Hosoya Polynomials of Steiner Distance of Complete m-partite Graphs and Straight Hexagonal Chains (*)

Ali Aziz Ali
aliazizali1933@yahoo.com
College of Computer Sciences and Mathematics, University of Mosul, Iraq

Herish Omer Abdullah
herish_omer@yahoo.com
College of Sciences, University of Salahaddin.

Received on: 13/05/2007
Accepted on: 28/06/2007

ABSTRACT
The Hosoya polynomials of Steiner distance of complete m-partite graphs \(K(p_1, p_2, \ldots, p_m) \) and Straight hexagonal chains \(G_m \) are obtained in this paper. The Steiner n-diameter and Wiener index of Steiner n-distance of \(K(p_1, p_2, \ldots, p_m) \) and \(G_m \) are also obtained.

Keywords: Steiner distance, Hosoya polynomial, Steiner n-diameter, Wiener index.

1. Introduction
We follow the terminology of [2,3]. For a connected graph \(G = (V, E) \) of order \(p \), the Steiner distance [8,7] of a non-empty subset \(S \subseteq V(G) \) denoted by \(d_G(S) \) or simply \(d(S) \), is defined to be the size of the smallest connected subgraph \(T(S) \) of \(G \) that contains \(S \). \(T(S) \) is called a Steiner tree of \(S \). If \(|S|=2 \), then the definition of the Steiner distance of \(S \) yields the (ordinary) distance between the two vertices of \(S \). For \(2 \leq n \leq p \) and \(|S|=n \), the Steiner distance of \(S \) is called Steiner n-distance of \(S \) in \(G \).
The Steiner n-diameter of a graph G (or the diameter of the Steiner n-distance), denoted by $diam_n^* G$ or $\delta_n^*(G)$, is defined to be the maximum Steiner n-distance of all n-subsets of $V(G)$, that is

$$diam_n^* G = \max \{d_G(S) : S \subseteq V(G), |S| = n \}.$$

Remark 1.1. It is clear that

1. If $n \geq m$, then $diam_n^* G \geq diam_m^* G$.
2. If $S' \subseteq S$, then $d_G(S') \leq d_G(S)$.

The **average Steiner n-distance** of a graph G, denoted by $\mu_n^*(G)$, or average n-distance of G is the average of the Steiner n-distances of all n-subsets of $V(G)$, that is

$$\mu_n^*(G) = \left(\frac{p}{n} \right)^{-1} \sum_{S \subseteq V \atop |S| = n} d_G(S).$$

If G represents a network, then the Steiner n-diameter of G indicates the number of communication links needed to connect n processors, and the average n-distance indicates the expected number of communication links needed to connect n processors [8].

The **Steiner n-eccentricity** [7] of a vertex $v \in V(G)$, denoted by $e_n^*(v)$, is defined as the maximum of the Steiner n-distances of all n-subsets of $V(G)$ containing v. The **Steiner n-radius** of G, denoted by $rad_n^*(G)$, is the minimum of Steiner n-eccentricities of all vertices in G.

The **Steiner n-distance** of a vertex $v \in V(G)$, denoted by $W_n^*(v,G)$ is the sum of the Steiner n-distances of all n-subsets of $V(G)$ containing v.

The sum of Steiner n-distances of all n-subsets of $V(G)$ is denoted by $d_n^*(G)$ or $W_n^*(G)$. Notice that

$$W_n^*(G) = \sum_{S \subseteq V \atop |S| = n} d_G(S) = n^{-1} \sum_{v \in V(G)} W_n^*(v,G) = \left(\frac{p}{n} \right) \mu_n^*(G). \quad \ldots \quad (1.1)$$

The graph invariant $W_n^*(G)$ is called the Wiener index of the Steiner n-distance of the graph G.

Bounds for the average Steiner n-distance of a connected graph G of order p are given by Danklemann, Oellermann and Swart [4].

Definition 1.2[1] Let $C_n^*(G,k)$ be the number of n-subsets of distinct vertices of G with Steiner n-distance k. The graph polynomial defined by
\[H_n^*(G;x) = \sum_{k=0}^{n-1} \binom{k}{n} C_n^*(G,k)x^k, \quad \ldots \ldots (1.2) \]

where \(\delta_n^* \) is the Steiner \(n \)-diameter of \(G \); is called the \textbf{Hosoya polynomial of Steiner }\(n \)-\textbf{distance of }\(G \).[1].

