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ABSTRACT

A non-linear parabolic system is derived to describe compressible
nuclear waste disposal contamination in porous media . Galerkin method is
applied for the pressure equation . For the concentration of the brine of the
fluid, a kind of partial upwind finite element scheme is constructed. A
numerical application is included to demonstrate certain aspects of the
theory and illustrate the capabilities of the kind of partial upwind finite

element approach.
Keywords: Galerkin method; A kind of partial upwind finite element scheme;

Non-linear parabolic system
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1. Introduction

The proposed disposal of high-level nuclear waste in underground
repositories is an important environmental topic for many countries.
Decisions on the feasibility and safety of the various sites and disposal
methods will be based, in part, on numerical models for describing the flow
of contaminated brines and groundwater through porous or fractured media
under severe thermal regimes caused by the radioactive contaminants.
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A fully discrete formulation is given in some detail to present key
ideas that are essential in code development . The non-linear couplings
between the unknowns are important in modeling the correct physics of
flow .

In this model one obtain a convection-diffusion equations which
represent a mathematical model for a case of diffusion phenomena in which
underlying flow is present ; Awand bvw correspond to the transport of w

through the diffusion process and the convection effects, respectively, where
vand A denoted respectively the gradient operator and the Laplacian

operator in the spatial coordinates.

In this paper we will consider the fluid flow in porous media using a
Galerkin method for the pressure equation and a kind of partial upwind
finite element scheme is constructed for the convection dominated
saturation (or concentration) equation. For more details of this subject see
[7, 6, and 4].

2. Model Equations

The model for compressible flow and transport of contaminated brine
in porous media can be described by a differential system that can be put
into the following form [2].

Fluid:
op '
@E+V.u =—q+Rq

(1
u:—@VP:—a(c)VP @
u(c)
Brine:
¢% +u.Vec - V.(E.Vc) = g(c) -(2)
Radionuclide :
#K; aﬂ+ch- ~V.(EcVc;)+d (C_)a_p: fi (C,Cy,ennC ) 3
|at | A Vi 3\ ot [ANZR REEEEE N
Heat:
dl(p)%+d2%+Cpu.VT—V.(EHVT):Q(u,T,c, o) ..(4)

Where xeQcR?%te(0,T] , p=p(x,t) is the pressure, T =T(x,t) is the
temperature of the fluid, C=c(x,t) is the concentration of the brine in the

20



A kind of Upwind Finite Element Approximations for...

fluid , ¢ =c(xt) is the trace concentration of the i-th radionuclide,
i=1,2,...,N, u is the Darcy velocity, ¢ =¢,,.¢=4¢(x), c, IS the concentration
of water, k = k (x) is the permeability of the rock, z(C) is the viscosity of
the fluid, q=q(xt) is a production term, R, =R;(c)=[c.¢K f /(1+c,)]1—c) is a
salt dissolution term, see [3].
dy =g ¢y +(1-¢)prCpr.d1(P) = —¢c,[Uo +(p/ )], d3(c;) = gc,,Ci (K; —1)
Ey =Dcp, + Kl Ky =kp / po, D=(Dy) = (a7 |u| 8 + (. — e )uju; u)),
and Q(u,T,c, p) ={[VUq —c,VTou+[Ug +c, (T =To)) +(p/ p)I[-a+ R 1}

—q.—qH -qy.
E.=D+D,l,and g(c) =-c{[csK, f /(1+c)]A1-C)}—q. + R's ,
and
fi(c,c1,CpyeriCn ) = Ci{q —[Cs K fo /(1+C5 )] —C)}—0C; — Qi + o

N
+ ) ki AiK jge; - AKig;.
j=1

Shifting with the boundary conditions

(@) un=0 on I 3\
(b) (E;vc—-cu)n=0 on T
(c) (E.,V¢i—cu)n=0 on T X ..(5)
(d) (EyVT —-c,Tu)n=0on I
»_, 0T
(e) %—o i (1) el'x(0,T] )

Shifting and the initial conditions

(@) p(x0)=po(x) ; xeQ

() c(x,0)=cq(x) ; XxeQ

© ¢(x0)=cg(x) ;| xeQ .(6)
(d) T(x0)=Tp ;o XeQ

The reservoir Qwill be taken to be of unit thickness and will be
identified with a bounded domain in R? . We shall omit gravitational
terms for simplicity of exposition, no significant mathematical questions
arise the lower order terms are included.

