A Generalized Curvature of a Generalized Envelope

Tahir H. Ismail
tahir_hsis@uomosul.edu.iq
College of computers Sciences
and Mathematics
University of Mosul
Received on: 27/6/2007

Ibrahim O. Hamad

ibrahim.hamad@su.edu.krd
College of Sciences
Salahaddin University
Accepted on: 4/11/2007

In this paper we study one of the applications of a generalized curvature [3] on the generalized envelope of a family of lines given in [7], [8], using some concepts of nonstandard analysis given by Robinson, A. [5] and axiomatized by Nelson, E..
Keywords: infinitesimals, monad, envelope, generalized curvature

$$
\begin{aligned}
& \text { حول الانحناء المعمم للفلاف المعمم } \\
& \text { كلية العلوم، جامعة صلاح الدين } \\
& \text { كلية علوم الحاسوب والرياضيات، جامعة الموصل } \\
& \text { تاريخ قول البحث: 2007/11/4 } \\
& \text { تاريخ استلام البحث: 2007/6/27 } \\
& \text { الهدف من هذا البحث هو دراسة بعض تطبيقات الانحناء المعمم [3] على الغلاف المعمم } \\
& \text {. ووضعهه Relson, E. بأسلوب منطقي. Robinson, A. [5] } \\
& \text { الكلمات المفتاحية: ما لانهاية من الصغر ، هالة، غلاف، انحناء معمم. }
\end{aligned}
$$

1- Introduction:

The following definitions and notations are needed throughout this paper.

Every concept concerning sets or elements defined in classical mathematics is called standard [4].

Any set or formula which does not involve new predicates "standard, infinitesimals, limited, unlimited...etc" is called internal, otherwise it is called external [2], [4].

A real number \boldsymbol{x} is called unlimited if and only if $|\boldsymbol{x}|>\boldsymbol{r}$ for all positive standard real numbers, otherwise it is called limited [2].

A real number \boldsymbol{x} is called infinitesimal if and only if $|\boldsymbol{x}|<\boldsymbol{r}$ for all positive standard real numbers \boldsymbol{r} [2].

Two real numbers x and y are said to be infinitely close if and only if $\boldsymbol{x}-\boldsymbol{y}$ is infinitesimal and denoted by $\boldsymbol{x} \cong \boldsymbol{y}$ [2], [6].

If \boldsymbol{x} is a limited number in \mathbf{R}, then it is infinitely close to a unique standard real number, this unique number is called the standard part of \boldsymbol{x} or shadow of \boldsymbol{x} denoted by $s t(x)$ or ${ }^{0} \boldsymbol{x}$ [2], [4].

If \boldsymbol{x} is a real limited number, then the set of all numbers, which are infinitely close to \boldsymbol{x}, is called the monad of \boldsymbol{x} and denoted by $\boldsymbol{m}(\boldsymbol{x})$ [2], [3].

A curve \boldsymbol{v} is called envelope of a family of curves $\left\{\gamma_{\alpha}\right\}$ depending on a parameter $\boldsymbol{\alpha}$, if at each of its points, it is tangent to at least one curve of the family $\left\{\gamma_{\alpha}\right\}$, and if each of its segments is tangent to an infinite set of these curves [1].

The projective homogenous plane over \mathbf{R}, denoted by $\mathbf{P}_{\mathbf{R}}^{\mathbf{2}}$ is the set:
$\mathbf{P}_{\mathbf{R}}^{\mathbf{2}}=\mathbf{R}^{\mathbf{2}} \cup\{$ one point at ∞ for each equivalence classes of parallel lines \},we denoted it by (PHP) [1].

The projective homogeneous coordinates of a point $p(x, y) \in \mathbf{R}^{2}$ $\operatorname{are}(\boldsymbol{x} \boldsymbol{\alpha}, \boldsymbol{y} \alpha, \boldsymbol{\alpha})$, where $\boldsymbol{\alpha}$ is any nonzero number, we denote it by (PHC). In this sense the projective homogeneous coordinates of any point is not unique. [1]