Then the \textbf{ }\(n \)-\textbf{Wiener index of }\(G \), \(W_n^*(G) \) will be

\[W_n^*(G) = \sum_{k=0}^{n-1} k C_n^*(G,k) \quad \ldots \ldots (1.3) \]

The following proposition summarizes some properties of \(H_n^*(G;x) \).

\textbf{Proposition 1.2.} For \(2 \leq n \leq p(G) \),

1. \(\deg H_n^*(G;x) \) is equal to the Steiner \(n \)-diameter of \(G \).
2. \(H_n^*(G;x) = \sum_{k=0}^{n-1} \binom{k}{n} C_n^*(G,k) \left(\frac{p}{n} \right)^k \), \quad \ldots \ldots (1.4)
3. \(W_n^*(G) = \frac{d}{dx} H_n^*(G;x) \bigg|_{x=1} \), \quad \ldots \ldots (1.5)
4. For \(n=2 \), \(H_2^*(G;x) = H(G;x) - p \), \quad \ldots \ldots (1.6)

where \(H(G;x) \) is the ordinary Hosoya polynomial of \(G \).
5. Each end-vertex of a Steiner tree \(T(S) \) must be a vertex of \(S \).

For \(1 \leq n \leq p \), let \(C_n^*(u,G,k) \) be the number of \(n \)-subsets \(S \) of distinct vertices of \(G \) containing \(u \) with Steiner \(n \)-distance \(k \). It is clear that \(C_1^*(u,G,0) = 1 \).

Define

\[H_n^*(u,G;x) = \sum_{k=0}^{n-1} \binom{k}{n} C_n^*(u,G,k)x^k. \quad \ldots \ldots (1.7) \]

Obviously, for \(2 \leq n \leq p \)

\[H_n^*(G;x) = \frac{1}{n} \sum_{v \in V(G)} H_n^*(u,G;x). \quad \ldots \ldots (1.8) \]

Ali and Saeed [1] were first who studied this distance-based polynomial for Steiner \(n \)-distances, and established Hosoya polynomials of Steiner \(n \)-distance for some special graphs and graphs having some kind of regularity, and for Gutman’s compound graphs \(G_1 \cdot G_2 \) and \(G_1 : G_2 \) in terms of Hosoya polynomials of \(G_1 \) and \(G_2 \).

In this paper, we obtain the Hosoya polynomial of Steiner \(n \)-distance of a complete \(m \)-partite graph \(K(p_1,p_2,\ldots,p_m) \); and we determine the Hosoya polynomial of Steiner 3-distance of a straight hexagonal chain \(G_m \).

Moreover, \(\text{diam}_n^* K(p_1,p_2,\ldots,p_m) \) and \(\text{diam}_n^* G_m \) are also determined.
2. Complete m-partite Graphs

A graph \(G \) is \(m \)-partite graph \([3], m \geq 1\), if it is possible to partition \(V(G) \) into \(m \) subsets \(V_1, V_2, \ldots, V_m \) (called partite sets) such that every edge \(e \) of \(G \) joins a vertex of \(V_i \) to a vertex of \(V_j \), \(i \neq j \). A Complete \(m \)-partite graph \(G \) is an \(m \)-partite graph with partite sets \(V_1, V_2, \ldots, V_m \) having the added property that if \(u \in V_i \) and \(v \in V_j \), \(i \neq j \), then \(uv \in E(G) \). If \(|V_i| = p_i \), then this graph is denoted by \(K(p_1, p_2, \ldots, p_m) \).

It is clear that the order, the size and the diameter of \(K(p_1, p_2, \ldots, p_m) \) are \(\sum_{i=1}^{m} p_i \), \(\sum_{i<j} p_i p_j \), and \(2 \), respectively.

The following proposition determines the diameter of Steiner distance of \(K(p_1, p_2, \ldots, p_m) \).

Proposition 2.1. For \(n \geq 2 \), \(m \geq 2 \), let \(p' = \max\{p_1, p_2, \ldots, p_m\} \), then \(\text{diam}^*_n K(p_1, p_2, \ldots, p_m) = \) \(\begin{cases} n, & \text{if } 2 \leq n \leq p', \\ n-1, & \text{if } p' < n \leq p. \end{cases} \)

Proof. Let \(S \) be any \(n \)-subset of the vertices of \(K(p_1, p_2, \ldots, p_m) \). If \(S \) contains \(u, v \) such that \(u \in V_i \) and \(v \in V_j \), \(i \neq j \), then \(\langle S \rangle \) is connected, and so \(d(S) = n-1 \).