We assume that

(AD) a(c),Rq(c), 9(c), E, C5(R)
#(x), 4 (x),E, e H'(Q),q e L"(0,T; H(Q)
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0<cy <a(c),R(c),g(c),4, ¢, E. <¢; ,VCy, G €R,xEQ
D,>0and ¢ >2¢; >0

(A2) The solution of the problem (from eq.(1) to eq.(6)) is regular:
c(x,t) e L2(0,T;H2(Q))NL”(0,T;w. (Q))
p(x,) e L*(0,T;H™(Q)) , (r>2)
€t Cy Cy € L°(0,T; HY(Q)) ; Pp: Py € L7(0,T; L7 (Q))
(A3) Forany ¢el?), the boundary value problem:
-Ap+p=¢ , xeQ

%0 _,
on
there exists a unique solution ¢<H?(Q) and a positive constant M

such that |¢f|, < M| .see [8]

xell

3. Finite Element Spaces

Consider a regular family {T,}of triangulation defined over €2, where
h is the longest diameter of a triangular element with the triangular T, we
have a set of close triangles {e}@<i<N,) and a set of nodes
{P}A<i<Np+M;)where P@<i<Np)are interior nodes in € and
P,(Np,; < j<Np+M)are boundary nodes on I". We put h_ to be the

maximum side length of triangles and k to be minimum perpendicular
length of triangles for all ecT, .

Definition(3.1): A family T, of triangulation is of weakly acute type, if
there exists a constant g, >0 independent of h such that, the internal angle
@ of any triangle ¢ T, satisfies g,<0<7/.

Let 4 (p),(1<i<M), be the continuous function in Qs.t. ¢ (p), is linear
on each eeT,and ¢(p;)=¢; for any nodal point p;.We denote Mn the linear
span of 4,(1<i<M),i.e.,a finite dimensional subspace of H'(Q)

M,, ={z;, |z;, eC(Q); z,, isalinear functionone, Ve eT,}.

And a subspace of H}(Q)

Mon ={z, |z, eM}; 2, (B ) =0k =M +1......, K}.

We associate the index set A={j=i:P; is adjacent to P }.Let Pi Pj ,Px, be three
vertices of triangular element e and 2, 4;, 4 be barycentric coordinates. We
have the following definitions see [5].
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Definition(3.2): with each vertex Pi belonging to triangle e, the
barycentric subdivision 27 is given by:
Of ={P|Pee; 4(P)=4;(P) , 4(P)>4(P),vP,ee}, and the barycentric

domain 2. associated with vertex Pi in C2is given by Q; =uQf eeT,.

Definition(3.3): with the characteristic function s (X)of barycentric

domain €2, the mass lumping operator A:weC(Q)—>Wel,(Q)is
Np+Mp

defined by W(p) = ZW(pi)ﬂi(p) :

Definition(3.4): Let {M,}be a family of finite dimensional subspaces of
C(Q), which is piecewise polynomial space of degree less or equal to r
with step length hp and the following property: for Pe[L«), r>2 ,there
exists a constant M such that for 0<q<2 and gewp™(Q):

H _ r+l-q
it g, < Mg

r+l,p

Similarly, we define{N,} be a family of finite-dimensional subspace
of c(@)xC(Q), which is piecewise polynomial space of degree less or equal
to r-1 with the similar property as Mh and 0<qg<r-1.We also assume the
families{M, }and{N, }satisfy inverse inequalities:

[, < Mo IVl <MtV pem,

see [8].
Lemma(3.1): [5]

There exists a constant C such that:
||W—v‘v||0’p 5Chc|""|1,p , vywe M, ,p>1 (7)

|Wh|1 < Mh51||Wh|| , V' Wy, €My, ..(8)