By a parameterized differentiable curve, we mean a differentiable map $\gamma: \mathbf{I} \rightarrow \mathbf{R}^{\mathbf{3}}$ of an open interval $\mathbf{I}=(\boldsymbol{a}, \boldsymbol{b})$ of the real line \mathbf{R} into $\square \mathbf{R}^{\mathbf{3}}$ such that: $\quad \gamma(t)=(x(t), y(t), z(t))=x(t) e_{1}+y(t) e_{2}+z(t) e_{3}$, and x, y, and z are differentiable at \boldsymbol{t}; it is also called spherical curve [2].
Definition 1.1 [7]
Let $A=\gamma(t)$ be a standard point on the curve γ, then the following cases occur for the point \boldsymbol{A} with the existence of the order of derivatives of γ :
1- If $\gamma^{\prime} \neq 0, \gamma^{\prime \prime} \neq 0$ and $\gamma^{\prime} \cdot \gamma^{\prime \prime} \neq 0$ then the point is called biregular point.
2- If $\gamma^{\prime} \neq 0$ then the point is called regular point.
3- If $\gamma^{\prime} \neq 0$ and $\gamma^{\prime} \cdot \gamma^{\prime \prime} \neq 0$ then the point is called only regular point, and we say that the point is only regular point of order $\boldsymbol{p}-\mathbf{1}$ if $\gamma^{\prime} \neq 0$ and $\gamma^{\prime}=\gamma^{\prime \prime}=\cdots=\gamma^{(p-1)}=0$, but $\gamma^{\prime} \cdot \gamma^{(p)} \neq 0$. In this case we say that \boldsymbol{p} is the order of the first vector derivative not \square collinear with γ^{\prime}
4- If $\gamma^{\prime}=0$ then the point is called singular point. In general if $\gamma^{\prime}=\gamma^{\prime \prime}=\cdots=\gamma^{(p-1)}=0$ but $\gamma^{(p)} \neq 0$, then the point is called singular point of order \mathbf{p}.

Theorem 1.2 [7]

Let γ be a standard curve of order C^{n} and \mathbf{A} be a standard singular point of order $p-1$ on γ; and let B and C be two points infinitely close to the point A, then the generalized curvature of γ at the point denoted by \boldsymbol{K}_{G} and given by
$\boldsymbol{K}_{G}=\frac{(\boldsymbol{p}!)^{\frac{q}{p}}\left|x^{(p)} \boldsymbol{y}^{(q)}-\boldsymbol{x}^{(q)} \boldsymbol{y}^{(p)}\right|}{\boldsymbol{q}!\left(\boldsymbol{x}^{(p)}+\boldsymbol{y}^{(p)}\right)^{\frac{q+p}{2 p}}}=\frac{(p!)^{\frac{q}{p}}\left|\gamma^{(p)} \times \gamma^{(q)}\right|}{\left.\boldsymbol{q}!\left\|\gamma^{(p)}\right\|\right|^{\frac{q}{p}+1}}$,
where \boldsymbol{q} is the order of the first vector derivative of γ not collinear with $\gamma^{(p)}$.

Theorem 1.3 [7]

If $\boldsymbol{p}_{\boldsymbol{k}}(\boldsymbol{t})=\boldsymbol{r}_{\boldsymbol{k}}(\mathrm{t})=\boldsymbol{q}_{\boldsymbol{k}}(\boldsymbol{t})=\mathbf{0}$ for $\boldsymbol{1} \leq \boldsymbol{k} \leq \boldsymbol{n} \quad$ (n standard) and $\boldsymbol{p}_{\boldsymbol{n}}(\boldsymbol{t}), \boldsymbol{r}_{\boldsymbol{n}}(\boldsymbol{t}), \boldsymbol{q}_{\boldsymbol{n}}(\boldsymbol{t})$ are not all zeros, then the PHC points of $\gamma(\boldsymbol{t})$ are of the form $\left(\boldsymbol{p}_{\boldsymbol{n}}(\boldsymbol{t}), \boldsymbol{r}_{\boldsymbol{n}}(\boldsymbol{t})\right.$, $\boldsymbol{q}_{\boldsymbol{n}}(\boldsymbol{t})$) which does not depend on \boldsymbol{e}. Thus, we get the generalized nonclassical form of the envelope curve $\gamma(t)$ as follows:

$$
\begin{aligned}
(x(t), y(t)) & =\left(\frac{X_{e}(t)}{Z_{e}(t)}, \frac{Y_{e}(t)}{Z_{e}(t)}\right. \\
& =\left(\frac{v^{(n)}(t) w(t)-w^{(n)}(t) v(t)}{u^{(n)}(t) v(t)-v^{(n)}(t) u(t)}, \frac{w^{(n)}(t) u(t)-u^{(n)}(t) w(t)}{u^{(n)}(t) v(t)-v^{(n)}(t) u(t)}\right)
\end{aligned}
$$

2- A Generalized Curvature of the Envelope of a Family of Lines

Throughout this section, we give a curvature formula for the envelope of a family of lines $\boldsymbol{L}_{\boldsymbol{t}}: \boldsymbol{u}(t) \boldsymbol{x}+\boldsymbol{v}(\boldsymbol{t}) \boldsymbol{y}+\boldsymbol{w}(\boldsymbol{t}) \boldsymbol{z}=\mathbf{0}$ represented by the components $\boldsymbol{u}, \boldsymbol{v}$, and \boldsymbol{w}.

