EPS & EPUS Step-size Control for Linear Multistep Method

Abbas Y. Al-Bayati Ann J. Al-Sawoor Abbas H. Taqi
profabbasalbayati@yahoo.com

College of Computer sciences and Mathematics College of Science
University of Mosul, Iraq University of Kirkuk

Received on: 09/11/2004 Accepted on: 27/12/2004

ABSTRACT

In this paper we consider step-size control in one class of Adams linear multi-step methods for Ordinary differential equation. Theoretical results are presented for Adam-Bashforth-Moulton formula using both Error-per-step (EPS) & Error-per-Unit -Step (EPUS) controls. These obtained by considering a 2D system of the form:

\[
\frac{dQ_0}{dh} = Q_2 \\
\frac{dQ_2}{dh} = q(h)
\]

where

\[
Q_2(h) = \int_0^h (h-s)q(s)ds \quad \text{for } h \geq 0 \text{ and }
\]

\[
q(s) = \prod_{i=0}^{k-2}(s+t_n-t_{n-i}) = \prod_{i=0}^{k-2}(s+\Psi_i) , \quad \Psi_i = t_n - t_{n-i}
\]

Keywords: Ordinary differential equation, Adam-Bashforth-Moulton formula.

The control of the step size for the multistep linear methods used for solving Ordinary differential equation. Theoretical results are presented for Adam-Bashforth-Moulton formula using both Error-per-step (EPS) & Error-per-Unit -Step (EPUS) controls. These obtained by considering a 2D system with the following ODEs:

\[
\frac{dQ_0}{dh} = Q_2 \\
\frac{dQ_2}{dh} = q(h)
\]

where

\[
Q_2(h) = \int_0^h (h-s)q(s)ds \quad \text{for } h \geq 0 \text{ and }
\]

\[
q(s) = \prod_{i=0}^{k-2}(s+t_n-t_{n-i}) = \prod_{i=0}^{k-2}(s+\Psi_i) , \quad \Psi_i = t_n - t_{n-i}
\]

Keywords: Ordinary differential equation, Adam-Bashforth-Moulton formula.

The control of the step size for the multistep linear methods used for solving Ordinary differential equation. Theoretical results are presented for Adam-Bashforth-Moulton formula using both Error-per-step (EPS) & Error-per-Unit -Step (EPUS) controls. These obtained by considering a 2D system with the following ODEs:

\[
\frac{dQ_0}{dh} = Q_2 \\
\frac{dQ_2}{dh} = q(h)
\]

where

\[
Q_2(h) = \int_0^h (h-s)q(s)ds \quad \text{for } h \geq 0 \text{ and }
\]

\[
q(s) = \prod_{i=0}^{k-2}(s+t_n-t_{n-i}) = \prod_{i=0}^{k-2}(s+\Psi_i) , \quad \Psi_i = t_n - t_{n-i}
\]
Abbas Y. Al-Bayati _ Ann J. Al-Sawoor and Abbas H. Taqi

\[Q_s(h) = \int_0^h (h - s)q(s)ds \quad \text{for } h \geq 0 \]

\[q(s) = \prod_{i=0}^{k-2} (s + t_n - t_{n-i}) = \prod_{i=0}^{k-2} (s + \Psi_i), \quad \Psi_i = t_n - t_{n-i} \]

1. INTRODUCTION:

Two of the most popular families of multistep methods are the so-called Adams families, which are based on the exact integrating polynomials. One family (Adams-Bashforth) leads to explicit methods; the other (Adams-Moulton) leads to implicit methods [1],[3].

Linear multi-step methods (LMM) form the basis of a wide range of ODE integrators. Whereas they are often very efficient in advancing the integration, the implementation of suitable stepsize selection strategies can be non-trivial. Given a user specified error-per-step, or error-per-unit-step, a nontrivial polynomial equation must in general be solved, to obtain a suitable step-size \(h^* \) for the following step.