If \(S \subseteq V_i \), for \(1 \leq i \leq m \), then \(d(S) = n \), namely, the size of \(T(S) (\cong K(1, n)) \).

Therefore, taking \(S \subseteq V_{p'} \) and \(2 \leq n \leq p' \), we get \(\text{diam}^*_n K(p_1, p_2, \ldots, p_m) = n \).

If \(n > p' \), then \(S \) must contain vertices from at least two different partite sets.

This completes the proof. \(T(S) (\cong K(1, n)) \)

Theorem 2.2. For \(n, m \geq 2 \),

\[
H_n^*(K(p_1, p_2, \ldots, p_m); x) = C_1 x^{n-1} + C_2 x^n,
\]

in which

\[
C_1 = \binom{p}{n} - \sum_{i=1}^{m} \binom{p_i}{n}, \quad C_2 = \sum_{i=1}^{m} \binom{p_i}{n}.
\]

Proof. From Proposition 2.1, for each \(n \)-subset \(S \), \(n-1 \leq d(S) \leq n \).

For each \(n \)-subset \(S \subseteq V_i \), \(1 \leq i \leq m \), \(d(S) = n \), thus the numbers of such \(n \)-subset is \(C_2 \). Since, the number of all \(n \)-subsets is \(\binom{p}{n} \), then \(C_1 \) is as given in the statement of this theorem.

The next corollary follows directly from Theorem 2.2.

Corollary 2.3. For \(n, m \geq 2 \),
\[W_n^*(K(p_1, p_2, \ldots, p_m)) = (n-1) \left(\frac{p}{n} \right) + \sum_{i=1}^{m} \left(\frac{p_i}{n} \right), \]

\[\mu_n^*(K(p_1, p_2, \ldots, p_m)) = n - 1 + \frac{\sum_{i=1}^{m} p_i}{p/n}. \]

Remark. By combinatorial argument one can easily show that
\[\sum_{i=1}^{m} p_i < \left(\frac{p}{n} \right), \quad m \geq 2. \]

Thus for \(m \geq 2 \),
\[\mu_n^*(K(p_1, p_2, \ldots, p_m)) < n. \]

A complete \(m \)-partite graph is called a **regular complete \(m \)-partite graph** [3], if \(p_i = t \) for all \(i \), and it will be denoted by \(K_{m(t)} \). The Hosoya polynomial and the Wiener index of Steiner \(n \)-distance of \(K_{m(t)} \) are given in the following corollary. Its proof follows easily from Theorem 2.2.

Corollary 2.4. For \(2 \leq n \leq p = mt \)

1. \(H_n^*(K_{m(t)}; x) = m \left(\frac{t}{n} \right)^n + \left[\frac{mt}{n} - \frac{m}{n} \left(\frac{t}{n} \right) \right] x^{n-1}. \)
2. \(W_n^*(K_{m(t)}) = (n-1) \left(\frac{mt}{n} \right) + m \left(\frac{t}{n} \right). \)

3. Straight Hexagonal Chains

A cycle of length 6 can be drawn as a regular hexagon. A **Straight Hexagonal Chains** \(G_m, \quad m \geq 2, \) is a graph consisting of a chain of \(m \) hexagons such that every two successive hexagons have exactly one edge in common in the form shown in Fig. 3.1.

It is clear that
\[p(G_m) = 4m + 2, \quad q(G_m) = 5m + 1. \]

One can easily show that
\[\text{diam} G_m = 2m + 1. \]

(3.1)

The graph \(G_m \) is known to Chemists [5,6] as benzenoid chain of \(m \) hexagonal rings.