It is clear that every two infinitely closed points (points in the same monad) on the envelope curve of a family of lines determine two infinitely close lines in that monad.

That is, $\forall \boldsymbol{A}\left(\boldsymbol{t}_{o}\right), \boldsymbol{B}\left(\boldsymbol{t}_{o}\right) \in \gamma\left(\boldsymbol{t}_{\boldsymbol{o}}\right)$, where $\boldsymbol{B}\left(\boldsymbol{t}_{o}+\alpha\right) \in \boldsymbol{m}\left(\boldsymbol{A}\left(\boldsymbol{t}_{\boldsymbol{o}}\right)\right)$ there exists a line $\boldsymbol{L}_{\boldsymbol{t}_{o}+\boldsymbol{a}} \in\left\{\boldsymbol{L}_{\boldsymbol{t}}\right\}$ such that $\boldsymbol{L}_{\boldsymbol{t}_{o}+a}>\boldsymbol{L}_{\boldsymbol{t}_{o}}$ in $\boldsymbol{m}\left(\boldsymbol{A}\left(\boldsymbol{t}_{\boldsymbol{o}}\right)\right)$, where $\boldsymbol{m}\left(\boldsymbol{A}\left(\boldsymbol{t}_{\boldsymbol{o}}\right)\right)$ denotes the monad of the point \boldsymbol{A}, where α is an infinitesimal number.

For finding curvature formula of the envelope of a family of lines, we follow the following algorithm.

1. Find the envelope curve using Theorem $\mathbf{1 . 3}$ according to the case under consideration.
2. Find the singularity and collinearity order of the envelope curve.
3. Consider three infinitely closed points $\boldsymbol{A}\left(\boldsymbol{t}_{o}\right), \boldsymbol{B}\left(\boldsymbol{t}_{o}+\alpha\right)$ and $\boldsymbol{C}\left(\boldsymbol{t}_{o}+\beta\right)$ on the envelope curve $\boldsymbol{g}(\boldsymbol{t})$ such that
$\boldsymbol{A}\left(\boldsymbol{t}_{o}\right) \in \boldsymbol{L}_{t_{o}}, \boldsymbol{B}\left(\boldsymbol{t}_{o}+\alpha\right) \in \boldsymbol{L}_{\boldsymbol{t}_{o}+a}$ and $\boldsymbol{C}\left(\boldsymbol{t}_{o}+\beta\right) \in \boldsymbol{L}_{\boldsymbol{t}_{o}+b}$
4. Apply the generalized curvature formula given in Theorem 1.2 at the points $\boldsymbol{A}\left(\boldsymbol{t}_{\boldsymbol{o}}\right), \boldsymbol{B}\left(\boldsymbol{t}_{o}+\alpha\right)$ and $\boldsymbol{C}\left(\boldsymbol{t}_{o}+\beta\right)$.
Where α and β are infinitesimal numbers.
The following theorems will give a new formula of the generalized curvature of the envelope of a family of lines.

Theorem 2.1

Let $\boldsymbol{A}=\left(\boldsymbol{t}_{\boldsymbol{o}}\right)$ be a regular point of the envelope curve γ of the family $\boldsymbol{L}_{t}: \boldsymbol{u}(t) \boldsymbol{X}+\boldsymbol{v}(\boldsymbol{t}) \boldsymbol{Y}+\boldsymbol{w}(\boldsymbol{t}) \boldsymbol{Z}=\mathbf{0}$ in $\boldsymbol{P H C}$, then the generalized curvature $\boldsymbol{K}_{\boldsymbol{G}}$ of the envelope curve at a point \boldsymbol{A} is given by

$$
\begin{equation*}
\frac{\left|\left(r^{\prime}(t) q^{\prime \prime}(t)-r^{\prime \prime \prime}(t) q^{\prime}(t)\right)^{2}+\left(p^{\prime \prime}(t) q^{\prime}(t)-p^{\prime}(t) q^{\prime \prime}(t)\right)^{2}+\left(p^{\prime}(t) r^{\prime \prime}(t)-p^{\prime \prime \prime}(t) r^{\prime}(t)\right)^{2}\right|^{\frac{1}{2}}}{2\left|p^{\prime}(t)^{2}+q^{\prime}(t)^{2}+r^{\prime}(t)^{2}\right|^{\frac{3}{2}}}, \tag{2.1.1}
\end{equation*}
$$

where $\boldsymbol{p}(\boldsymbol{t}), \boldsymbol{r}(\boldsymbol{t})$ and $\boldsymbol{q}(\boldsymbol{t})$ are as given in Theorem $\mathbf{1 . 3}$ for $\boldsymbol{n}=\boldsymbol{1}$

