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ABSTRACT 

 We solved 
4 Klein-Gordon equation numerically by using two finite 

difference methods: The first is the explicit method and the second is the implicit 

(Crank-Nicholson) method. Also, we studied the numerical stability of the two 

methods using Fourier (Von Neumann) method and it has been found that the first 

method is simpler and has faster convergence while the second method is more 

accurate, and the explicit method is conditionally stable while the implicit method 

is unconditionally stable. 
Keywords: 

4 Klein-Gordon equation, finite difference methods, explicit method, 

implicit (Crank-Nicholson) method, numerical stability, Fourier (Von Neumann) 
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 4Gordon -Kleinطرائق الفروقات المنتهية لمعادلة  

 سعد عبد الله مناع                                  ليا هاويل 
 جامعة دهوك، كلية التربية، جامعة الموصل             كلية علوم الحاسوب والرياضيات

 24/12/2006تاريخ القبول:                                15/11/2006تاريخ الاستلام: 
 الملخص 

عدديا باستخدام طريقتين من طرائق الفروقات المنتهية : Gordon  -Klein 4تم حل معادلة 
ثم تمت دراسة   Crank-Nicholson)لطريقة الضمنية )الاولى هي الطريقة الصريحة والثانية هي ا

الاستقرارية العددية لكلتا الطريقتين وتبين من خلال دراسة الحل والاستقرارية بان الطريقة الصريحة هي 
الاسهل و الاسرع تقاربا من الطريقة الضمنية بينما الطريقة الضمنية هي الادق كذلك الطريقة الصريحة  

 الطريقة الضمنية مستقرة من دون شرط. مستقرة بشروط بينما 
، طرائق الفروقات المنتهية، الطريقة الصريحة، الطريقة Gordon  -Klein 4معادلةالكلمات المفتاحية: 

 .، التقاربالاستقرارية العددية،  Crank-Nicholson)الضمنية )
1. Introduction 

 Partial differential equations are used to formulate and solve 

problems that involve unknown functions of several variables, such as the 

propagation of sound or heat, electrostatics, electrodynamics, fluid flow, 

elasticity, or more generally any process that is distributed in space, or 
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distributed in space and time. Very different physical problems may have 

identical mathematical formulations [16]. 

There is a long history in physics and mathematics of trying to find 

new nontrivial solutions to nonlinear wave equations. The literature on the 

subject goes back at least as far as 1845 when Russell published a paper 

about a surface wave he witnessed traveling for almost two miles in a 

shallow water channel [4]. 

2. The Mathematical Model 

The Klein-Gordon equation, 
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 is one of the nonlinear extensions of the wave equation. For example, such 

an equation describes the vibration of a string that lies on an elastic 

foundation with nonlinear elastic forces. The elastic force density is 

describing by function ƒ(u) [9]. 

when ƒ(u) = sin(u), then equation (1) becomes sine-Gordon 

equation, which is found by Zabusky and kruskal in 1965. 

Fiore et al. (2005) gave arguments for the existence of exact 

travelling wave solutions of a perturbed sine Gordon equation on the real 

line or on the circle and classified them [5].      

If ƒ(u) = mu – εu3 then equation (1) becomes φ4-nonlinear Klein 

Gordon equation( φ4 equation )[2]: 
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with initial and boundary conditions [12] 

              u(x,0) = ƒ(x)  and  0
t

)0,x(u
=




   ,  2x0,0t    

              u(0,t) = u(2π,t) = 0. 

Equation (3) arises in quantum field theory with m denoting mass and ε is 

coupling constant [13]. 
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The φ4 equation was first proposed by Aubry , Krumhansl and 

Schrieffer in 1975 and 1976, to describe displacive and order-disorder 

transitions in solids, mainly magnetic compounds [15]. 

Sànchez et al. (1991) studied the propagation of topological solitons 

in a perturbed φ4 equation, by means of numerical simulations tested on 

exact predictions for this system. [1].   