Lemma(3.2): [8]
There exists constants C, ,C, >0such that:

Calwdly , <l , <Coldy, vweM, .(9)

Lemma(3.3): [10]
Let pev, be the elliptic projection of peH'(Q) into V, defined by

(a(c)vp,w) = (a(c)Vp,Wv) , WeV, then there exists a constant k1 such that
[P =Pl +ho VP - VBl <kip], ,hp™
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4. Error Estimates

Let r>0is time step and N, :%. We use a Galerkin finite element

method for the pressure and velocity and partial upwind finite element
scheme for brine.
Let C°eM, bea L?(Q)-projectionof c® in M,:
c®-C%z,)=0 Vz,eM,.
We can get P° eV, such that

jPde:O,( k(xo) VP®, W) = (=q°,v) + (R,v) , WveV, and U eW, from
o u(c™)
U0 =— K gpo__aco)ve?

u(C”)

If the approximate solution {P™,U™,C"}eV, xW, xM, is known, we
want to find {P™*,u™ C™ eV, xW, xM, at t=t™!  with three steps . Let
(.,.) denote the inner product in L?(Q)

Step 1. Find C™!for m=041,...,N, -1, such that
@D,C™, 21)+(E.VC™Y2 vy - RUM,C™V2 7,y =(4(C™Y?), 2,) vz, e M}, ...(10)
where D.C™ =™ -Cc™)/r , c™V2-(c™+c™)/2and

m
R(U m|Cm+l/2| Zh)zzzi zﬂi?w(airjpcim+l/2 +aETi1CEn+1/2)
-1 jeAi
with z, =z,(R) , c™?=Cc™"?(R) and A" =IUm.nij dr,here nj is the
Tj

unit outer normal to T;. The partial upwind coefficients should be

ij -
required that [5].

(a) aiT +a}? =1

(b) max{l/21-p;'}< ey <LifB; >0, ..(11)
max{l/ 21— p;'}< o <1,ifB;; <O,

step2. Find P™? such that:

IPm”dx:O ( k(ﬁl VP™ w) = (-q™,v) £ (R.,V) , WeV, .(12)
o u(C7)
step3. Find U™ as :
U™ = _aCc™yvpmt ..(13)
Let ¢:J — M, be determined by the relations

(E.V(c—C),VZ)+A(c—C,z) =0, VzeM, ..(14)
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for teJ, where the constant Ais chosen to be large enough to insure the
coercivity of the bilinear form over H(Q) Similarly, let p:J -V,

satisfy
a(E)vV(p-p),W)+u(p-p,v)=0, WeV, ..(15)
where g assures coercivity over H'(Q)and (pl)=(pl). Let
¢=c—C,&é=¢c-C , n=p-p, 7=p-P ...(16)

A standard result in the theory of Galerkin methods give [2].

el+ e el < Ml &
[l + g [, < Mol 5™
[Pl,... <™

for teJ, where the constant M depends on bounds for lower order
derivatives of p ¢. And also

where M now depends on bounds for lower order derivatives of p ¢ and
their first derivatives with respect to time .

< 'V'ﬂlcllz

...(183)

a|0
at

| <Mlpl,., + 1}hE” ...(18b)

Lemma (4.1): There exists a positive constant k» such that:
“meﬂ _vpm < kz”cmﬂ _cmi

Proof: see [1].

Lemma (4.2): Forall z, eM and ¢=c-C , {=C-C,

‘((um'VCmA/Z),Zh)_R(Um,Cm+1/2,Zh)‘SM(hg_+“§m+1/2”2+”gm+1/2”2+
frsm ]« jom-wo e [yl

where & > 0 is arbitrary small constant
Proof: [1].

Notes:
1.The inductive assumption [10],if HU IHLw <k* (0<l<m), then HU il | sk

2.1f T, isregular triangulation of weakly acute type we have
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W, <V /K|, vw, M, see [8].