Proof:

Let $\boldsymbol{A}=\gamma\left(\boldsymbol{t}_{\boldsymbol{o}}\right)$ be a standard point on the envelope of the curve γ, and $\boldsymbol{B}=\gamma\left(\boldsymbol{t}_{o}+\alpha\right), \boldsymbol{C}=\gamma\left(\boldsymbol{t}_{o}+\beta\right)$ be two points infinitely close to \boldsymbol{A}. Let $\boldsymbol{L}_{\boldsymbol{t}}, \boldsymbol{L}_{\boldsymbol{t}+a}$ and \boldsymbol{L}_{t+b} be three lines of the family $\left\{\boldsymbol{L}_{t}\right\}$ having $\boldsymbol{A}, \boldsymbol{B}$ and \boldsymbol{C} as contact points with the envelope curve, respectively.
Then;

$$
\begin{aligned}
& L_{t}: u(t) X+v(t) Y+w(t) Z=0, \\
& L_{t+a}: u(t+\varepsilon) X+v(t+\square \varepsilon) Y+w(t+\square \varepsilon) Z=0, \\
& L_{t+b}: u(t+\varepsilon) X+v(t+\square \varepsilon) Y+w(t+\square \varepsilon) Z=0 .
\end{aligned}
$$

Since, the point \boldsymbol{A} is regular, then Theorem 1.3 for $\boldsymbol{n}=\boldsymbol{1}$ is satisfied, and therefore $\gamma(\boldsymbol{t})=\left(\boldsymbol{p}_{I}(\boldsymbol{t}), \boldsymbol{r}_{I}(\boldsymbol{t}), \boldsymbol{q}_{I}(\boldsymbol{t})\right)$

Using the spherical case of the generalized curvature given in Theorem 1.2 for a curve $\gamma=(x(t), y(t), z(t))$, we get

$$
\begin{equation*}
K_{G}=\frac{\left|\left(y^{\prime} z^{\prime \prime}-y^{\prime \prime} z^{\prime}\right)^{2}+\left(x^{\prime \prime} z^{\prime}-x^{\prime} z^{\prime \prime}\right)^{2}+\left(x^{\prime} y^{\prime \prime}-x^{\prime \prime} y^{\prime}\right)^{2}\right|^{\frac{1}{2}}}{2\left|x^{\prime 2}+y^{\prime 2}+z^{\prime 2}\right|^{\frac{3}{2}}} \tag{2.1.2}
\end{equation*}
$$

Now replacing each of $\boldsymbol{x}, \boldsymbol{y}$ and \boldsymbol{z} by $\boldsymbol{p}_{1}(\boldsymbol{t}), \boldsymbol{r}_{\boldsymbol{I}}(\mathrm{t})$ and $\boldsymbol{q}_{\boldsymbol{1}}(\boldsymbol{t})$, respectively, we get the required result.

Theorem 2.2

Let $\boldsymbol{A}=\gamma\left(\boldsymbol{t}_{\boldsymbol{o}}\right)$ be a singular point of the envelope curve γ of order $\boldsymbol{n}-\mathbf{1}$, and let \boldsymbol{m} be the order of the first nonzero derivative which is not collinear with $\gamma^{(n)}(t)$, that is, $\gamma^{\prime}(\boldsymbol{t})=\gamma^{\prime \prime}(\boldsymbol{t})=\cdots=\gamma^{(n-1)}(\boldsymbol{t})=\mathbf{0}, \gamma^{(n)}(\boldsymbol{t}) \neq \mathbf{0}$, and $\gamma^{\prime}(\boldsymbol{t}) \cdot \gamma^{\prime \prime}(\boldsymbol{t})=\gamma^{\prime}(\boldsymbol{t}) \square \cdot \gamma^{\prime \prime \prime}(\boldsymbol{t})=\cdots=\square \gamma^{\prime}(\boldsymbol{t}) \square \cdot \gamma^{(m-1)}(\boldsymbol{t})=\cdots=\gamma^{(n-1)} \square .(\boldsymbol{t}) \gamma^{(m-1)}(\boldsymbol{t})=0$,

