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ABSTRACT

In this paper, a modified spectral conjugate gradient method for solving
unconstrained optimization problems is studied, which has sufficient descent direction
and global convergence with an inexact line searches. The Fletcher-Reeves restarting
criterion was employed to the standard and new versions and gave dramatic savings in
the computational time. The Numerical results show that the proposed method is
effective by comparing it with the FR-method.
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1. Introduction
Consider the unconstrained optimization problem
min{f(x) ‘ x e R" } .......... @

where f:R" — R is continuously differentiable. For solution of (1), one of the
algorithms in numerical performance is the Fletcher-Reeves (FR) conjugate gradient
algorithm. Let g(x)denote the gradient of f at x, and x, be an arbitrary initial

approximate solution of (1). Then, in a standard FR conjugate gradient algorithm, the
search direction is determined by
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-0, if k=0
1 = e, 2
-0, +Ad, if k>0
where
;
Rl 3)
9y 9«
Hence, a sequence of solutions will be generated by
Xep =X+, d L (4)

where ¢, is the step length along d,,, chosen by some kind of line search method
and satisfies the strong Wolfe (SW ) conditions
f(x, +ad,)<f(x)+5adlg, (5)
g%, + e d)Td|<=5dig, (6)
with 0< o, <0, <1, where f,=1f(x,), 9, =9(x.), 9, is the gradient of f
evaluated at the current iterate x, [1-4]. In [5], Matonoha et. al. (MLV) proposed

another kind of conjugate gradient method, called spectral conjugate gradient method.
Then, the search direction d, , in this method was defined by

Ay == G+ B de, (7
where
g = @ .......... (8)
9y 9«

In this paper, we are going to develop a new conjugate gradient (CG) algorithm.
The search direction generated by the method at each iteration satisfies the sufficient
descent condition. We are also going to establish the global convergence of the
proposed algorithm with the Wolfe-type line search.

The idea of CG methods had been studied by many researchers for example, see
(Xiaoi et al., [6]); (Zhong et al., [7]) and (Zhang et al. ,[8]).

2. A New Conjugate Gradient Algorithm

If exact line search is used, the new method is identical to the MLV method. The
new conjugate gradient is as follows :

d, rd
gEmy _ ﬂ‘ (Gea T Vb 0000000 (9)

9x 9y
where u >1 is a parameter. We call the methods (1) and (7) with ¢, =38 as
the BMLV method. Now, we present concrete algorithm as follows :

2.1. The Algorithm has the following steps :
Step 0 : Given parameters £=1*10", §,€(01) , &, (01/2)
choose initial point x, € R" .
Step 1: Computing g, ; if |g, <& then stop ; else continue .
Step2: Set d, =-0,.

,Ll‘d;— g k+1
Oy 9y

T
. _ pFR BMLV _ +ykdk
Step3: Set g, =4,", 9 = .
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Step4: Set x,,, =X, +,.d, , (Use strong Wolfe line search technique to
compute the parameter «, )
Step5: Compute d, , =-4""g,,, + B.d,,
Step6: If k =n go to step (2) with new values of x,, and g,,,.
If not continue.
3. Global Convergence

In this section, we study the global convergence of Algorithm (2.1). For this,
Firstly, we are going to verify that Algorithm (2.1) is well defined. For the proof of
global convergence, the following assumptions 1 are needed.

Assumption 1

i- The level set L={x e R"|f (x) < f (x,)] is bounded.

ii- In some neighborhood U and L, f(x) is continuously differentiable and its
gradient is Lipschitz continuous, namely, there exists a constant z, >0 such that

||g(Xk+1) - 9(X, )” < ﬂ1||Xk+1 = X "1 VX X €U
Theorem (3.1)

Suppose that d

k+1 js given by (7) and (9). Then, the following result
gk+1dk+l C||gk+1|| <0 L (11)