W,

Lemma (4.3): There exists a positive constant ks such that
“U md _ mf o kS(HCm+1 _c™l h;) )

Proof:
“U ml | mH

— “a(c m+1)vp m+l a(Cm+l)VP m+1

< “a(c m+l)v(Pm+l _ pm+l)

From (A1) and (A2) we have
< const”VPm+l —vpmt

n Ha(c m+1) _ a(Cm-¢—1)

“me+1

+ HC mil_ mel

vam+1

L,
we have HVPm+l —vp™t

< “VP m+l vp m+l

4 “Vﬁ m+l vp m+l

using lemma (3.3) and lemma (4.1) , we get
”meﬂ_vpmﬂ Skzucmﬂ_cmﬂ +k “pm+1 h'  from (AZ),

r+l p?
r
+hp).

“U ml | mel

< |(3(“C m+l Cm+l

Theorem(4.1): Forall m<I<N_ if r<z,,then
¢t —c" <M (r+h,+hp), where M is independent of « and h,.

Proof:
Multiply eq.(2) by zn and integrating by parts we obtain for
t=(m+1/2)7. Let W,,q/, =W(.,(M+1/2)7) and w™/2 = (W™ +w™)/2,then

(¢D.c™, z,) + (EcVe™Y? vz, )+ (u™ve™Y? 7,) =
(9™ 2),2,) + (H(D.0" = T |as2) 2a) + (19)
+((EVE™? —ECVC,0/5),VZy) + (MVE™ 2 —u Ve, 1),2,)

Let e=c-C=(c-C)+(C-C)=¢+¢&, and subtract (10) from (19), we obtain:

(#D,6™,2,)+ (Ecve™V? vz, )= (RU™,C™2 7,)
—(UVe™2, 2,)) +((#D.€", 2,) - (#D,c" )
H(OE"2),20) - (G(C™ V), 20)) + (D" - | ). 20)

+((EcVE™Y? —ECVCp1/9),VZ,) +((umVE™ 2 —U_ ., Vemi2)Zn)

Hence
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(#D.E", 2) + (EcVE™?, V2,) = ~(dD.g™ 2) - (EeV ™%, vz,) -
((umVCerl/Z’ Zh) _ R(U m ’Cerl/Z’ Zh)) _ ((g"((:rT]+:|./2)l 2h) _ (g(Cerl/Z), Zh)) _
(#D.c",24) - (¢3Drém ,2p))+((¢(D,c" —%| mi1/2)r Zn) + ...(20)

((Ecve™? —EcVey,y5), VZ,) + (u™Ve™? —U_ . VCniu2)iZp)
=11+12+13+14+15+16

In (20) Iet z, =&™Y2 e M, , and using (A1) the left — hand side is

> mﬂ o “§ “ ic ”Vejm*l’z
from (A1), we have:

1= (4D,¢",2,) <M (|p,&"[ +
using(7) and (8), we have
[peé"]<[es™]+|Pes™ - D& <[Drg™]+ M|
From (9) we have

m+1/2

)

£m+1/2 <M §m+1/2 SM(§m+l +“§m“)
s o o
Using (Al)’ we have: < m+1/2]|2 +6‘HV§m+l/2 2

From lemma (4.2)

I13<M(hZ + gmis2 2+ /2 2+
Hng+1/2 2 “ m —Um”2)+g“vgm+1/2 2
let 0=¢°m+l e |m+1,2+1/24_‘ )

using (Al), (A2) and [11], we get
14 < Mh, (L+7%)[z,], + Mh, (1+22)|z, |

< M |z, + Mhe|z,,|, +Mhe 22|z, ||+ Mh. 72|24,

2
<M(hZ +hc*)+ g”vgmﬂ’z

m+1/2]|2 m+1/2

I5<M(h? +||s 2)+g“vg'“*1’2‘2

let 16=K1+K2+K3, so
2 2
K1<M (2% +[em™? +“§m“ ) K2<Mz2 + ¢

¢

g2 2 +H§m“2) then

2
K3<M (22 +[&m

we get
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2

16< M(12+ 9gm+1 2+“§m“ 2)+£”V§m+1/2
Equation (20) can be written now
G
s e emem | ele ofoe] e nefoen], +fesmf
+“ng+1/2 2, L2 2+”um —Um“2+hc2+12)+gHV§m*”2 2

