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ABSTRACT

We solved (p4 Klein-Gordon equation numerically by using two finite

difference methods: The first is the explicit method and the second is the implicit
(Crank-Nicholson) method. Also, we studied the numerical stability of the two
methods using Fourier (Von Neumann) method and it has been found that the first
method is simpler and has faster convergence while the second method is more
accurate, and the explicit method is conditionally stable while the implicit method
is unconditionally stable.

Keywords: (/)4 Klein-Gordon equation, finite difference methods, explicit method,
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1. Introduction

Partial differential equations are used to formulate and solve
problems that involve unknown functions of several variables, such as the

propagation of sound or heat, electrostatics, electrodynamics, fluid flow,
elasticity, or more generally any process that is distributed in space, or
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distributed in space and time. Very different physical problems may have
identical mathematical formulations [16].

There is a long history in physics and mathematics of trying to find
new nontrivial solutions to nonlinear wave equations. The literature on the
subject goes back at least as far as 1845 when Russell published a paper
about a surface wave he witnessed traveling for almost two miles in a
shallow water channel [4].

2. The Mathematical Model

The Klein-Gordon equation,

azu B ZA f
y—c u-f(u) (1)
is one of the nonlinear extensions of the wave equation. For example, such
an equation describes the vibration of a string that lies on an elastic
foundation with nonlinear elastic forces. The elastic force density is
describing by function f(u) [9].

when f(u) = sin(u), then equation (1) becomes sine-Gordon
equation, which is found by Zabusky and kruskal in 1965.

Fiore et al. (2005) gave arguments for the existence of exact
travelling wave solutions of a perturbed sine Gordon equation on the real
line or on the circle and classified them [5].

If f(u) = mu — su® then equation (1) becomes g*-nonlinear Klein
Gordon equation( ¢* equation )[2]:

atz axz e
or[10]

o’ ox? ~3)
with initial and boundary conditions [12]

ou(x,0)
u(x,0) = f(x) and =

ot
u(0,t) =u(2m,t) = 0.
Equation (3) arises in quantum field theory with m denoting mass and ¢ is
coupling constant [13].

0 ,t=0, O0<x<2n

48



The finite difference methods for gp“ Klein-Gordon equation

The ¢* equation was first proposed by Aubry , Krumhansl and
Schrieffer in 1975 and 1976, to describe displacive and order-disorder
transitions in solids, mainly magnetic compounds [15].

Sanchez et al. (1991) studied the propagation of topological solitons
in a perturbed ¢* equation, by means of numerical simulations tested on
exact predictions for this system. [1].

Manna et al. (1997) proved that the antikink solution of ¢* equation
which was never obtained perturbatively can be obtained by perturbation
expansion in the wave-number in the short-wave limit [10].

Nicolas in (2002) solved the global Cauchy problem for the ¢*
equation outside a black hole. Then using a Penrose compactificatin, he
proved, in the mass less case, the existence of smooth asymptotic profiles
and Sommerfeld radiation conditions, at the horizon and at null infinity, for
smooth solutions [7].

Dmitriev et al. (2006) discussed some discrete * equations free of
the Peierls-Nabarro barrier and identified for them the full space of
available static solutions, including those derived recently in Physics but not
limited to them [3].

3. Derivation of Explicit Method for ¢* Equation

In this method we evaluate the unknown function upg+1 at (tg+1)
depending on the known function Up+1,g, Upg, Up-1,q at (tg) and Upg-1 at (tg-1) -
We start by partition the rectangle R ={ (x,t) : 0 <x <2z, 0 <t<b} into a
grid consisting of (n-1) by (m-1) rectangles with sides Ax = h and At =k
[11]:

Start at the bottom row, where t = t; = 0 and the solution is known to
be u(Xp,tr) = f (xp) .
we shall use a difference equation method to compute approximations
{Upgq:p=1,2,...,n} in successive rows for q = 2,3,....m}
Now equation (3) becomes :
Up,gr1—2UpqtUpg-1  Upiug—2Upg+Upag

k2 - h2

— mUp,q+ Su3p,q

2
= Upg+1 — 2Upg + Up,g1= h [ Up+1g— 2Upg+ Up-1q]- K*mup g+ K2eu®p g

putting r = k/h
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= Upg+l — 2Up,q +Up,g-1 = rZ(Up+1‘q—2Up,q+ Up-l,q) — kszp,q'*' k28u3p,q

= Upg+t1 = r2(up+1,q + Up-l,q) + (2 —2r— K°m + skzuzp,q)up,q — Up,g-1 (4)
Equation (4) represent the explicit difference approximation for ¢4
equation, where it is employed to find the row (q+1) across the grid where
the approximation in both rows (g) and
(g-1) are known. The four known values on the right side Upg-1, Up-1, , Up+1,q
and up,qWhich are used to create the approximation up,q+1.