We shall find a formula for the diameter of the Steiner \(n \)-distance of the graph \(G_m \) for some values of \(n \). The vertices of \(G_m \) are labeled as shown in Fig. 3.1.
Proposition 3.1. For \(m \geq 1, \ 2 \leq n \leq m + 2, \)
\[\text{diam}_G \mathcal{G}_m = 2m + n - 1. \]

Proof. It is clear that for \(n=2, \)
\[\text{diam}_G \mathcal{G}_m = d(u_1, u'_{2m+1}) = 2m + 1. \]
If \(n=3, \) we find that a 3-subset \(S' \) of maximum Steiner distance is
\[S' = \{u_1, u_{2m+1}, u'_{2m}\}, \]
and so,
\[\text{diam}_G \mathcal{G}_m = d_3 (S') = 2m + 2. \]
For \(n=4, \) we notice that a 4-subset \(S'' \) of maximum Steiner distance is
\[S'' = \{u_1, u_{2m+1}, u'_{2m}, v\}, \]
in which \(v \in \{u'_2, u'_4, ..., u'_{2m-2}\}. \)
Thus
\[\text{diam}_G \mathcal{G}_m = d_4 (S'') = 2m + 3 \]

Hence, in general for an \(n \)-subset \(S, \ 2 \leq n \leq m + 2, \) of maximum Steiner \(n \)-distance, we have the following cases:
(1) If \(n \) is even, then \(S \) consists of the first \(n \) vertices from the sequence:
\[u_1, u'_2, u_{2m+1}, u'_{2m}, u_{2m-2}, u'_{2m-4}, u_{2m-6}, ..., \]
\[u'_2, \text{ if } m \text{ is even}, \]
\[u'_4, \text{ if } m \text{ is odd}. \]

When \(m \) is even, a Steiner tree, \(T(S) \) of such \(S \) consists of a \((2m+1)\)-path, say, \(u_1, u_2, u_3, ..., u_{2m+1}, u'_{2m+1} \) together with \(\frac{n-2}{2} \) paths each of length 2, namely
\[(u_{2m-1}, u'_{2m-1}, u'_{2m-2}), (u_{2m-5}, u'_{2m-5}, u'_{2m-6}), ... \]
Therefore, the size of \(T(S) \) is
\[(2m+1) + \frac{n-2}{2} = 2m + n - 1. \]
When \(m \) is odd \(T(S) \) has the same structure as for the case of even \(m \), and so have size \(2m+n-1. \)
(2) If \(n \) is odd, then \(S \) consists of the first \(n \) vertices from sequence:
\[
\{ u_1, u_{2m+1}, u_{2m}, u_{2m-2}, u_{2m-4}, u_{2m-6}, \ldots, u'_2, \text{ if } m \text{ is odd,} \}
\]
\[
\{ u'_4, \text{ if } m \text{ is even.} \}
\]
When \(m \) is odd, a Steiner tree \(T(S) \) of such \(S \) consists of a \(2m \)-path, say, \((u_1, u_2, \ldots, u_{2m}, u_{2m+1})\) together with \(\frac{n-1}{2} \) paths each of length 2, namely \((u_{2m+1}, u'_{2m+1}, u_{2m}), (u_{2m-3}, u'_{2m-3}, u_{2m-4}), \ldots. \) Therefore, the size of \(T(S) \) is
\[
2m + 2 \left(\frac{n-1}{2} \right) = 2m + n - 1.
\]
When \(m \) is even, \(T(S) \) has the same structure as for odd case of \(m \), and so has size \(2m+n-1 \).

Proposition 3.2. For \(m \geq 3, m+3 \leq n \leq 2m \),
\[
diam^*_G(n) = 3m + \left\lceil \frac{n-m}{2} \right\rceil.
\]

Proof. An \(n \)-subset \(S \) of vertices, \(m+3 \leq n \leq 2m \) which has maximum Steiner \(n \)-distance consists of \(m+2 \) vertices described in the proof of Proposition 3.1 together with other \(m-2 \) vertices chosen in pairs, each pair consists of 2 vertices, belonging to a hexagon, one of degree 2 and the other of degree 3. For instance, when \(n \) and \(m \) are even, the added \((m-2) \) vertices are \(u'_{2m}, u_{2m-1}, u_{2m-2}, u'_{2m-3}, \ldots. \) Each such pair of vertices gives one edge added to the size of \(T(S') \), \(|S'| = m+2 \). Therefore the Steiner \(n \)-distance of \(S \) is
\[
2m + (m+2-1) + \left\lceil \frac{n-m-2}{2} \right\rceil.
\]

Remark. For \(m \geq 2, n=p-2 \),
\[
diam^*_G(n) = n = 4m - 2.
\]
Thus, for \(2m+1 \leq n \leq 4m \),
\[
3m + \left\lceil \frac{n-m}{2} \right\rceil \leq diam^*_G(n) \leq p-2,
\]
and
\[
diam^*_G(n) = p-1, \text{ for } n=p-1 \text{ or } p.
\]

We now find the Hosoya Polynomial of the Steiner 3-distance of \(G_m \).