Manna et al.  (1997) proved that the antikink solution of φ4 equation 

which was never obtained perturbatively can be obtained by perturbation 

expansion in the wave-number in the short-wave limit [10]. 

Nicolas in (2002) solved the global Cauchy problem for the φ4 

equation outside a black hole. Then using a Penrose compactificatin, he 

proved, in the mass less case, the existence of smooth asymptotic profiles 

and Sommerfeld radiation conditions, at the horizon and at null infinity, for 

smooth solutions [7]. 

Dmitriev et al. (2006) discussed some discrete φ4 equations free of 

the Peierls-Nabarro barrier and identified for them the full space of 

available static solutions, including those derived recently in Physics but not 

limited to them [3]. 

3. Derivation of Explicit Method for φ4  Equation 

    In this method we evaluate the unknown function up,q+1 at (tq+1) 

depending on the known function up+1,q, up,q, up-1,q   at (tq) and up,q-1 at (tq-1) . 

We start by partition the rectangle  R ={ (x,t) : 0 ≤ x ≤ 2π, 0 ≤ t ≤ b} into a 

grid consisting of  (n-1) by (m-1) rectangles with sides ∆x = h and ∆t = k 

[11]: 

 

 Start at the bottom row, where t = t1 = 0 and the solution is known to 

be   u(xp,t1) = ƒ (xp) . 

we shall use a difference equation method to compute  approximations 

              {up,q : p = 1,2,…,n} in successive rows for q = 2,3,…,m} 

Now equation (3) becomes : 

                2

1q,pq,p1q,p

k

uu2u −+ +−
  =  2

q,1pq,pq,1p

h

uu2u −+ +−
 – mup,q+ εu3

p,q      

             up,q+1  – 2up,q   + up,q-1= 
2

2

h

k
[ up+1,q – 2up,q+ up-1,q ]– k2mup,q+ k2εu3

p,q                 

putting  r = k/h 
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       up,q+1  – 2up,q   +up,q-1 = r2(up+1,q–2up,q+ up-1,q) – k2mup,q+ k2εu3
p,q          

       up,q+1 = r2(up+1,q + up-1,q) + (2 – 2r2 – k2m + εk2u2
p,q)up,q – up,q-1     ...(4) 

Equation (4) represent the explicit difference approximation for  4 

equation, where it is employed to find the row (q+1) across the grid where 

the approximation in both rows (q) and  

(q–1) are known. The four known values on the right side up,q-1, up-1,q  , up+1,q 

and up,q which are used to create the approximation up,q+1. 

In order to find the computations we need to find the  values of the 

second row as t = t2,  putting q = 1  in equation (4) yields               

              up,2 = r2(up+1,1 + up-1,1) + (2 – 2r2 – k2m + εk2u2
p,1)up,1 – up,0       ...(5) 

A central difference approximation to the initial derivative condition gives 

that      0
k2

uu 0,p2,p
=

−
 

            up,0 =  up,2                                                                                 ...(6) 

substituting equation (6) in equation (5) yields           

              2up,2 = r2(up+1,1 + up-1,1) + (2 – 2r2 – k2m + εk2u2
p,1)up,1             

           up,2 =
2

2r
(up+1,1 + up-1,1) + (1 – r2 – 

2

mk 2

+ 
2

k 2
u2

p,1)up,1         …(7)                                            

4. Derivation of Crank-Nicolson Method for φ4 Equation  

 This method invented by John Crank and Phyllis Nicolson, in 1947, 

is based on numerical approximations for solutions. They replaced uxx  by 

the means of its finite difference representation on  the (q-1)th and(q+1)th 

time rows [6,11]. 