Proof.
Firstly, for k =0, it is easy to see that (11) is true since d, =—g,.
Secondly, assume that

g,d, S—c||gk||2 <0 where 0<c<1 . (12)
holds for k when k >1. Multiplying (7) by g,,,, we have
g[+1dk+1 =g Ok ’ +ﬂkgl+1
_ ﬂdggkﬂ‘: e d, y 2 gk+12 ol
Hd Gy, 0|
sy postyy el
Jo.[ lo. Jod
/l‘dkT Oiut 2 gk+1 gk+1
= 7 Yk Ved + Oy
Jo.J Jo.l Jo.l - (13)
'UdTg + ¥ ¥ ¥
_ ‘ K :1 k+1H2 gk12 gk+1dk Hgk 12 gkdk gk12 gk+1 k
Jo. Jod o Jod
_ ,U‘ k Yk 2

2
-C gk+1

i

) ﬂ‘dk Oy
ol

YK+
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from (6) and (12), we get

S,cl9. |
g;<r+ldk+lS _||gk+1||2 |:C+%:|
2 e (14)
s - ||gk+l|| [C + ,U520]

< - Cl||gk+1||2

where ¢, =C+ uo,C is positive constant.
Theorem (3.2)
Consider the conjugate gradient algorithm 2.1 where ¢, and g, are given by (8)

and (3) respectively and «, is obtained by the strong Wolfe line search ) and (6).
Suppose that the assumptions (i) and (ii) hold. Then either

0 T 2
(9xd)” _ .

lim inf|g,[=0 or . o (15)
= [l
Proof :

If our conclusion does not hold, then there exists a real number of & >0 such that
|9a|>&  for all  k=123.... . Squaring the both terms of
diy + lngMngk-»-l = fid,, we get

ldeal + @ Vlgeal + 200" dlagea = BT (16)

from (16) , we get

”dkﬂ”2 = ﬂkzndk”2 - 2¢I<BMLV dlz—+1gk+l - (gprLV )2||gk+l||2 """"" (17)

Dividing both sides of (17) by (gy,,0,,,)°, by (3),(11) and |g,.|| > & , we have

2
N Y O
(dlj+1gk+1)2 Hngz (dkTJrlngrl)2 k (dkT+1gk+l)2 k d;+1gk+1

27? 2 2
! d + 1
S{gk 1‘2‘ ] 2 kH - _(gokBMLV)Z ng 1H 4_z(pkBMLv .
loul" J el gl 9. 18)
PP
< Hgk+1H2 HdkH2 _(BMLV 2 Hgk+1H2 _ 20 1 _ 1 1
= 2 9 4 ( k ) 2 4 k 2 2 + 2
loul" ] clgel gl lgeal” ol fovd
27 2 2
{g] i [q) ..l . ] NS
Hng ¢ Hgk+1H €19 Ot Hgk+1H
P Y O SN Y
el < R4 < KL= (19)

(dl-<|—+lgk+1)2 - Cz”gk”2 ||gk+l||2 B CZ”gk”2 812
Since d, =-g,, so that
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2 2
f 3 ek
(dk+1gk+1) (d1 91) 2 ||91|| & & 2 &y
Thus,
(gkd ) S < 5f
—— =00 21
Xl 7 ZA @

Which is contrary to Theorem (3.2). The proof is complete.

4. Numerical Results

In this section, we reported some numerical results obtained with the
implementation of the new algorithm on a set of unconstrained optimization test
problems. We have selected (9) large scale unconstrained optimization problems in
extended or generalized form, for each test function, we have considered numerical
experiment with the number of variable n=100-1000. Using the standard Wolfe line
search conditions (4) and (5) with 6, =0.0001 and &, =0.9 In all of these cases, the

stopping criteria is the ||g, | <107°. The programs were written in Fortran 90. The test

functions were commonly used for unconstrained test problems with standard starting
points and a summary of the results of these test functions was given in Table (3.1). We
tabulate for comparison of these algorithms, the number of function evaluations
(NOF) and the number of iterations (NOI) .