Theorem 3.3. For \(m \geq 3 \), we have the following reduction formula for \(H_3^*(G_m;x) \),
\[
H_3^*(G_m;x) = 2H_3^*(G_{m-1};x) - H_3^*(G_{m-2};x) + F_m(x),
\]
where \(F_m(x) = 2x^{2m-1}(2m-3) + (9m-11)x + (13m-9)x^2 + (7m-1)x^3 + mx^4 \)

Proof. Let \(S \) be any 3-subset of \(V(G_m) \). We refer to Fig 3.1, and denote
Hosoya Polynomials of Steiner...

\[
A = \{u_1, u_2, u'_1, u'_2\}, \quad A' = \{u_{2m}, u_{2m+1}, u'_{2m}, u'_{2m+1}\},
\]
\[
B = \{u_3, u_5, \ldots, u_{2m-1}\}, \quad B' = \{u'_3, u'_5, \ldots, u'_{2m-1}\},
\]
\[
C = \{u_4, u_6, \ldots, u_{2m-2}\} \quad \text{and} \quad C' = \{u'_{4}, u'_{6}, \ldots, u'_{2m-2}\}.
\]

For all possibilities of \(S \subseteq V(G_m) - A \) (or \(S \subseteq V(G_m) - A' \)), we have the corresponding polynomial \(H^*_3(G_{m-1}; x) \). And for all possibilities of \(S \subseteq V(G_m) - \{A \cup A'\} \), the corresponding polynomial is \(H^*_3(G_{m-2}; x) \).

Thus
\[
H^*_3(G_m; x) = 2H^*_3(G_{m-1}; x) - H^*_3(G_{m-2}; x) + F_m(x),
\]
in which \(F_m(x) \) is the Hosoya polynomial corresponding to all 3-subsets of vertices that each contains at least one vertex from \(A \) and at least one vertex from \(A' \). Therefore \(F_m(x) \) can be split into two polynomials \(F_1(x) \) and \(F_2(x) \), where \(F_1(x) \) is the Hosoya Polynomial of all 3-subsets \(S \) that each contains one vertex from \(A \), one vertex from \(A' \) and one vertex from \(W = B \cup B' \cup C \cup C' \), and \(F_2(x) \) is the Hosoya polynomial corresponding to all 3-subsets \(S \) such that \(S \subseteq A \cup A' \). \(S \cap A \neq \emptyset \) and \(S \cap A' \neq \emptyset \).

(I) Now, to find \(F_1(x) \), we consider the following subcases:

(a) If \(S = \{u_1, u_{2m}, y\} \) or \(\{u'_1, u'_{2m}, y\} \), then

(1) When \(y \in B \cup C \), there are \((2m-3)\) such subsets \(S \) each of 3-distance \((2m-1)\).

(2) When \(y \in B' \), there are \((m-1)\) such subsets \(S \), each of 3-distance \(2m\).

(3) When \(y \in C' \), there are \((m-2)\) such subsets \(S \), each of 3-distance \(2m+1\).

Therefore, for all such possibilities of \(S \), \(S = \{u_1, u_{2m}, y\} \) or \(\{u'_1, u'_{2m}, y\} \), \(y \in W \), the corresponding polynomial is

\[
P_1(x) = 2x^{m-1}[(2m-3) + (m-1)x + (m-2)x^2]
\]

(b) If \(S = \{u_1, u_{2m+1}, y\} \) or \(\{u'_1, u'_{2m+1}, y\} \), for all \(y \in W \), then the corresponding polynomial can be obtained by a similar way of (a) as given below

\[
P_2(x) = 2x^{m-1}[(2m-3) + (m-1)x + (m-2)x^2]
\]

(c) If \(S = \{u_1, u'_{2m}, y\} \) or \(\{u'_1, u_{2m}, y\} \), \(y \in W \), then the corresponding polynomial is

\[
P_3(x) = 4(2m-3)x^{2m}.
\]

(d) If \(S = \{u_1, u'_{2m+1}, y\} \) or \(\{u'_1, u_{2m+1}, y\} \), \(y \in W \), then the corresponding polynomial is

\[
P_4(x) = 4(2m-3)x^{2m+1}.
\]