Wille in 1994 [4], Numerical Analysis Report No.247, showed that applied to Predictor-Corrector schemes, one natural error estimate may be obtained by comparing the values yielded by the corrector and predictor Stages

\[P_{k+1,n+1}(t) = P_{k,n+1}(t) + \prod_{i=0}^{k-1} (t - t_{n-i}) f^{k}[t_{n+1}, \ldots, t_{n-k+1}] \]

by an expression of the form

\[f^{k}[t_{n+1}, \ldots, t_{n-k+1}] \prod_{i=0}^{k-1} (t - t_{n-i}) dt \]

Obtained by

\[\frac{dQ}{dh} = q(h) \]

\[Q(a) = Q_a \]

and its transformed analogue

\[\frac{dh}{dQ} = \frac{1}{Q(H(Q))} \]

\[h(Q_a) = a \]

in this paper we consider the 2D system of the form:
\[\frac{dQ_1}{dh} = Q_2 \]
\[\frac{dQ_2}{dh} = q(h) \]

where \(Q_i(h) = \int_0^h (h-s)q(s)ds \) for \(h \geq 0 \) and

\[q(s) = \prod_{i=0}^{k-2} (s + t_n - t_{n-i}) = \prod_{i=0}^{k-2} (s + \Psi_i) \quad , \quad \Psi_i = t_n - t_{n-i} \]

2. ADAMS FORMULA:
2.1- Predictor-Corrector Schemes: [4], [2]
Given an ODE

\[y'(t) = f(t,y(t)) \]

the \(k \)-th order Adams-Bashforth and \((k+1) \)-th order Adams-Moulton methods to advance a numerical solution \(\{\tilde{y}_i \approx y(t_i)\} \) across a step \([t_n, t_{n+1}] \) may be written as

\[\tilde{y}_{n+1} = \tilde{y}_n + \int_{t_n}^{t_{n+1}} P_{k,n}(t)dt \]

and

\[\tilde{y}_{n+1} = \tilde{y}_n + \int_{t_n}^{t_{n+1}} P_{k+1,n+1}(t)dt \]

Respectively, where \(P_{ij} \) is the \((i-1) \)-th degree polynomial defined by the function values \(\{f_i \equiv f(t_i, \tilde{y}_i)\} \) at the points \(\{t_j, t_{j-1}, \ldots, t_{j-i+1}\} \). Such formulae are usually used in predictor-corrector pairs [5]. Denoting the Adams-Bashforth estimate \(\tilde{y}_{n+1}^P \), the predictor \((P_k) \), and using this value in the definition of \(P_{k+1,n+1} \) by the second formula we obtain a new value \(\tilde{y}_{n+1}^C \) for \(y(t_{n+1}) \). We refer to this as the corrector \((C_{k+1}) \). The resulting Adams-Bashforth-Moulton scheme may be expressed \(P_kEC_{k+1}E \) where \(E \) denotes the intervening function evaluations and the subscripts, the order of the equations used.

2.2- An Error Estimate
Applied to the above scheme, one natural error estimate may be obtained by comparing the values by the corrector and predictor stages. That is
\[P_{k+1,n+1}(t) = P_{k,n+1}(t) + \prod_{i=0}^{k-1} (t-t_{n-i}) f^P[t_{n+1},\ldots,t_{n+k+1}] \]

By the expression of the form
\[f^P[t_{n+1},\ldots,t_{n-k+1}] \int \prod_{i=1}^{k-2} (t-t_{n-i}) dt \]

where \(f^P[t_{n+1},\ldots,t_{n-k+1}] \) here denotes the \((k+1)\)-st Newton divided difference through the points
\(\{ (t_i, y_i), (t_{n+1}, y_{p+1}) : i = n,\ldots,n-k+1 \} \)

2.3- EPS Stepsize Control:

Define
\[Q_i(h) = \int_0^h (h-s)q(s)ds \quad \text{for } h \geq 0 \]

and
\[q(s) = \prod_{i=0}^{k-2} (s+t_n-t_{n-i}) = \prod_{i=0}^{k-2} (s+\Psi_i) \quad , \quad \Psi_i = t_n-t_{n-i} . \]

Given a requested step tolerance \(\varepsilon \) and using an EPS error control strategy, to advance a step \([t_n,t_{n+1}]\) we would ideally choose \(h^* = t_{n+1} - t_n \) such that:
\[\sup_{0 < h \leq \varepsilon} |Q_i(h)f^P[t_{n+1},\ldots,t_{n+k+1}]| = \varepsilon \quad \text{........... (1)} \]