$$
\gamma^{(n)}(t) \cdot \gamma^{(m)}(t) \neq 0
$$

Then, the generalized curvature $\boldsymbol{K}_{\boldsymbol{G}}$ of the envelope curve γ at the points of the monad of \boldsymbol{A} is given by

$$
\begin{equation*}
\frac{(n!)^{\frac{m}{n}}\left|\left(\boldsymbol{r}^{(n)} \boldsymbol{q}^{(m)}-\boldsymbol{r}^{(m)} \boldsymbol{q}^{(n)}\right)^{2}+\left(\boldsymbol{p}^{(m)} \boldsymbol{q}^{(n)}-\boldsymbol{p}^{(n)} \boldsymbol{q}^{(m)}\right)^{2}+\left(\boldsymbol{p}^{(n)} \boldsymbol{r}^{(m)}-\boldsymbol{p}^{(m)} \boldsymbol{r}^{(n)}\right)^{2}\right|^{\frac{1}{2}}}{\boldsymbol{m}!\left|\boldsymbol{p}^{(n)^{2}}+\boldsymbol{q}^{(n)^{2}}+\boldsymbol{r}^{(n)^{2}}\right|^{\frac{m+n}{2 n}}} \tag{2.2.1}
\end{equation*}
$$

Moreover, the Cartesian coordinate of the generalized curvature $\boldsymbol{K}_{\boldsymbol{G}}$ of the envelope curve γ at the points of the monad of \boldsymbol{A} is given by

$$
\begin{equation*}
\frac{(n!)^{\frac{m}{n}}\left|\left(\frac{p(t)}{q(t)}\right)^{(n)}\left(\frac{r(t)}{q(t)}\right)^{(m)}-\left(\frac{p(t)}{q(t)}\right)^{(m)}\left(\frac{r(t)}{q(t)}\right)^{(n)}\right|}{m!\left|\left(\frac{p(t)}{q(t)}\right)^{(n)^{2}}+\left(\frac{r(t)}{q(t)}\right)^{(n)^{2}}\right|^{\frac{m+n}{2 n}}} \tag{2.2.2}
\end{equation*}
$$

where n and m are positive integer numbers.

Proof:

First, applying the spherical case of the generalized curvature given in Theorem 1.2 at $\boldsymbol{x}=\boldsymbol{p}_{1}(\boldsymbol{t}), \boldsymbol{y}=\boldsymbol{r}_{\mathbf{1}}(\boldsymbol{t})$ and $\boldsymbol{z}=\boldsymbol{q}_{\boldsymbol{1}}(\boldsymbol{t})$, we get the generalize curvature formula (2.2.1). Since the point $\left(\boldsymbol{p}_{1}(\boldsymbol{t}), \boldsymbol{r}_{1}(\boldsymbol{t}), \boldsymbol{q}_{1}(\boldsymbol{t})\right)$ in $\boldsymbol{P H C}$ is equivalent to the point $\left(\boldsymbol{p}_{1}(\boldsymbol{t}) / \boldsymbol{q}_{1}(\boldsymbol{t}), \boldsymbol{r}_{1}(\boldsymbol{t}) / \boldsymbol{q}_{1}(\boldsymbol{t}), \mathbf{1}\right)$, so again, applying the spherical case of generalized curvature, we get

$$
\begin{equation*}
K_{G}=\frac{(n!)^{\frac{m}{n}}\left|\left(y^{(n)} z^{(m)}-y^{(m)} z^{(n)}\right)^{2}+\left(z^{(n)} x^{(m)}-z^{(m)} x^{(n)}\right)^{2}+\left(x^{(n)} y^{(m)}-x^{(m)} y^{(n)}\right)^{2}\right|^{\frac{1}{2}}}{m!\left|x^{(n)^{2}}+y^{(n)^{2}}+z^{(n)^{2}}\right|^{\frac{m+n}{2 n}}} \cdots \tag{2.2.3}
\end{equation*}
$$

Thus, putting $\boldsymbol{x}=p_{1}(\boldsymbol{t}) / q_{1}(\mathrm{t}), \boldsymbol{y}=\boldsymbol{r}_{1}(\boldsymbol{t}) / \boldsymbol{q}_{1}(\boldsymbol{t})$ and $\boldsymbol{z}=\boldsymbol{1}$, in (2.2.3), we obtain the formula (2.2.2).

