Mosul University
  • Register
  • Login
  • العربیة

AL-Rafidain Journal of Computer Sciences and Mathematics

Notice

As part of Open Journals’ initiatives, we create website for scholarly open access journals. If you are responsible for this journal and would like to know more about how to use the editorial system, please visit our website at https://ejournalplus.com or
send us an email to info@ejournalplus.com

We will contact you soon

  1. Home
  2. Volume 11, Issue 2
  3. Authors

Current Issue

By Issue

By Subject

Keyword Index

Author Index

Indexing Databases XML

About Journal

Aims and Scope

Editorial Board

Editorial Staff

Publication Ethics

Indexing and Abstracting

Related Links

Peer Review Process

News

Software Effort Estimation Using Multi Expression Programming

    Najla Akram Al-Saati Taghreed Riyadh Alreffaee

AL-Rafidain Journal of Computer Sciences and Mathematics, 2014, Volume 11, Issue 2, Pages 53-71
10.33899/csmj.2014.163756

  • Show Article
  • Download
  • Cite
  • Statistics
  • Share

Abstract

The process of finding a function that can estimate the effort of software systems is considered to be the most important and most complex process facing systems developers in the field of software engineering. The accuracy of estimating software effort forms an essential part of the software development phases. A lot of experts applied different ways to find solutions to this issue, such as the COCOMO and other methods. Recently, many questions have been put forward about the possibility of using Artificial Intelligence to solve such problems, different scientists made ​​several studies about the use of techniques such as Genetic Algorithms and Artificial Neural Networks to solve estimation problems. This work utilizes one of the Linear Genetic Programming methods (Multi Expression programming) which apply the principle of competition between equations encrypted within the chromosomes to find the best formula for resolving the issue of software effort estimation. As for to the test data, benchmark known datasets are employed taken from previous projects, the results are evaluated by comparing them with the results of Genetic Programming (GP) using different fitness functions. The gained results indicate the surpassing of the employed method in finding more efficient functions for estimating about 7 datasets each consisting of many projects.
 
Keywords:
    Effort Estimation Multi Expression Programming Genetic Programming
  • PDF (849 K)
  • XML
(2014). Software Effort Estimation Using Multi Expression Programming. AL-Rafidain Journal of Computer Sciences and Mathematics, 11(2), 53-71. doi: 10.33899/csmj.2014.163756
Najla Akram Al-Saati; Taghreed Riyadh Alreffaee. "Software Effort Estimation Using Multi Expression Programming". AL-Rafidain Journal of Computer Sciences and Mathematics, 11, 2, 2014, 53-71. doi: 10.33899/csmj.2014.163756
(2014). 'Software Effort Estimation Using Multi Expression Programming', AL-Rafidain Journal of Computer Sciences and Mathematics, 11(2), pp. 53-71. doi: 10.33899/csmj.2014.163756
Software Effort Estimation Using Multi Expression Programming. AL-Rafidain Journal of Computer Sciences and Mathematics, 2014; 11(2): 53-71. doi: 10.33899/csmj.2014.163756
  • RIS
  • EndNote
  • BibTeX
  • APA
  • MLA
  • Harvard
  • Vancouver
  • Article View: 219
  • PDF Download: 210
  • LinkedIn
  • Twitter
  • Facebook
  • Google
  • Telegram
  • Home
  • Glossary
  • News
  • Aims and Scope
  • Privacy Policy
  • Sitemap
Powered by eJournalPlus