However, since no a priori \(f \)-information is known for the desired step, it is usual (assuming a slow variation in \(f^{(k)} \)) to approximate
\[f^P[t_{n+1},\ldots,t_{n-k+1}] \approx f[t_n,\ldots,t_{n-k}] \]

By the monotonicity of \(Q_i(h) \) for \(h \geq 0 \) it then suffices to solve:

\[Q_i(h^*) = \lambda^* \quad \text{............ (2)} \]

for (assuming \(f[t_n,\ldots,t_{n-k}] \neq 0 \), \(\lambda^* = \varepsilon / |f[t_n,\ldots,t_{n-k}]| \).

2.4- A Numerical Approach

To solve (2), differentiating with respect to \(h \) we note, however, that
\[Q'_i(h) = \int_0^h q(s)ds \]
and

\[Q_1^*(h) = q(h). \]

Given this, \(Q_1 \) may be redefined in terms of differential equation

\[
\begin{align*}
\frac{dQ_1}{dh} &= Q_2 \\
\frac{dQ_2}{dh} &= q(h)
\end{align*}
\]

for \(h \geq 0 \) given \(Q=0 \) where \(Q=[Q_1,Q_2]^T \).

Solving for \(h^* \) such that \(Q_1(h^*) = \lambda^* \) then reduces to a so-called g-stop problem [3]. Reversing coordinates

\[
\begin{align*}
\frac{dh}{dQ_1} &= \frac{1}{Q_2(h)} \\
\frac{dQ_2}{dQ_1} &= \frac{q(h)}{Q_2(h)}
\end{align*}
\]

and noting that \(h \) is monotone in \(Q_1 \) for \(Q_1>0 \), we observe however that given suitable starting values for \((a, Q(a)) \), integrating (4) across \([Q_1(a), \lambda^*] \) provides a simple direct expression for the required stepsize \(h^* = h(\lambda^*) \). This is our key advance. The direct solution of (4) in the Adams EPS case is, however, complicated by the singularity at \(h=0 \). As we now show, this does not occur for EPUS schemes: they are singularity free. Theoretically, it is hoped that equations of the form (4) may also provide insight into how new analytic stepsize estimators can be derived.

2.5 - EPUS Stepsize Control

To adapt the above error-per-step strategy to an error-per-unit-step (EPUS) strategy, we merely need replace (1) by an equation of the form:

\[
\sup_{0<h<h^*} \left| Q_1(h) f^p[t_{n+1}, t_n, ..., t_{n-k+1}] / h \right| = \varepsilon
\]

writing

\[
\tilde{Q}_1(h) = \begin{cases} Q_1(h) / h & : h > 0 \\ 0 & : h = 0 \end{cases}
\]

we now, following of the EPS case, consider equations of the form

\[
\tilde{Q}_1(h^*) = \lambda^*
\]
where \(\lambda^* \in \left| \int f^p [t_n, t_{n-1}, \ldots, t_{n-k}] \right| \).

Taking limits, and given that
\[Q_1'(s) = Q_2(s) \]
\[Q_2'(s) = q(s) \]
is strictly positive monotone increasing for \(h \geq 0 \), it thus follows that \(\tilde{Q}_1(h) \) is continuous for all \(h \geq 0 \).

We note
\[Q_1(h) = \int_0^h Q_2(s) ds = \int_0^h Q_1'(s) ds < h \max_{s \in [0,h]} Q_1'(s) = h Q_1'(h) \]
\[Q_2(h) = \int_0^h q(s) ds = \int_0^h Q_2'(s) ds < h \max_{s \in [0,h]} Q_2'(s) = h Q_2'(h) \]

for \(h \geq 0 \), and thus
\[0 \leq \lim_{h \to 0} \tilde{Q}_1(h) = \lim_{h \to 0} \frac{1}{h} Q_1(h) \leq \lim_{h \to 0} Q_1'(h) = 0 \]

