneously. Calculations of A2
lo, A% 11,..., A? 1,1 are independent so that they can be calculated
in parallel and the higher order calculations A* r;, k=3,...,n, r; =
r(Si) can be done similarly.

6.2 Testing of the newly developed method Example(4):

Let us consider the BVP of example (1).

y'=-y+2y  y(0)=l, y(l)=e, y(x)=¢"

which can be reduced to the following systems

yi=y2  yi(0)=1

y5=-y2+2y, yi(1)=e

To integrate the above system by using backward integrating
process, we give the following values for y,(b)=y»(l)=-1,0,2,3
and integrate the system by Euler method using negative step
size —h,h=0.5>0 and x,=b=1.0 ;

Xi=Xo-h=0.5 ;

Xo=a=x;-h= 0.0, we get the following results:
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Si=y2(b)=y.(l) |-1 0 2 3
Ri-y2(a)=y2(0)  |-9.5457 -6.7957 -1.2957  1.4543

Y2(b) y2(a) Ar Ar AT

-1| -9.5457
0| -6.7957 ;;g 0 0
2 -1.2957 2'75 0
1.4543 '

3

~.y2(2)=y2(0)=p(p)=-9.5457+(e+1)(2.75)+0 =0.67957

The error of this newly method is 0.32043 and the
effectiveness of this technique is clear from the comparison of

the errors, where the error of the forward integrating process is
0.624.

Example (5): (a non-linear problem) If we have he
following BVP:

y'=y®-yy'  ,1<x<2
1 1 1

1= = == =

V0= 5 Y@= Y0 = g

The value of y2(a) by using forward integrating process is
0.7548172 and the exact value is 0. To integrate the system
by the newly developed method that uses backward
integrating process: first, reduce the BVP to the following
system:

, 1

y1= Y2 yi(h)= 3
, 1
V2= yi Ve Yi2)= 3
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So x,=b=2.0
X1=Xo-h= 1.5
x2=a=x1—h= 1.0
By estimating the following values for y,(b)=y2(2)= -
1,0,2,3; and integrating the system by Euler method with

negative step size -h, h=0.5>0, we get the following results:
Si=y2(b)=y2(2) |-1 0 2 3

Ri=y2(a)=y2(l)  |-0.98071004 -0.033950617 3.2345678 6.3063256

S I ATy AT A3,
-1 -0.98071004 0.94675943
0 0.03950617 ' 0.2291666
1.6342592 0.302083
2 3.2345678 30717578 1.4374986
3 6.3063256 '

P(B)=Yy2(a)-y2(1)=0.1597225, this value which is obtained by
backward integrating process is more accurate than that obtained
by forward integrating process , y»(a)= 0.7548172, compared
with the exact value 0.

6.3-Improving the performance of the backward integration
process:

The accuracy of the results that are obtained by backward
integration process can be increased by increasing the number of
estimations provided that A?r; , A1, ..., Afr;, k=2,... ,n-l are not
equal to zero.

Example (6):
Let us consider the non- linear BVVP of example (5).

y' =y -y, 1<x<2
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1

_1 _1 _
y(1)= > Y(2)= 3  Y(X) = m

where the estimation value for yz(b) that have been used is:

y2(b)=-1,0,2,3
In this example we will increase the number of estimations for

y2(b) by: y2(b)-y2(2)= -9,-4,-2,-1,0,2,3
and, also, integrate the system by Euler method with negative
step size -h, h=0.5>0, we get

Si=y2(b) ‘ -9 -4 -2 -1 0 2 3

ri=yz(a) -41.5547 -7.7407  -1.9691 -9.8071E-01 -0.0339 3.2345 6.3063

Table (1): This table gives the values of A r;, k=l,...,6 which are

used to find y»(a)
Si Ri A A%r; A%r, A' ASH A,
9 -415547
6.7658
477407 -0.6442
2.2533 0.0396 )
2 Lo omes o SR
1 oosmr ' 20021x102 21859107 s
S ' 3.2113X10°
0.0208 2.5707x10°
e o 4.7916x10°
. . x10"
0 0w 0.2291 03020
) 1.6342 :
3.2345 Laara
3.0717
3 63063

We get y»(a) = p(B) = 0.08576546
Hence, increasing the number of estimations increases the

accuracy of the method.
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7.Stability and Convergence Analysis of the Method:

It is clear that the developed method consists of two
stages: stage of integration and stage of interpolation. Stability of
the integration stage is well discussed by many authors and
researchers such as Lambert (1974), Henrici (1962), Gear (1971)
Conte and de Boor (1981) and others.

