Mosul University
  • Register
  • Login
  • العربیة

AL-Rafidain Journal of Computer Sciences and Mathematics

Notice

As part of Open Journals’ initiatives, we create website for scholarly open access journals. If you are responsible for this journal and would like to know more about how to use the editorial system, please visit our website at https://ejournalplus.com or
send us an email to info@ejournalplus.com

We will contact you soon

  1. Home
  2. Volume 8, Issue 1
  3. Authors

Current Issue

By Issue

By Subject

Keyword Index

Author Index

Indexing Databases XML

About Journal

Aims and Scope

Editorial Board

Editorial Staff

Publication Ethics

Indexing and Abstracting

Related Links

Peer Review Process

News

Finite Differences Methods for solving Korteweg-de Vries-Burger's Equation

    Ekhlass S. Al-Rawi Almutasim Albaker

AL-Rafidain Journal of Computer Sciences and Mathematics, 2011, Volume 8, Issue 1, Pages 65-80
10.33899/csmj.2011.163624

  • Show Article
  • Download
  • Cite
  • Statistics
  • Share

Abstract

In this paper we solved the Korteweg-de Vries-Burger's equation numerically by finite difference methods, using two different schemes which are the Fully Implicit scheme and the Exponential finite difference scheme, because of the existence of the third derivative in the equation we suggested a treatment for the  numerical solution by parting the mesh grid into five regions, the first region represents the first boundary condition, the second one at the grid point , while the third represents the grid points , the fourth represents the grid point  and the fifth is for the second boundary condition .  
We also studied the numerical stability, using Fourier (Von-Neumann) method for the two schemes which used in the solution on all mesh points to ensure the stability of the point which had been treated in the suggested style. Numerical results obtained by using these schemes are compared with existing analytical results. Excellent agreement was found between the exact solution and approximate solutions obtained by these schemes. The obtained approximate numerical solutions maintain good accuracy compared with exact solution specially for small values of the viscosity parameter.
 
Keywords:
    Finite difference methods Fully Implicit scheme Exponential finite difference scheme Fourier (Von-Neumann) method Korteweg-de Vries-Burger's equation
  • PDF (493 K)
  • XML
(2011). Finite Differences Methods for solving Korteweg-de Vries-Burger's Equation. AL-Rafidain Journal of Computer Sciences and Mathematics, 8(1), 65-80. doi: 10.33899/csmj.2011.163624
Ekhlass S. Al-Rawi; Almutasim Albaker. "Finite Differences Methods for solving Korteweg-de Vries-Burger's Equation". AL-Rafidain Journal of Computer Sciences and Mathematics, 8, 1, 2011, 65-80. doi: 10.33899/csmj.2011.163624
(2011). 'Finite Differences Methods for solving Korteweg-de Vries-Burger's Equation', AL-Rafidain Journal of Computer Sciences and Mathematics, 8(1), pp. 65-80. doi: 10.33899/csmj.2011.163624
Finite Differences Methods for solving Korteweg-de Vries-Burger's Equation. AL-Rafidain Journal of Computer Sciences and Mathematics, 2011; 8(1): 65-80. doi: 10.33899/csmj.2011.163624
  • RIS
  • EndNote
  • BibTeX
  • APA
  • MLA
  • Harvard
  • Vancouver
  • Article View: 36
  • PDF Download: 34
  • LinkedIn
  • Twitter
  • Facebook
  • Google
  • Telegram
  • Home
  • Glossary
  • News
  • Aims and Scope
  • Privacy Policy
  • Sitemap
This journal is licensed under a Creative Commons Attribution 4.0 International (CC-BY 4.0)

Powered by eJournalPlus