On \(\Pi – \) Pure Ideals

Shaimaa Hatem Ahmad
shaima.hatem1977@gmail.com
Mathematics Department
College of Computer Science and Mathematics
University of Mosul, Mosul, Iraq

Received on: 20/10/2013
Accepted on: 12/2/2014

ABSTRACT

As a generalization of right pure ideals, we introduce the notion of right \(\Pi – \) pure ideals. A right ideal \(I \) of \(R \) is said to be \(\Pi – \) pure, if for every \(a \in I \) there exists \(b \in I \) and a positive integer \(n \) such that \(a^n \neq 0 \) and \(a^n b = a^n \). In this paper, we give some characterizations and properties of \(\Pi – \) pure ideals and it is proved that:

If every principal right ideal of a ring \(R \) is \(\Pi – \) pure then,

a). \(L (a^n) = L (a^{n+1}) \) for every \(a \in R \) and for some positive integer \(n \).

b). \(R \) is directly finite ring.

c). \(R \) is strongly \(\Pi – \) regular ring.

Keywords: Pure, strongly regular, \(\Pi – \) ring.

1. Introduction

Throughout this paper, a ring \(R \) denotes as associative ring with identity and all modules are unitary. We write \(J(R) \) for Jacobson radical of \(R \). \(L(x) \) (\(Y(x) \)) denotes the left (right) annihilator of \(x \) in \(R \).

Recall the following definitions and facts:

1- A ring \(R \) is called \(\Pi – \) regular \([3]\), if for any \(a \in R \), there exists \(b \in R \) and a positive integer \(n \) such that \(a^n = a^n ba^n \). A ring \(R \) is called strongly \(\Pi – \) regular if for any \(a \in R \), there exists \(b \in R \) and a positive integer \(n \) such that \(a^n = a^{2n} b \).
A ring R is called a quasi ZI–ring \[8\], if for any non-zero elements $a, b \in R$, $ab = 0$ implies that there exists a positive integer n such that $a^n \neq 0$ and $a^n R b^n = 0$.

A ring R is said to be reduced \[9\], if it contains no non-zero nilpotent element.

R is called right SXM if for each $0 \neq a \in R$, $r(a) = r(a^n)$ for a positive integer n satisfying $a^n \neq 0$. For example, reduced rings are right SXM rings \[7\].

Pure ideals have been extensively studied for several years. Many authors studied some properties and connections between pure ideals and regular rings \[2\], \[4\],and \[5\].

2. **Pi – Pure Ideals**

In this section, we introduce the notion of a right Pi – pure ideals, with some of their basic properties. Also, we give a connection between Pi – pure ideals and pure ideals.

Following [1], an ideal I of a ring R is said to be right(left) pure ideal, if for any $a \in I$, there exists $b \in I$ such that $a = ab$. (a = ba).

Following [6], an ideal of a ring R is said to be GP-ideal, if for every $a \in I$, there exists $b \in I$ and a positive integer n such that $a^n = a^n b$.

Definition (2.1):

An ideal I of a ring R is said to be right Pi – pure ideal if for every $a \in I$, there exists a positive integer n and $b \in I$, such that $a^n \neq 0$ and $a^n = a^n b$.

Clearly, every right pure ideal is a right Pi – pure ideal but the converse is not true.

Example (1):

Let \mathbb{Z}_{12} be the ring of integers modulo 12 and $I = (3)$, $J = (4)$. Then, both I and J are Pi – pure ideals of \mathbb{Z}_{12}. Obviously, Pi – pure ideal implies GP-ideal.

It is clear that in the case of reduced rings, GP – ideals coincide. with Pi – pure.

Example (2):

Let \mathbb{Z}_9 be the ring of integers modulo 9 and the (3) is not Pi–pure, but GP – ideal.

We now consider a necessary and sufficient condition for Pi–pure to be pure ideal.

Proposition (2.2):

Let R be right SXM ring. Then, every Pi – pure ideal is pure ideal.