(e) If \(S = \{u_2, u_{2m}, y\} \) or \(\{u'_2, u'_{2m}, y\} \), for all \(y \in W \), then the corresponding polynomial is

\[
P_5(x) = 2x^{2m-2}[(2m-3) + (m-1)x + (m-2)x^2] .
\]
(f) If \(S = \{u_1, u_2, u_{2m+1}, y\} \) or \(\{u_1', u_2', u_{2m+1}, y\} \), for all \(y \in W \), then the corresponding polynomial is
\[
P_6(x) = 2x^{2m-1}(2m - 3 + (m-1)x + (m-2)x^2).
\]

(g) If \(S = \{u_2, u_{2m}, y\} \) or \(\{u_2', u_{2m}, y\} \), for all \(y \in W \) then the corresponding polynomial is
\[
P_7(x) = 4(2m - 3)x^{2m-1}.
\]

(h) If \(S = \{u_2, u_{2m+1}, y\} \) or \(\{u_2', u_{2m+1}, y\} \), for all \(y \in W \), then the corresponding polynomial is
\[
P_8(x) = 4(2m - 3)x^{2m}.
\]

Therefore
\[
F_1(x) = \sum_{i=1}^{8} P_i(x)
\]
\[
= 2x^{2m-2}(2m - 3 + (2m - 13)x + (13m - 19)x^2 + (7m - 11)x^3 + (m - 2)x^4).
\]

(II) To find \(F_2(x) \), let \(S \) consists of two vertices from \(A \) and one vertex from \(A' \), or one vertex from \(A \) and two vertices from \(A' \). Thus we have \(2 \binom{4}{2} = 2(24) \) possibilities for the 3-subsets \(S \), 24 of them give the same Hosoya polynomials for the other 24 cases. These 24 cases are listed in the following table with their Steiner 3-distances:

<table>
<thead>
<tr>
<th>no.</th>
<th>3-subsets (S)</th>
<th>Steiner distances</th>
<th>no.</th>
<th>3-subsets (S)</th>
<th>Steiner distances</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>({u_1, u_2, u_{2m}})</td>
<td>2m-1</td>
<td>13.</td>
<td>({u_1', u_2', u_{2m}})</td>
<td>2m-1</td>
</tr>
<tr>
<td>2.</td>
<td>({u_1, u_2, u_{2m+1}})</td>
<td>2m</td>
<td>14.</td>
<td>({u_1, u_2, u_{2m+1}})</td>
<td>2m</td>
</tr>
<tr>
<td>3.</td>
<td>({u_1, u_2, u_{2m}'})</td>
<td>2m</td>
<td>15.</td>
<td>({u_1', u_2', u_{2m}'})</td>
<td>2m</td>
</tr>
<tr>
<td>4.</td>
<td>({u_1, u_2, u_{2m+1}'})</td>
<td>2m+1</td>
<td>16.</td>
<td>({u_1', u_2', u_{2m+1}'})</td>
<td>2m+1</td>
</tr>
<tr>
<td>5.</td>
<td>({u_1, u_1', u_{2m}})</td>
<td>2m</td>
<td>17.</td>
<td>({u_2, u_2', u_{2m}})</td>
<td>2m</td>
</tr>
<tr>
<td>6.</td>
<td>({u_1, u_1', u_{2m+1}})</td>
<td>2m+1</td>
<td>18.</td>
<td>({u_2, u_2', u_{2m+1}})</td>
<td>2m+1</td>
</tr>
<tr>
<td>7.</td>
<td>({u_1, u_1', u_{2m}'})</td>
<td>2m</td>
<td>19.</td>
<td>({u_2, u_2', u_{2m}'})</td>
<td>2m</td>
</tr>
<tr>
<td>8.</td>
<td>({u_1, u_1', u_{2m+1}'})</td>
<td>2m+1</td>
<td>20.</td>
<td>({u_2, u_2', u_{2m+1}'})</td>
<td>2m+1</td>
</tr>
<tr>
<td>9.</td>
<td>({u_1, u_2, u_{2m}})</td>
<td>2m+1</td>
<td>21.</td>
<td>({u_2', u_2', u_{2m}})</td>
<td>2m+1</td>
</tr>
<tr>
<td>10.</td>
<td>({u_1, u_2, u_{2m+1}})</td>
<td>2m+2</td>
<td>22.</td>
<td>({u_2', u_2, u_{2m+1}})</td>
<td>2m+2</td>
</tr>
<tr>
<td>11.</td>
<td>({u_1, u_2, u_{2m}'})</td>
<td>2m</td>
<td>23.</td>
<td>({u_2', u_2, u_{2m}'})</td>
<td>2m</td>
</tr>
<tr>
<td>12.</td>
<td>({u_1, u_2, u_{2m+1}'})</td>
<td>2m+1</td>
<td>24.</td>
<td>({u_2', u_2, u_{2m+1}'})</td>
<td>2m+1</td>
</tr>
</tbody>
</table>
Hosoya Polynomials of Steiner…