In order to find the computations we need to find the values of the

second row as t = to, putting q =1 in equation (4) yields

Up2 = r?(Up+1,1 + Up-11) + (2 — 2r> — k?m + ek?U%p1)Up,1 — Up,o ..(5)
A central difference approximation to the initial derivative condition gives
Upo —U
p.2 —"p0
h ——F— =0
that ok
= Upo = Up2 ...(6)

substituting equation (6) in equation (5) yields

2Up.2 = rP(Up+1,1 + Up-1.1) + (2 — 2r2— k®m + gk®u?p1)Up.1

r k’m  k?
= Up.2 :? (Up+1,1 + Up-l,l) + (1 — rz— + Tg Uzpyl)Upyl .. (7)

4. Derivation of Crank-Nicolson Method for ¢* Equation

This method invented by John Crank and Phyllis Nicolson, in 1947,
is based on numerical approximations for solutions. They replaced uxx by
the means of its finite difference representation on the (g-1)th and(g+1)th
time rows [6,11].
Approximated the equation (1) by [6]

Upgs1=2pg+Upgs 1 Upiig~2pg-1tUpig
% 2 h?
N Ups1g+1 ~ 2Up g+t +Up-1g41
2
= 2Upg+1 —4Upg+ 2Upg1 = FP[(Up1g1— 2Upg-1 +HUp-1,g-1) + (Upr1get
—2Upg+1 + Up-1,g+1)] — 2MK2Up g + 2ek?Uy g

- mup g+ upq

where r = k/h

= 2Up,q+1— rz(Up+1,q+1 — 2Up‘q+1 + Up-l,q+1) = 4Up,q— 2Up,q-1 + rZ(Up+1,q-1
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— 2Upg1 + Up1g1) — 2MKUpg
+ 28k2u3p,q

= (2 + 2r*)Up,q+1 — r*(Up+1,g+1 + Up-1g+1) = (4 — 2mMk? + 2ek?Up g)Up g
+ r?(Up+1,g-1 + Up-1,-1) — (2 + 2r9)Upg1  ...(8)

Equation (8) represents the implicit difference approximation for
¢ * equation where the left side of equation (8) contains three unknowns

along (gq+1)th time row and the right side four known values of u along the
(g)th and (g-1)th time rows .
Equation (8) forms a tridaigonal linear system AX = B.
The boundary conditions are used in the first and last equations only,
Urg1= Uigs1 =0 and Ung1 = Ung+tt =0

Crank-Nicolson equation (8) can be written in matrix form AX = B as
follows:
2+2r2 —r? r 7

—r2 242r? —r :223

—r? 2+2r2 —r Ug,q+1

Us g-+1

Un_3qg+1
—r2 242r2 —r? Un_2,qg+1

—r2 2+2r27 _un—l,q+1_

(4—2k?m+ 2k28u22,q)u 2q —(2+ 2r2)u2,q,1 + r2u3yq,1
rzuzvq,l + (4 — 2k?m + 2k?&u 23,q)U3‘q -2+ 2r2)u3’q,1 —+ r2u4’q,1
r2u3’q,1 +(4—2k?m + 2k28U24,q)U4'q -2+ 2r2)u4,q,1 -+ rzuqu,l

2 2 2
n-2g)Un_2q —(2+2r°)up_nq-1 +ruUn_1q

2 2
n-1,q)u n-1,q — (2+2r)u n-1,g-1

r2un,3’q,1 + (4 —2k?m + 2k?eu

rzun,z‘q,l + (4 —2k?m + 2k?&su
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When the Crank-Nicolson method is implemented with a
computer, the linear system AX = B can be solved by either direct methods
or by iterative methods.