Differentiating
\[\tilde{Q}_1'(h) = D_h \{ h^{-1} Q_1(h) \} \]
\[= -\frac{1}{h^2} Q_1(h) + \frac{1}{h} Q_1'(h) \]
\[= \frac{1}{h^2} [-Q_1(h) + hQ_1'(h)] \]

and using the result (7)
\[Q_1(h) < h Q_1'(h) \]
\[Q_2(h) < h Q_2'(h) \]

it follows that \(\tilde{Q}_1'(h) \) is strictly positive and so \(Q_1(h) \) \(\uparrow \) on \(h > 0 \). Defining
\[\left. \frac{1}{h^2} Q_1(h) \right|_{h=0} \quad \& \quad \left. \frac{1}{h^2} Q_2(h) \right|_{h=0} \]
as the \(\lim_{h \to 0} \frac{1}{h^2} Q_1(h) \) \(\& \lim_{h \to 0} \frac{1}{h^2} Q_2(h) \) respectively we note by Hopital's rule:
Given

\(Q'_1(h) / h = Q_2(h) / h = r_1(h) \)

\(Q'_2(h) / h = Q_2(h) / h = r_1(h) \)

\[
 r_1(h) = \frac{\hbar}{k-2} \sum_{i=1}^{k-2} (s - t_n - t_{n-1}) ds
\]

\[
 r_2(h) = \prod_{i=1}^{k-2} (h - t_n - t_{n-1})
\]

this implies

\[
 \tilde{Q}'_1(0) = \frac{1}{2} r_1(0) \quad \text{and} \quad \tilde{Q}'_2(0) = \frac{1}{2} r_2(0)
\]

which is strictly positive. Defining

\[
 F_1(x, y) = \begin{cases}
 -\frac{y}{x} + r_1(x) & : x > 0 \\
 1 & : x = 0 \\
 \frac{1}{2} r_1(x) & : x = 0
\end{cases} \quad \text{and} \quad F_2(x, y) = \begin{cases}
 -\frac{y}{x} + r_2(x) & : x > 0 \\
 1 & : x = 0 \\
 \frac{1}{2} r_2(x) & : x = 0
\end{cases}
\]

we can then obtain \(\tilde{Q}_1(h) \) \(\text{and} \) \(\tilde{Q}_2(h) \) by direct integration:

\[
 \tilde{Q}'_1(h) = F_1(h, \tilde{Q}_1(h)) \quad \text{and} \quad \tilde{Q}'_2(h) = F_2(h, \tilde{Q}_2(h))
\]

\[
 \tilde{Q}_1(0) = 0 \quad \text{and} \quad \tilde{Q}_2(0) = 0
\]

thus by (8)\&(9), \(\tilde{Q}'_1(h) \) \(\text{and} \) \(\tilde{Q}'_2(h) \) is strictly positive for all \(h \geq 0 \).

The above, and the coordinate reversed equation,

\[
 h'_1(\tilde{Q}_1) = \frac{1}{F_1(h(\tilde{Q}_1), \tilde{Q}_1)} \quad \text{and} \quad h'_2(\tilde{Q}_2) = \frac{1}{F_1(h(\tilde{Q}_2), \tilde{Q}_2)} \quad \text{h}(0) = 0
\]
are therefore singularity free. The validity of the boundary condition
\(h(0) = 0 \) relies on the continuity of (5). Re-expressing (6) as
\(\lambda^* \tilde{h}^* = Q_1(\tilde{h}^*) \)
is equivalent for \(\tilde{h}^* > 0 \) but introduces a trivial root at \(\tilde{h}^* = 0 \). Our representation
\(\lambda^* = Q_1(\tilde{h}^*) \) removes this.

CONCLUSION:

Theoretical results are presented for Adam-Bashforth-Moulton formula using both Error-per-step (EPS) & Error-per-Unit -Step (EPUS) controls. These obtained by considering a 2D system of the form:

\[
\frac{dQ_1}{dh} = Q_2 \\
\frac{dQ_2}{dh} = q(h)
\]

where \(Q_1(h) = \int_0^h (h - s)q(s)ds \) for \(h \geq 0 \) and

\[
q(s) = \prod_{i=0}^{k-2} (s + t_n - t_{n-i}) = \prod_{i=0}^{k-2} (s + \Psi_i) \quad , \quad \Psi_i = t_n - t_{n-i}.
\]
REFERENCES