Proof: Let I be a right Pi – pure ideal, and let $a \in I$. Then, there exists $b \in I$ and a positive integer n such that $a^n \neq 0$, and $a^n = a^n b$, this implies that $(1 – b) \in r(a^n) = r(a)$. ($R$ is right SXM). Therefore, $(1 – b) \in r(a)$ and $a = ab$. So, I is pure ideal.

Proposition (2.3):

Let R be a ring with every principal ideal is Pi – pure ideal. Then,
1- Every non-zero divisor element of R is invertible.
2- $J(R)$ is a nil ideal.

Proof: It proved the same method as [5, Proposition. 3.2.6].

3. **The Connection Between Pi–Pure Ideals and Other Rings**

In this section, we study the connection between rings whose every principal ideal is Pi – pure and strongly Pi – regular rings and other rings.

Proposition (3.1):
Let R be a ring such that every principal left ideal is right Π – pure. Then, $L(a^n) = L(a^{n+1})$ for every $a \in R$ and for some a positive integer n.

Proof :

Let $a \in I$. Then, there exists $b \in I$, and a positive integer n, such that $a^n \neq 0$ and $a^n a^n b$ where, $b = ax$ for some $x \in R$.

Therefore $a^n = a^{n+1} x$. Let $y \in L(a^{n+1})$, $y a^{n+1} = 0$, then $y (a^{n+1} x) = 0$ So $ya^n = 0$ and $y \in L(a^n)$. Therefore, $L(a^{n+1}) \subseteq L(a^n)$. Clearly $L(a^n) \subseteq L(a^{n+1})$. So, $L(a^n) = L(a^{n+1})$.

Following [3], a ring R is called directly finite if $ab = 1$ implies $ba = 1$ for all $a, b \in R$.

As a parallel result to [3, Proposition 2.1.13], the following result was obtained.

Proposition (3.2):

Let R be a ring with every principal right ideal is Π – pure. Then, R is directly finite.

Proof :

Let $x, y \in R$ such that $xy = 1$. It is clear that $x^n y^n = 1$ and $x^{n+1} y^{n+1} = 1$ multiple by y^{n+1}. So $y^{n+1} x^{n+1} y^{n+1} = y^{n+1},$ and $(1 - y^{n+1} x^{n+1}) \in L(y^{n+1}) = L(y^n)$ (Proposition 3.1). Hence, $y^n = y^{n+1} x^{n+1} y^n = (y^{n+1} x) (x^n y^n) = y^{n+1} x$.

Now, $yx = (x^n y^n) yx = x^n (y^{n+1} x) = x^n y^n = 1$.

Theorem (3.3):

Let R be a ring with every principal right ideal is right Π – pure. Then, R is strongly Π – regular.

Proof :

For any $a \in R$, aR is Π – pure. Since $a \in aR$. There exists $b \in R$ and a positive integer n such that $a^n \neq 0$,

and $a^n = a^{n+1} x$ for some $x \in R$

$= a^{n+1} x a^{n+2} x^2 = \ldots a^{2n} x^n = a^{2n} y$

Therefore, R is strongly Π – regular.

A right modulo M is said to be YJ – injective [9], if for any $0 \neq a \in R$, there exists an appositive integer n such that $a^n \neq 0$ and any right R – homomorphism. From $a^n R$ into M, extends to one from R into M.

A ring R is called a right YJ – injective ring, if R is YJ – injective ring.

Proposition (3.4): [8]

Let R be a quasi ZI ring. If every simple singular right R – modulo is YJ – injective. Then,

1- R is reduced.

2- $I + r(a) = R$ for any non-zero ideal I of R and every $a \in I$.

Theorem (3.5):

Let R be a quasi ZI – ring. If every simple singular right R – modulo is YJ – injective. Then, every ideal of R is right Π – pure.

Proof :

From Proposition (3.4), $I + r(a) = R$ for every non-zero ideal I of R, and $a \in R$.

So, $b + d = 1$, $b \in I$, $d \in r(a)$, $ab + ad = a$. Therefore, $ab = a$, and $a^n b = a^n$ for some a positive integer n and $a^n \neq 0$. So, I is Π – pure.
REFERENCES