In order to start the computations we need to find the values in the second
row when t = tz, putting g = 1 in equation (8) yields

(2 + 2r¥)Up2 — r2(Up+1.2 + Up-12) = (4 — 2mk? + 2ek?U?p 1) Up 1

+ r2(Up+1,0+ Up-10) — (2 + 2r9Upo  ...(9)

substituting equation (6) in equation (9) yields

2(2 + 2r)up2 — 2r(Up+1.2 + Up-12) = (4 — 2mk? + 2ek?U?p.1)Up 1

2 2 2
= (1+ r?)up2 — %(Up+l,2 +Up12) = (1- kTm + kTEUZp,l) Ups ...(10)
Equation (10) forms a tridaigonal linear system AX = B.
where the boundary conditions are used in the first and last equations only,
ui2=0 and un2=0

Equation (10) can be written in matrix form AX = B as follows

_ S
2 — - (1-——+
14— Uz2
22 Uusz2 (1-
r
—? 141 —? Ug 2

Zl)uz‘l

m k%
—Uu
2 2
k’m K ,
T+T“ 31)“3‘1
2 2,
1 k m+&
2

2
u —_
2 5,2 ( 2

Uy Uy

2| Un—3,2

- u _ 2 2

2 n-22 (1-L m km T T
2 Unp_1,2 2 2 T
7 T+ - K2 2

5. Stability Analysis
Mathematically stable means small perturbations in the initial data

(or small error at any time) remain small at later times. However, if small
changes in the initial data produce larges in the final results.

+
m

120y
,( 2 2

ke
uZ

nl, 1)” 11

6. Stability Analysis of Explicit Method by Fourier (Von Neumann)
Method

To apply Von Neumann method on equation (1), we go to
linearized stability analysis and we get after we eliminate the non linear
term that [6,8,14]
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02U B 02U - mu
? = 6x_2 ..(11)
By using the explicit method for equation (11) we obtain
Upg+1—2Upg tUpg-1  Upug—2Upg+Upag
k2 - h2 - mUp,q (12)

replacing upq by &% e in equation (12) yields

§q+1ei[3ph —2§qeinh +E)q—lei[}ph gqeiﬁ(Pﬂ)h _ quei/)’ph + é:qeiﬁ(p—l)h

k? ) h?
— mé&l eifph
= &_,q einh[g S E_,-l] — éq einh [r2(eiﬁh — 2+ e-iBh) _ me]

wherer=k/h
dividing by &% " |eads to 4

E-2+&L=r?(ePh -2 + ) — mk?

= E-2+&t=1(- 4sin2(%)) — mk?

multiplying by & leads to
= E2-28+1= —4r¥% sinz(%) — mk%¢
= 8228+ 1+ 4% sinz(%h) + mk?=0
= E-2AE+1=0

2
where A=1-2r? sinz(%) —~ m;( ..(13)

Hence the values of & are

&2 = AF \/A2 -1

Asr, B, k, h and m are positive real, A< 1 by equation(13).
Where & is Amplification factor, the necessary and sufficiently condition for

numerical stability is |§| < 116].

when A < -1, ‘52‘ > 1, giving instability .
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when
-1 < A<1 A’<1 = &= AFi(1- A?)?

hence
o] = (A% + - A9 =1

proving that the equation (12) is stable for -1 < A < 1. By equation (13),
we then have

2
~1<1-2r sinz(@)— LS 1
2 2
The only useful inequality is
2
~1<1-2r sinz(@) _ mk
2 2
2
= -2<-2r sinz(@)— mk
2 2
2
= 22>2r sinz(ﬂ—h) AL ..(14)
2 2
since Sinz(%h) =1 for some values of B hence equation (14) becomes
2
2> o2 4 MK
PR (15)
=> ki< ———
4+h’m

Inequality (15) represents the imposed condition for explicit method for ¢ *

equation to be stable.
7. Stability Analysis of Crank-Nicolson Method by Fourier (Von
Neumann) Method

By using the Crank-Nicolson method for equation (11) we obtain
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Upg:=2pg tUpat _ 1 Upiigd~RpgttUptgt
K 2 h?
u ., tU
h2

replacing upq by &9 €M in equation(16) yields

prlag+l p-1g+1

-MUpg ..(16)

gdHlgiBph _ g dgifph | pa-ToiBph o [aq—leiﬁ(pﬂ)h —2e 0 LgiPPh 4 £ a-LiB(p-Dh

k2 2 h?
§q+1ei[3(p+1)h _ 2§q+1einh n éq+lei[3(p—1)h
+ h2
—m éq gifph

2
= GeME -2+ 5 = T el £ -2+ &) + g
2+ e'iBh)] _ éq eiBPhrnk2
wherer=k/h
dividing by &9 e yields

é_ 2+ é_l - % [&'1(9“3}‘ —2+ e—iBh) 4 é(eiBh —2+ e—iBh)] _ mk2
= E-2+¢&t= %[&'1(— 4sin2(% ) + E(— 4sin2(% ) 1—mk?