Corollary 2.3

Let $\boldsymbol{A}=\gamma\left(\boldsymbol{t}_{\boldsymbol{o}}\right)$ be a singular point of the envelope curve γ satisfying the hypothesis of Theorem 2.2.

Moreover, let the coefficient vector $(\boldsymbol{u}(\boldsymbol{t}), \boldsymbol{v}(\boldsymbol{t}), \boldsymbol{w}(\boldsymbol{t}))$ of the envelope curve has a singularity of order $\boldsymbol{n - 1}$, then the generalized curvature $\boldsymbol{K}_{\boldsymbol{G}}$ of the envelope curve γ at points in the monad of \boldsymbol{A} is given by

$$
\begin{equation*}
\frac{(n!)^{\frac{m}{n}} \left\lvert\,\left(\boldsymbol{r}_{n}(t) q_{m}(t)-r_{m}(t) q_{n}(t)\right)^{2}+\left(p_{m}(t) q_{n}(t)-p_{n}(t) q_{m}(t)\right)^{2}+\left(p_{n}(t) r_{m}(t)-p_{m}(t) r_{n}(t)\right)^{2 \frac{1}{2}}\right.}{m!\left|p_{n}^{2}(t)+q_{n}^{2}(t)+r_{n}^{2}(t)\right|^{\frac{m+m}{2 n}}} \tag{2.3.1}
\end{equation*}
$$

and the cartesian coordinate curvature $\boldsymbol{K}_{\boldsymbol{G}}(\boldsymbol{t})$ of the envelope
curve γ at \boldsymbol{A} is given by

$$
\begin{equation*}
\frac{(n!)^{\frac{m}{n}}\left|\left(\frac{p_{n}(t)}{q_{n}(t)}\right) \cdot\left(\frac{r_{m}(t)}{q_{m}(t)}\right)-\left(\frac{\boldsymbol{p}_{m}(t)}{\boldsymbol{q}_{m}(t)}\right) \cdot\left(\frac{r_{n}(t)}{q_{n}(t)}\right)\right|}{m!\left|\left(\frac{p_{n}(t)}{\boldsymbol{q}_{n}(t)}\right)^{2}+\left(\frac{r_{n}(t)}{\boldsymbol{q}_{n}(t)}\right)^{2}\right|^{\frac{m+n}{2 n}}} \tag{2.3.2}
\end{equation*}
$$

Proof:

By Theorem 2.2 we have

$$
\boldsymbol{K}_{G}(\boldsymbol{t})=\frac{(\boldsymbol{n}!)^{\frac{m}{n}}\left|\left(\boldsymbol{r}^{(n)} \boldsymbol{q}^{(m)}-\boldsymbol{r}^{(m)} \boldsymbol{q}^{(n)}\right)^{2}+\left(\boldsymbol{p}^{(m)} \boldsymbol{q}^{(n)}-\boldsymbol{p}^{(n)} \boldsymbol{q}^{(m)}\right)^{2}+\left(\boldsymbol{p}^{(n)} \boldsymbol{r}^{(m)}-\boldsymbol{p}^{(m)} \boldsymbol{r}^{(n)}\right)^{2}\right|^{\frac{1}{2}}}{\boldsymbol{m}!\boldsymbol{p}^{(n)^{2}}+\boldsymbol{q}^{(n)^{2}}+\left.\boldsymbol{r}^{(n)^{2}}\right|^{\frac{m+n}{2 n}}}
$$

Since the coefficient vector $(\boldsymbol{u}(\boldsymbol{t}), \boldsymbol{v}(\boldsymbol{t}), \boldsymbol{w}(\boldsymbol{t}))$ of the envelope curve has a singularity of order $\boldsymbol{n} \boldsymbol{- 1}$, so we get

$$
u^{\prime}(t)=v^{\prime}(t)=w^{\prime}(t)=\cdots=u^{(n-1)}(t)=v^{(n-1)}(t)=w^{(n-1)}(t)=0,
$$

and

$$
\left(u^{(n)}(t), v^{(n)}(t), w^{(n)}(t)\right) \neq \boldsymbol{0}
$$

Therefore,

$$
\left.\begin{array}{r}
p^{(n)}(t)=v^{(n)}(t) w(t)-w^{(n)}(t) v(t)=p_{n}(t) \tag{2.3.3}\\
r^{(n)}(t)=w^{(n)}(t) u(t)-u^{(n)}(t) w(t)=r_{n}(t) \\
q^{(n)}(t)=u^{(n)}(t) v(t)-v^{(n)}(t) u(t)=q_{n}(t)
\end{array}\right\}
$$

Hence, the result of the first part is proved.
To prove the second part put $\boldsymbol{x}=\mathbf{p}_{\mathbf{n}}(\mathbf{t}) / \mathbf{q}_{\mathbf{n}}(\mathbf{t}), \boldsymbol{y}=\mathbf{r}_{\mathbf{n}}(\mathbf{t}) / \mathbf{q}_{\mathbf{n}}(\mathbf{t})$ and $\boldsymbol{z}=\mathbf{1}$ and then apply the spherical curvature formula (2.2.3) to obtain the formula (2.3.2).