Take the summation from 0 to I, where m<I1<N_,andC® =¢c® so £°=0

Al

¢ é;"l+l

om, > e Moo oo [
m=0 Bad L2(HY)

2
u™-uU m" T

| [
+MZZ ||g||12r+M2(hc2 +72)+ M3Z
m=0 m=0

N,
where "W"iim = r;meHir using (7) and (A1), we get

N

cf|+l < £I+1 +th é;I+-1lS £I+l +Mh076 éf»l+1 <M é§I+l (21)
¢;§AI+1 ZMO $I+l ,SO
From lemma (4.3) we have
I 2 |
Yfum-um| =M Hgmﬂzﬁﬂg 22 2 +h2") ... (22)
m=0 m=0 LA (L5)

From (21) and (22), we have
§I+l

2 O (o2 2 2 per
<MY [en| e+ Mo (h2 + 22 402
m=0

from Gronwall inequality , we get:
E <M (h, +7+hh)

itis

C|+1—CI+1

<M(h, +7+hf)

Theorem(4.2): Forall m<I<N_ if r<¢,, then

+ 71-|+1

5 1+1

+ 3 (ven+[vatlpe < M b +h)
=0

where M independent of 7, h, and h,,.

Proof:
We shall begin by deriving an evolution inequality for the
difference 7z between the projection P and the approximation solution P.

The weak form of eq.(1) is
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(@Zt—p,vn(a(c)Vp,W)=(—q,v)+(R;,v) ; WeH Q)

so there can be difference between equations (12) and (15) to show that.
(@D, 7", v)+@C™)Vz", W) = ~({a(c™) —a(C ™)V, Yv) -

0
(1D, ™)+ (™ V) + (4 (D, p" —é’lm
=11+12+13+14

W) .(23)

Select 7™ as the test function in (23), we have from (17-c) and (A1)

c m+1 -C m+1

11<M vp ™IV 2™

< M ( Cm+l _Cm+l

ol [v="

§ m+1

From (A1), we have
12<M|D, 7" |

2
+

2

SM(gmH

2. .
Y+ ¢ HVﬂm”

2
m+1
7r+

o] e

and
I3<M

m+1 m+1

T

u

2 m+1 2

m+1
" i

< M( +| )
From (Al),(A2) and using [9], we get

m+1
M

14<M

0
S T

2
ﬂm+l ﬂ_m+1

SMz"

)

ZSM(12+‘

Now, (23) can be written as
Ol e recovr " <l e facm v s

2
M( +ngrl

£ mi 2 +HDranZ+H”m+1H2 *H”MHZTZ)“IHV” m+1/2
Now by using prove of theorem (4.1) we get

ol el smer e oo °f

[

<M(

2 2
+h02 D.c m“l +“Vg‘ m+1 +vam+1/2

2
n “g m+1/2

‘2

2 :
+“um —Um” +hZ+7%)+¢ “me+1/2

29
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Combine equation (24) and (25)and where & >0 is arbitrary small

' 2
constant, move ‘%”Vg m

into left side and take ¢ >0 small enough such
that ¢, —¢ >0

Co [‘ ma1|2 m1 2

Al 1+°°[

Hf [+

+ “g m+1/2

<

2 2 ¢
e v+ 3

2
m+1/2
+ > ‘vg

m+1 m+1 2

M (“ & m12

2
+(D,¢ m”
2

e

2 m+1
+h¢|ID, n

2 2
+“DTn “ + +“um—Um“ +hcz+12)
1

“V g 2
2

. 2
+& (”V;r mHE 4

)
then

[‘ ”m+l 2 2

<

2
"1+
Ml(Hf ma 2 +‘7r

g 2 —”f’““zh“wz m+1

m+1 2

2
_“ﬂ H_“Vegmmz

2 2
(e i
2 2 2
m m+1
Hpn™| ]
2
+“V§m+l )t
Take the summation from O to |, where
m<I<N,,andC’=c? s0&%=0,P°=p"s02°=0