—E24el= 2r2§-1sin2(% ) - 2r2 ésinz(% ) — mk?
multiplying by & leads to
E_28+1=- 2r23in2(%) —2r? ézsinz(% ) — mk2¢
= 2 2E+ 1+ 2rzsin2(%) +2r2 zfsinz(%) +mk2E =0

mk 2

= (L+ 2%sin( )2 - 21— Ty g+ 1+ 2% sin?(P) =0
dividing by (1 + 2r25in2(% )) leads to

g2 -2BE+1=0
where
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2
LS

2
E= ..(17)
1+2r2sin 2(%)

Hence the values of Eare  &12 =EF VEZ -1
The necessary and sufficiently condition for ‘f‘ < 1lis |E|£ 1, from
2
= |
2
1+2r? sinz(%)

equation (17) we have <1

Hence the Crank-Nicolson method for ¢* equation is unconditionally
stable.

8. Practical Application
For numerical solution we take ¢* equation which is represented in equation
(1):
o%u 8% 3
—2 = —2 —-mu+eu
ot X
with initial and boundary conditions

ou(x,0)
u(x,0) = f(x) and =

ot
u(0,t) =u(2m,t) = 0.
For clearing we take the following practical example:

0 ,t>0, 0<x<2n

u(x,0) = sin(x) O<x<2m
m=1
e=1/6
Results we got are found in the following tables and figures:
Explicit Crank-Nicolson
x=3.14159265 x=3.14159265
h=0.31415927 h=0.31415927
k=0.31035376 k=0.31035376
m=1,e=1/6 m=1,e=1/6
0 0
-0.1215 -0.1490
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-0.2319 -0.2845
-0.3204 -0.3936
-0.3776 -0.4647
-0.3974 -0.4895
-0.3776 -0.4647
-0.3204 -0.3936
-0.2319 -0.2845
-0.1215 -0.1490
0 0
0.1215 0.1490
0.2319 0.2845
0.3204 0.3936
0.3776 0.4647
0.3974 0.4895
0.3776 0.4647
0.3204 0.3936
0.2319 0.2845
0.1215 0.1490
0 0
Table (1)

Comparison of explicit and Crank-Nicolson methods

1

08 Crank-Micolson
06
04}
02}
ERN
n2k

o4t

N6+

081

-1 1 1 1 1 I 1
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Figure
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(1) Comparison of explicit and Crank-Nicolson methods
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Figure (2) Explicit method with different x,
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Figure (3)

Explicit method with different t,
t=0,t=06,t=09,t=12
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RETI
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Figure (4)
Explicit method with different m,
m=054 m=07m=09, m=11 m=1.8
1.5

Figure (5)
Explicit method with different m,
m=10, m=24, m=31, m=40
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0.8

Figure (6)
Explicit method with different ¢,
€=0,£6=0.15,6=0.3,e=045,¢=0.6

Figure (7)
Explicit method with different €,
€=0.0,e=06,e=14,e=2,e=24
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9. Conclusion

We saw that Crank-Nicolson method is more accurate than explicit
method for one dimension problem

For the numerical stability the explicit method for ¢* equation is

stable under the condition
4h®
< —
44+h’m ’

and Crank-Nicolson method for ¢ *equation is unconditionally stable.
We saw from the tables and figures that Crank-Nicholson is more accurate
than explicit method, see table (1) and figure (1). The numerical solution is
symmetric and periodic, see figures (2 ), (3 ) which is useful i.e., the
solution is the same for every period interval, so we need less time and less
computations.

The value of m is affected because when we increase the value of m
the solution increased too, see figure (4,5) , there is an upper bound of m
(m=40) after this bound we can’t get the true solution.

¢ must be less than 2.4 see figure (6,7)

2
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