Approximated the equation (1) by [6]              

 2

1q,pq,p1q,p

k

uu2u −+ +−
 =

2

1
[ 2

1q,1p1q,p1q,1p

h

uu2u −−−−+ +−
     

        + 2

1q,1p1q,p1q,1p

h

uu2u +−+++ +−
]– mup,q + εu3

p,q                                                      

         2up,q+1 – 4up,q + 2up,q-1 = r2[(up+1,q-1 – 2up,q-1 +up-1,q-1) + (up+1,q+1   

                                                    –2up,q+1 + up-1,q+1)] – 2mk2up,q  + 2εk2u3
p,q 

where r = k/h 

       

           2up,q+1 – r2(up+1,q+1 – 2up,q+1 +  up-1,q+1) = 4up,q – 2up,q-1 + r2(up+1,q-1  
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                                                                            – 2up,q-1 + up-1,q-1) – 2mk2up,q     

        +  2εk2u3
p,q 

          

  (2 + 2r2)up,q+1 – r2(up+1,q+1 + up-1,q+1) = (4 – 2mk2 + 2εk2u2
p,q)up,q  

                                             + r2(up+1,q-1 + up-1,q-1) – (2 + 2r2)up,q-1      …(8)                                                                                                                            

 

Equation (8) represents the implicit difference approximation for   

 4 equation where the left side of equation (8) contains three unknowns 

along (q+1)th time row and  the right side four known values of u along the 

(q)th and (q-1)th time rows . 

Equation (8) forms a tridaigonal linear system AX = B. 

The boundary conditions are used in the first and last equations only, 

              u1,q-1 =  u1,q+1 = 0    and    un,q-1  =  un,q+1  = 0 

Crank-Nicolson equation (8) can be written in matrix form AX = B as 

follows: 
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When the Crank-Nicolson method is implemented with a 

computer, the linear system AX = B can be solved by either direct methods 

or by iterative methods. 

In order to start the computations we need to find the values in the second 

row when t = t2, putting q = 1 in equation (8) yields           

             (2 + 2r2)up,2 – r2(up+1,2 + up-1,2) = (4 – 2mk2 + 2εk2u2
p,1)up,1 

                                                      + r2(up+1,0 + up-1,0) – (2 + 2r2)up,0   …(9) 

substituting equation (6) in equation (9) yields 

            2(2 + 2r2)up,2 – 2r2(up+1,2 + up-1,2) = (4 – 2mk2 + 2εk2u2
p,1)up,1       

     (1+ r2)up,2 – 
2

2r
(up+1,2 + up-1,2)  =  (1 – 

2

2mk
 + 

2

2k
u2

p,1) up,1 …(10)                                                                                                                                                                                                                               

Equation (10) forms a tridaigonal linear system AX = B. 

where the boundary conditions are used in the first and last equations only,  

               u1,2 = 0   and    un,2 = 0   

Equation (10) can be written in matrix form AX = B as follows  
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5. Stability Analysis 

 Mathematically stable means small perturbations in the initial data 

(or small error at any time) remain small at later times. However, if small 

changes in the initial data produce larges in the final results.  

6. Stability Analysis of Explicit Method by Fourier (Von Neumann) 

Method 

To apply Von Neumann method on equation (1), we go to 

linearized stability analysis and we get after we eliminate the non linear 

term that [6,8,14] 
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  mu  - 
x

u

t

u

2

2

2

2




=




      ...(11) 

 

By using the explicit method for equation (11) we obtain  

           2

1q,pq,p1q,p

k

uu2u −+ +−
  =  2

q,1pq,pq,1p

h

uu2u −+ +−
 – mup,q     ...(12)               

replacing up,q by ξq eiβph in equation (12) yields  

              
2

phi1qphiqphi1q

k

ee2e −+ +−
 = 

2

)1()1( 2

h

eee hpiqphiqhpiq −+ +−  
 

                                                         –  m ξq eiβph               

           ξq eiβph[ξ – 2 + ξ-1] = ξq eiβph [r2(eiβh – 2 + e-iβh) – mk2]                                                            