Corollary 2.4

Let $\boldsymbol{A}=\gamma\left(\boldsymbol{t}_{\boldsymbol{o}}\right)$ be a singular point of the envelope curve γ satisfying the hypothesis of Theorem 2.2. Let $\square \gamma(\boldsymbol{t})=(\boldsymbol{p}(t), \boldsymbol{r}(\boldsymbol{t}), \boldsymbol{q}(t))$ be such that $\boldsymbol{q}(t)$ has a nonzero constant value, then the generalized curvature $\boldsymbol{K}_{\boldsymbol{G}}$ of the envelope curve γ at points of the monad of \boldsymbol{A} is given by
$\frac{(\boldsymbol{n}!)^{\frac{m}{n}}\left|\left(\boldsymbol{p}^{(n)}(\boldsymbol{t}) \boldsymbol{r}^{(m)}(\boldsymbol{t})-\boldsymbol{p}^{(m)}(\boldsymbol{t}) \boldsymbol{r}^{(n)}(\boldsymbol{t})\right)^{2}\right|}{\boldsymbol{m}!\left|\boldsymbol{p}^{2}(\boldsymbol{t})+\boldsymbol{r}^{2}(\boldsymbol{t})\right|^{\frac{m}{2 n}}} \cdot \boldsymbol{q}^{\frac{m-n}{n}}$

Proof:

Without loss of generality we use the cartesian coordinate form (2.2.2) of Theorem 2.2 to obtain

$$
\begin{equation*}
K_{G}(t)=\frac{(n!)^{\frac{m}{n}}\left|\left(\frac{p(t)}{\boldsymbol{q}(t)}\right)^{(n)}\left(\frac{\boldsymbol{r}(t)}{\boldsymbol{q}(t)}\right)^{(m)}-\left(\frac{\boldsymbol{p}(t)}{\boldsymbol{q}(t)}\right)^{(m)}\left(\frac{\boldsymbol{r}(t)}{\boldsymbol{q}(t)}\right)^{(n)}\right|}{m!\left|\left(\frac{\boldsymbol{p}(t)}{\boldsymbol{q}(t)}\right)^{(n)^{2}}+\left(\frac{\boldsymbol{r}(t)}{\boldsymbol{q}(t)}\right)^{(n)}\right|^{\frac{m+n}{2 n}}} \tag{2.4.2}
\end{equation*}
$$

Since the value of $\boldsymbol{q}(t)$ is constant, we get

$$
\begin{aligned}
K_{G}(t) & =\frac{(n!)^{\frac{m}{n}}\left(\frac{1}{q}\right)^{2}\left|\boldsymbol{p}(t)^{(n)} r(t)^{(m)}-\boldsymbol{p}(t)^{(m)} r(t)^{(n)}\right|}{m!\left(\frac{1}{q}\right)^{\frac{m+n}{n}}\left|p(t)^{(n)^{2}}+r(t)^{(n)^{2}}\right|^{\frac{m+n}{2 n}}} \\
& =\frac{(n!)^{\frac{m}{n}}\left|\left(p^{(n)}(t) r r^{(m)}(t)-p^{(m)}(t) r^{(n)}(t)\right)^{2}\right|}{\left.m!\mid p^{2}(t)+r^{2}(t)\right)^{\frac{m+n}{2 n}}} \cdot q^{\frac{m-n}{n}} \cdot
\end{aligned}
$$

Remark 2.5

If $\boldsymbol{q}(\boldsymbol{t})=\mathbf{0}$ then, by using either equation (2.2.1) or the equation (2.3.1), we can find a spherical generalized curvature $\boldsymbol{K}_{\boldsymbol{G}}$, but it does not represent a real curvature of the envelope curve. We shall call such value of curvature Ideal Curvature of a curve γ at points of the monad of $\boldsymbol{A}=\gamma\left(\boldsymbol{t}_{\boldsymbol{o}}\right)$.