+Z all ”Z fox " <

MlZ Qe 1+l Moo 0o |7 o +I0eslly
where

+h¢|Peg ||L (HY) +le ||ii(Hl) +"’7"ii(8) +"Df’7"ii(ﬁ) +he +7°)

2
2 m m+1/2
+h¢|[D, + “g

2
+“um —Um“ +h2+7%)r

2
+ g(“sz m+l

I+1 I+l

w53 or | ofver|r
=0
"W"ii(x) = iuwm“ir , from lemma (4.3), we have
m=0

IZO ““"“—UmHZTSMIZO HC””—C””HZHhS“)snAa(io Je™F + el o, +h2) and
using (17),(18) we get

30



A kind of Upwind Finite Element Approximations for...

2
ghi +‘”H4

2 1+1 2 1+1 2

+Z vam“ r+z “Vﬂ' m” T<
m=0 m=0
1+1 2 2

My (“g "‘H e[+ My (2 402+ 22)
m=0
1+1 2 2

va), (va [+ |vene

From Gronwall inequality, for 7 and & small enough, we get

where M independent of z,h, and h .

1+1
P

§|+1

/

1+1 1+1
+ZO ”Vg‘m“‘r+zo “Vﬂ' m“TSM(hC +h;+r)
m= m=

Theorem(4.5): with the assumption (Al)~ (A3), if h,=0(hp),z=0(hp),
then
||C_C"|_°°(|2) +||p— P|||_°°(|2) +||u _U|||_°°(|2) +||C_C"L’°(H1) +||p— P|||_°°(H1) <M(z+h +hp)

Proof:

Withc-C=¢+¢&and p—-P =7+ We have

e =Clli-gzy <lell - +1el.-

[p=Pliegey <l =+l

From lemma(4.3) and theorem (4.1)

Jlu _U||L°°(I2) <M(z+h, +hf)

By using (Raviart,1979), we get

e =Cl- iy <lell, +lisl, <M ], +[v ]y and

[P =Plle gy <Ml + [V 7

then by using theorem (4.2) and eq. (17) we get

e =Clli ey +1P=Pliogzy +14 =Yl e =Clli ey +1P=Plir ey <M+ +h2)

(1% 1% (1)

which complete the proof.

5. Numerical Application
In this example, we solve a purely convective problem in one
dimension [12]
oc  oc
_uy_:_
oy ot
Where ¢ is the concentration in the region -2<y<0, subject to the
boundary conditions
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c=1 y=0 0<t<0.2
c=0 y=0 t>0.2
@=o y=-2 forall t
oy

we apply two methods: Galerkin and a kind of partial upwind finite
element for this example. We discrete the region -2 <y < 0 into at first 100
quadrilateral elements and second 200 triangular elements with 202 nodes,
also the distance between any two nodes is 0.02 and take uy =1.0, theta =0.5
, T =0.04 , and the number of steps (N) = 25 on a 1*100 mesh for
quadrilateral element and 1*200 mesh for triangular element.

The correct solution to the problem is described by a rectangular pulse
moving with unit velocity in the y direction. Table (1) contains numerical
results where 6 =1/2 at all nodes lie on the right-hand side of the finite
element mesh in this example. From the boundary conditions we can see
that the solution at nodes 1 and 2 is held at the value 1.0 for the first 0.2
seconds of convection. Figure (1) shows the computed solution after one
second and it draws between the concentration and coordinate y, we can see
that while y convergence to zero the value of concentration convergence
oscillation to solution.
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Table (1): The numerical solutions at all nodes of the right - hand side of