To control the induced instability, we have to use methods
of integration whose finite difference equations are of the same
order as the order of differential equation (for more detail see for
example Khalaf (2000). To control the inherent instability we
have to use multiple shooting or by using backward integration
(for more detail see khalaf (2000)).

Another way for controlling the phenomena of instability
of the numerical integration methods is improving the stability
interval of the methods by using the principle of the fixed point
iterations. This technique is used successfully by Khalaf and
Abdulah (2000, 2001)) and then used by Khalaf and Mahmood
(2001) for developing new methods for solving chaotic systems.

It is well known that (see Lambert (1974))
Stability + consistent —, convergence of the integration

method, hence we can control the convergence character of the
integration stage very easily.

We have no stability problem in the stage of interpolation.
Hence there is no convergence problem in this stage. We only
need the interpolation to be as accurate as possible by increasing
the number of estimations and using higher order polynomials to
interpolate the unknown boundary condition, i.e. we need in
interpolation stage to reduce the error of interpolation. This can
be done easily because the error of the interpolation at tlie point
X is given by Conte and de Boor (1981):

(n+1) n
en (0)=F(R)—po () ) [(x—x))

(n+1)! j=0
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Where f(x) is a real-valued function defined on [a,b],
differentiable (n+1) times on (ab), P.(x) a polynomial
interpolates f(x) at (n+1) distinct points Xo, Xi,....Xn in [a,b],
¢ =¢(X) e (a,b) and x € (a,b). It is clear from the form of en(X)
that the error of interpolation decreases as the number of
estimations increases. Hence, we can increase the accuracy of the
method by increasing the number of estimations and using
accurate convergent integration method. Now we can state the
following:

Proposition: The new method is convergent if the integration
stage is convergent and the interpolation stage is accurate.

8- Treatment of Stiff Boundary Value Problem by the New
Methods:

Let us consider the following Boundary value Problem:
y" +100ly' + 1000y =0, y(0) =1, y(l) = e

Whose general solution is

y(x):Ae'X + Be-lOOOx

Hence the exact solution is: y(x)=e™ The
problem can be rewritten as first-order system

Yi=Y, y1(0)

=-1001y,-1000y; yi(l)=ey,

Solving the above system by Runge-Kutta of order4, we
have to use step-size h<0.0028, i.e. h is for stability reasons
restricted by the most rapidly changing component of the
solution, namely %% The standard multistep methods would
similarly restrict the step h.
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Use implicit methods such as trapezoidal method, whose
region of stability is the entire negative half-plane, so that h is
unrestricted by the stability requirement (see Gear (1971)). But
solving the problem by trapezoidal method will lead to a system
of algebraic equations which can be solved by fixed-point
iterations or by Newtonian iteration, which increases the
complexity of the method as well as these two techniques
converge under hard conditions. So to be out of the new problem
we can modify the explicit Runge-Kutta method of order 4,
which that we can use a larger h. The standard Runge-Kutta of
order 4 is:

Yna = ¢(Xn Yo h)
which is the fixed-point formula:
y=¢(x,y,h)
We can write the above formula as:
>Oy:¢(x,y,h)+ah o
(1+a)
The new iteration formula of Runge-Kutta becomes:

Using this new formula for solving the above stiff problem
we require h to be 1000h<2.8(l+a). In case a=0.9, h<0.00532,
which is about two times larger than that used by standard
Ruuge-Kutta. Any how using oc»l, will change the convergence
requirement of the method (for more detail the reader can consult
the following references Khalaf and Abudullah (2000), (2001)).
9- Conclusions:

We have developed a new parallel integration algorithm
for solving boundary value problems suitable for MIMD
computing systems. We showed how the results of the method
can be improved by increasing the number of estimations and
using backward parallel integrations.

The stability and error control of the method are well
analysed. The treatment of the stiff boundary value problems is
considered and we have developed explicit integration algorithms
for solving these stiff boundary value problems.
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