where r = k/h 

dividing by ξq eiβph leads to  

  ξ – 2 + ξ-1 = r2(eiβh – 2 + e-iβh) – mk2  

           ξ – 2 + ξ-1 = r2(– 4sin2(
2

h
)) – mk2  

multiplying by ξ leads to  

           ξ2 – 2ξ + 1 =  – 4r2ξ sin2(
2

h
) – mk2ξ 

           ξ2 – 2ξ + 1 + 4r2ξ sin2(
2

h
) +  mk2ξ = 0 

           ξ2 – 2Aξ + 1 = 0 

where   A = 1 – 2r2 sin2(
2

h
) – 

2

mk 2

                                                  ...(13) 

 

Hence the values of ξ are 

             ξ1,2  = A 12 −A  

As r, β, k, h and m are positive real, A< 1 by equation(13).  

Where ξ is Amplification factor, the necessary and sufficiently condition for 

numerical stability is    1 [6]. 

when A < –1, 2  > 1, giving instability . 
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when 

              –1   A < 1, A2 1   ξ1,2 = A i(1– A2)1/2 

 

 

hence  

              2,1  = {A2 + (1– A2)}1/2 = 1 

proving that the equation (12) is stable for –1   A < 1. By equation (13), 

we then have 

              –1   1 – 2r2 sin2(
2

h
) – 

2

mk 2

 < 1 

The only useful inequality is  

              –1   1 – 2r2 sin2(
2

h
) – 

2

mk 2

 

           –2   – 2r2 sin2(
2

h
) – 

2

mk 2

 

           2   2r2 sin2(
2

h
) + 

2

mk 2

                                                        ...(14) 

since sin2(
2

h
) = 1 for some values of β hence equation (14) becomes 

              2   2r2 + 
2

mk 2

 

           k2   
mh

h
2

2

4

4

+
                                                                        ...(15) 

Inequality (15) represents the imposed condition for explicit method for  4 

equation to be stable. 

7. Stability Analysis of Crank-Nicolson Method by Fourier (Von 

Neumann) Method 

 By using the Crank-Nicolson method for equation (11) we obtain  
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                 2

1q,pq,p1q,p

k

uu2u −+ +−
 =

2

1
[
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1q,1p1q,p1q,1p

h

uu2u −−−−+ +−
 +    

              
2

1,11,1,1 2

h

uuu qpqpqp +−+++ +−
]–mup,q  ...(16)                              

replacing up,q by ξq eiβph in equation(16) yields  

 

         
2

phi1qphiqphi1q

k

ee2e −+ +−
=

2

1
[

2

h)1p(i1qphi1qh)1p(i1q

h

ee2e −−−+− +−
  

                                                   +
2

h)1p(i1qphi1qh)1p(i1q

h

ee2e −++++ +−
]         

             – m ξq eiβph               

           ξq eiβph[ξ – 2 + ξ-1] = 
2

2r
ξq eiβph [ξ-1(eiβh – 2 + e-iβh) + ξ(eiβh   

                                                – 2 + e-iβh)] – ξq eiβphmk2                                        

where r = k/h 

dividing by ξq eiβph  yields  

              ξ – 2 + ξ-1 = 
2

2r
[ξ-1(eiβh – 2 + e-iβh) + ξ(eiβh – 2 + e-iβh)] – mk2   

           ξ – 2 + ξ-1 = 
2

2r
[ξ-1(– 4sin2(

2

h
)) + ξ(– 4sin2(

2

h
)) ] – mk2  

           ξ – 2 +ξ-1 =  – 2r2ξ-1sin2(
2

h
) – 2r2 ξsin2(

2

h
) – mk2             

multiplying  by ξ leads to  

              ξ2 – 2ξ + 1 = – 2r2sin2(
2

h
) – 2r2 ξ2sin2(

2

h
) – mk2ξ  

           ξ2 – 2ξ + 1 + 2r2sin2(
2

h
) + 2r2 ξ2sin2(

2

h
) + mk2ξ = 0 

          (1 + 2r2sin2(
2

h
))ξ2 – 2(1 – 

2

mk 2

) ξ + 1 + 2r2ξ sin2(
2

h
) = 0  

dividing by  (1 + 2r2sin2(
2

h
)) leads to              

              ξ2 – 2Eξ + 1 = 0 

where 
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              E = 
)