Example 2.6

Consider the family of lines $\mathbf{2 x}-3 t y+t^{3}=\mathbf{0}$
By applying the algorithm given at the beginning of this section, we get
$u=2$
$u^{\prime}=0$
$u^{\prime \prime}=0$
$u^{\prime \prime \prime}=0$
$v=-3 t$
$v^{\prime}=-3$
$v^{\prime \prime}=0$
$v^{\prime \prime}=0$
$w=2 t^{3}$
$w^{\prime}=6 t^{2}$
$w^{\prime \prime}=12 t$
$w^{\prime \prime \prime}=12$

Now we determine the singularity and collinearity

$$
\begin{array}{lll}
\gamma(0)=(0,0) & \gamma^{\prime}(0)=(0,0) & \gamma^{\prime \prime}(0)=(0,2)
\end{array} \gamma^{\prime \prime \prime}(0)=(12,0)
$$

Thus γ has a first singularity order (that is $\boldsymbol{n}=\mathbf{2}$) and the order of collinearity is equal to 3 . The envelope curve $\gamma(t)$ is given by

$$
\begin{aligned}
\left(X_{\varepsilon}(t), Y_{\varepsilon}(t), Z \varepsilon(t)\right) & \\
& =\left(v^{\prime}(t) w(t)-w^{\prime}(t) v(t), w^{\prime}(t) u(t)-u^{\prime}(t) w(t), u^{\prime}(t) v(t)-v^{\prime}(t) u(t)\right) \\
& =\left(6 t^{3}, 6 t^{2}, 12\right)
\end{aligned}
$$

Since the value of $\mathbf{q}(\mathbf{t})$ is constant, so using Corollary 2.4, we get,
$K_{G}=\frac{(2!)^{\frac{3}{2}}\left|\left(p^{(2)}(t) r^{(3)}(t)-p^{(3)}(t) r^{(2)}(t)\right)^{2}\right|}{3!\left|p^{2}(t)+r^{2}(t)\right|^{\frac{3+2}{2 \times 2}}} \cdot q^{\frac{3-2}{2}}=\frac{1}{\sqrt{6}} \cdot \sqrt{12}=\sqrt{2}$
Note that if we use the cartesian coordinate, we find that $\gamma(\boldsymbol{t})$ is equal to

$$
\begin{aligned}
(x(t), y(t)) & =\left(\frac{X_{e}(t)}{Z_{e}(t)}, \frac{Y_{e}(t)}{Z_{e}(t)}\right)=\left(\frac{v^{\prime}(t) w(t)-w^{\prime}(t) v(t)}{u^{\prime}(t) v(t)-v^{\prime}(t) u(t)}, \frac{w^{\prime}(t) u(t)-u^{\prime}(t) w(t)}{u^{\prime}(t) v(t)-v^{\prime}(t) u(t)}\right) \\
& =(1 / 2)\left(t^{3}, t^{2}\right)
\end{aligned}
$$

Here γ also has a first singularity order (that is $\boldsymbol{n}=\mathbf{2}$) and the order of collinearity is equal to $\mathbf{3}$. Thus by using the usual two dimensional forms of the generalized curvature, we get, (see Figure 2.3)

Figure 2.3

Remark: The graph of the equation of the above example is plotted with specific software Omnigraph V3.1b-2005.

REFERENCES

[1] Carmo, M. (1976); Differential Geometry of Curves and Surfaces, Prentice-Hall, INC, New York.
[2] Diener, F.\& Diener M. (1996); Nonstandard Analysis in Practice, Springer-Verlag, Berlin,HeildeBerg.
[3] Keisler, H. J. (2005); Elementary Calculus-2ed-An Infinitesimal Approach, Creative Commons, 559 Nathan Abbott, Stanford, California, 93405, USA.
[4] Nelson, E. (1977); Internal set Theory-A New Approach to Nonstandard Analysis, Bull. Amer. Math. Soc, Vol.83, No.6, pp.1165-1198.
[5] Robinson, A. (1974); Nonstandard Analysis 2 ${ }^{\text {ED }}$, North-Holland Pub.Comp.
[6] Rosinger, E. E(2004); Short Introduction to Nonstandard Analysis, arXiv: math. GM/ $0407178 \mathbf{v 1} 10$ Jul.
[7] Tahir H. Ismail \& Ibrahim O. Hamad(2006); On Generalized Curvature, Raf. J. Comp. Sc. and Maths., Vol. 3, No.2, pp.83-98.
[8] Tahir H. Ismail \& Ibrahim O. Hamad; A Nonstandard Generalization of Envelopes, To Appear