Therefore, there are 4 subsets \(S \) of 3-distance \((2m-1)\), 20 of 3-distance \(2m \), 20 subsets of 3-distance \((2m+1)\) and 4 subsets of 3-distance \((2m+2)\). Thus,
\[
F_5(x) = 4x^{2m-3}(1 + 5x + 5x^2 + x^3).
\]
Adding \(F_5(x) \) to \(F_2(x) \) we get \(F_m(x) \) as given in the statement of the theorem.

Remark. Hosoya Polynomials of Steiner 3-distance of \(G_1 \) and \(G_2 \) are obtained by direct calculation as shown below:
\[
H_5(G_1;x) = 6x^2 + 12x^3 + 2x^4,
\]
and
\[
H_5(G_2;x) = 15x^2 + 36x^3 + 38x^4 + 27x^5 + 4x^6.
\]
The reduction formula given in Theorem 3.3 can be solved to obtain the following useful formula.

Corollary 3.4. For \(m \geq 3 \)
\[
H_5(G_m;x) = 3(3m-1)x^2 + 12(2m-1)x^3 + 2(18m-17)x^4
+ 27(m-1)x^5 + 4(m-1)x^6 + \sum_{k=0}^{m-3} (k+1)F_{m-k}(x),
\]
where
\[
F_{m-k}(x) = 2x^{2(m-k-1)}[(2m-2k-3) + (9m-9k-11)x + (13m-13k-9)x^2
+ (7m - 7k - 1)x^3 + (m - k)x^4].
\]

Proof. From Theorem 3.3,
\[
H_5(G_m;x) = 2H_5(G_{m-1};x) - H_5(G_{m-2};x) + F_m(x)
= 2[2H_5(G_{m-2};x) - H_5(G_{m-3};x) + F_{m-1}(x)] - H_5(G_{m-2};x) + F_m(x)
= 3H_5(G_{m-2};x) - 2H_5(G_{m-3};x) + F_m(x) + 2F_{m-1}(x)
= 3[2H_5(G_{m-3};x) - H_5(G_{m-4};x) + F_{m-2}(x)]
- 2H_5(G_{m-3};x) + F_m(x) + 2F_{m-1}(x)
= 4H_5(G_{m-3};x) - 3H_5(G_{m-4};x) + \sum_{k=0}^{2} (k+1)F_{m-k}(x)
= (m-1)H_5(G_2;x) - (m-2)H_5(G_1;x) + \sum_{k=0}^{m-3} (k+1)F_{m-k}(x) \quad \ldots (3.1)
\]
From the remark above, we have
\[
H_5(G_2;x) = 15x^2 + 36x^3 + 38x^4 + 27x^5 + 4x^6,
\]
and
\[
H_5(G_1;x) = 6x^2 + 12x^3 + 2x^4.
\]
Substituting in (3.1) and simplifying, we get the required result.
The 3-Wiener index of G_m is given in the following corollary.

Corollary 3.5. For $m \geq 3$,

$$W^*_3(G_m) = \frac{4}{3} m(m-2)(8m^2 + 35m + 83) + 225m - 1$$

Proof. It is known that

$$W^*_3(G_m) = \frac{d}{dx} H^*_3(G_m; x)|_{x=1}$$

Hence $W^*_3(G_m) = 393m - 337 + 2 \sum_{k=0}^{m-3} [64k^3 + (116 - 128m)k^2 + (64m^2 - 180m + 68)k + 8(16m^2 - 13m + 4)]$

Now, using the fact that

$$\sum_{k=0}^{m-3} k = \frac{1}{2} (m-3)(m-2), \quad \sum_{k=0}^{m-3} k^2 = \frac{1}{6} (m-3)(m-2)(2m-5) \quad \sum_{k=0}^{m-3} k^3 = \left(\frac{1}{2} (m-3)(m-2)\right)^2,$$

and simplifying we get the required result. \blacksquare
REFERENCES