mesh, where theta=0.5, t=0.04, N=25

Coordinate Galerkin method Galerkin method | Kind of Partial
Y (Quadrilateral Element) | (Triangular Upwind F.E.M.
Element)
0.0000E+00 0.3289E-24 -0.3987E-24 -0.3987E-24
-0.2000E-01 -0.4934E-02 0.4238E-02 0.4238E-02
-0.4000E-01 0.1548E-01 -0.1405E-01 -0.1405E-01
-0.6000E-01 -0.4225E-02 0.2256E-01 0.2256E-01
-0.8000E-01 -0.2975E-01 -0.7050E-02 -0.7051E-02
-0.1000E+00 0.3345E-01 -0.2730E-01 -0.2730E-01
-0.1200E+00 0.2570E-01 0.5020E-01 0.5020E-01
-0.1400E+00 -0.6509E-01 -0.2636E-01 -0.2636E-01
-0.1600E+00 -0.1126E-01 -0.5949E-01 -0.5949E-01
-0.1800E+00 0.9229E-01 0.8407E-01 0.8406E-01
-0.2000E+00 0.4207E-02 0.5155E-01 0.5155E-01
-0.2200E+00 -0.1170E+00 -0.1160E+00 -0.1160E+00
-0.2400E+00 -0.2221E-01 -0.5481E-01 -0.5481E-01
-0.2600E+00 0.1329E+00 0.1267E+00 0.1267E+00
-0.2800E+00 0.7632E-01 0.8523E-01 0.8523E-01
-0.3000E+00 -0.1111E+00 -0.1125E+00 -0.1125E+00
-0.3200E+00 -0.1485E+00 -0.1465E+00 -0.1465E+00
-0.3400E+00 0.1559E-01 0.3309E-01 0.3309E-01
-0.3600E+00 0.1643E+00 0.1784E+00 0.1784E+00
-0.3800E+00 0.1244E+00 0.1156E+00 0.1156E+00
-0.4000E+00 -0.4353E-01 -0.6673E-01 -0.6673E-01
-0.4200E+00 -0.1594E+00 -0.1742E+00 -0.1742E+00
-0.1860E+01 0.6962E-11 0.4492E-10 0.4492E-10
-0.1880E+01 0.3435E-11 0.2433E-10 0.2427E-10
-0.1900E+01 0.1688E-11 0.1313E-10 0.1320E-10
-0.1920E+01 0.8274E-12 0.7031E-11 0.7033E-11
-0.1940E+01 0.4025E-12 0.3846E-11 0.3703E-11
-0.1960E+01 0.1974E-12 0.2032E-11 0.2236E-11
-0.1980E+01 0.9360E-13 0.1000E-11 0.9707E-12
-0.2000E+01 0.4779E-13 0.7114E-12 0.3765E-12
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Figure (1): The solutions in example after one second
for theta =0.5, 1 =0.04 , N =25

6. Conclusions

We used the system with large coupled of strongly non-linear partial
differential equations which arise from the contamination of nuclear waste
in porous media .We used a Galerkin method for the pressure equation and a
kind of partial upwind finite element method for the concentration.For the
compressible case, we obtained the error estimates for approximate Darcy

velocity U, concentrations C in L~ (O,f, L?(Q)) .From the numerical

results presented in this application, we have got a kind of partial upwind
finite element method for triangular element convergent to the exact
solution and in comparison with Galerkin method , we found that a kind of
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partial upwind finite element method much more accurate than Galerkin
method.

NOTATIONS
C Concentration of the brine in fluid
C, Specific heat
Cq Compressibility of rock formation
C, Coefficient of thermal expansion
C, Compressibility of the fluid
D Dispersion tensor
D, Molecular diffusion
E Dispersivity tensor (hydrodynamic + molecular)
k Permeability tensor
N Number of nuclei
p Pressure
q Rate of fluid withdrawal
R, Brine source rate due to salt dissolution
R Fluid source rate due to salt dissolution
u Darcy velocity vector
¢ Porosity
P, Porosity at the reference pressure
y7i Viscosity
R Rock (formation)
w Water (fluid)
S Salt (brine)
T Time step
A Sobolev space
e closed triangle element in T,
h, Step length for the concentration
hp Step length for the pressure
U Approximate velocity
P Approximate pressure
C Approximate concentration
u Projection of velocity
1] Projection of pressure
C Projection of concentration
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