2

h
(sinr21

2

mk
1

22

2


+

−

                                                                ...(17) 

Hence the values of ξ are       ξ1,2  = E 1E2 −  

The necessary and sufficiently condition for    1 is E   1, from 

equation (17) we have   
)

2

h
(sinr21

2

mk
1

22

2


+

−

   1 

Hence the Crank-Nicolson method for  4 equation is unconditionally 

stable. 

8. Practical Application 

For numerical solution we take φ4 equation which is represented in equation 

(1): 

 
3

2

2

2

2

umu
x

u

t

u
+−




=




 

with initial and boundary conditions 

              u(x,0) = ƒ(x)  and  0
t

)0,x(u
=




   ,  2x0,0t    

              u(0,t) = u(2π,t) = 0. 

For clearing we take the following practical example: 

  u(x,0) = sin(x)                                        2x0  

  m =1  

  ε = 1/6 

Results we got are found in the following tables and figures: 

Crank-Nicolson 

x= 3.14159265 

h=0.31415927 

k=0.31035376 

m = 1, ε = 1/6 

Explicit 

x= 3.14159265 

h=0.31415927 

k=0.31035376 

m =1, ε = 1/6 

0 0 

-0.1490 -0.1215 
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-0.2845 -0.2319 

-0.3936 -0.3204 

-0.4647 -0.3776 

-0.4895 -0.3974 

-0.4647 -0.3776 

-0.3936 -0.3204 

-0.2845 -0.2319 

-0.1490 -0.1215 

0 0 

0.1490 0.1215 

0.2845 0.2319 

0.3936 0.3204 

0.4647 0.3776 

0.4895 0.3974 

0.4647 0.3776 

0.3936 0.3204 

0.2845 0.2319 

0.1490 0.1215 

0 0 

Table (1) 

Comparison of explicit and Crank-Nicolson methods 
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Figure (1) Comparison of explicit and Crank-Nicolson methods 

 
Figure (2) Explicit method with different x, 

x=0, x=0.4712389,  x=0.78539816,  x=0.9424778,  x=1.09955743 

 

 
Figure (3) 

Explicit method with different t, 

t = 0, t = 0.6, t = 0.9, t = 1.2 
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Figure (4) 

Explicit method with different m, 

m = 0.54, m = 0.7, m = 0.9, m = 1.1, m = 1.8 

 
Figure (5) 

Explicit method with different m, 

m = 10,  m = 24,  m = 31,  m = 40 
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Figure (6) 

Explicit method with different ε, 

ε = 0, ε = 0.15, ε = 0.3, ε = 0.45, ε = 0.6 

 

 
Figure (7) 

Explicit method with different ε, 

ε = 0.0, ε = 0.6, ε = 1.4, ε = 2, ε = 2.4 
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9. Conclusion 

We saw that Crank-Nicolson method is more accurate than explicit 

method for one dimension problem 

For the numerical stability the explicit method for  4  equation is 

stable under the condition  

              k2   
mh

h
2

2

4

4

+
   , 

 and Crank-Nicolson method for  4 equation is unconditionally stable.  

We saw from the tables and figures that Crank-Nicholson is more accurate 

than explicit method, see table (1) and figure (1). The numerical solution is 

symmetric and periodic, see figures (2 ), (3 )  which is useful i.e., the 

solution is the same for every period interval, so we need less time and less 

computations. 

  The value of m is affected because when we increase the value of m 

the solution increased too, see figure (4,5) , there is an upper bound of m 

(m=40) after this bound we can’t get the true solution. 

 ε  must be less than 2.4 see figure (6,7)  
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