FR-algorithm New- MLV -
. algorithm
algorithm
No. n
NOF NOF NOF
(NOI) (NOI) (NOI)
100 872 228 774
. (323) (112) (304)
1000 7741 706 Failed
(2005) (351) algorithm
100 242 222 211
) (119) (108) (104)
1000 1272 Failed 369
(634) algorithm (183)
100 209 109 209
3 (102) (53) (102)
563 45 561
1000 (279) (1) (278)
204 130 230
. 100 (31) (34) (34)
264 105 283
1090 (35) (45) (38)
297 152 280
: 100 (103) (72) (107)
1000 408 366 598
(159) (176) (267)
100 271 266 303
5 (121) (123) (119)
1000 2253 942 845
(1001) (1886) (2128)
7 100 209 412 218
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(103) (203) (108)
387 Failed 849
1000 (103) algorithm (424)
115 87 115
; 100 (57) (43) (57)
1000 333 101 272
(166) (50) (136)
80 60 82
. 100 (15) (16) (15)
145 73 133
1000 (29) (24) @7)
ot 6465 2242 6397
(2643) (2022) (2541)

5.Conclusions and Discussions.

In this paper, we have proposed modified spectral CG method for solving
unconstrained minimization problems. The computational experiments show that the
new approaches given in this paper are successful.

Table (4.1) gives a comparison between the new-algorithm and the Fletcher-
Reeves (FR)-algorithm for convex optimization; this table indicates that the new
algorithm and MLV-algorithm save (76.50—96.14)% NOI and (65.61-98.94)% NOF,

overall against the standard Fletcher-Reeves (FR)-algorithm, especially for our selected
test problems.

Relative Efficiency of the Different Methods Discussed in the Paper.

Tools NOI NOF
FR -algorithm 100 % 100 %
MLV-algorithm 3.85 % 1.05%
New-algorithm 23.49 % 34.38 %
APPENDIX

1.Generalized wood function:
VA4(Xy, — Xfi—a)z +(1- X4i—3)2 +90(X,; — Xfi—l)z +1- X4i—1)2 +

HOEDS

= 10.1((X,4;_, 1%+ (X -1)? +19.8((X4i, =1 + (X, —1))

Starting point: (—3,—1,—3,—1,..ccccce. cvevrvrnne oo )’
2.Helical valley function:

, o (211) " tan(x, / x,) for x, >0
f (x) =100((x; —108)° + (r —1)°) + x; where 6=
0.5+ (2IT) " tan(x,/x,) for x, <0

2 2\1/2
r=(X"+Xx;)

Starting point: (=1,0,0,....ccc covveerene s )
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3.Penalty 2 function:

f(x) = Zn:e““)-l)z + (x(i)? — 0.25)?

Starting point: (L2, .ccccceve vvvevenns e, )’

4. Cantrell function:
n/4

f(x)= Z[eXp( Xgi3) = Xai o]" +100(Xy 5 — X4 4)° +[tAN (X414 — X,)]* + %5, 4

i=1

Starting point: (1, 2, 2, 2,.ccccuee eveee. )T
5.Rosenbrock function:

/2
f(x) = ?El(loO(XZi — x5 )2+ A%y _1)?)

Starting point:(—1.2,1,—-1.21,......
6.Miele function:
n/4

f(x)= Z[eXp( Xia) = Xaia]” +100(X 4, — X414)° +[tan(Xy; — X, )1 + X515 + (X —1)°

Starting point: (1, 2, 2, 2,.cceerr . )’
7.Non — diagonal function:
n/2

f () = > @00(x, — x¥)? + (L — %)?)

Starting point:(—1,....cccc. covvveeres ... )’
8.Welfe function:
n 1
f(x) = (~x(3-x/2)+2x,-1)° + X (3= X (3=x%12)+2%,,~1)" +(X,,, — X, (3%, / 2-1)°
|:1
Starting point: (=1, ... oo s )
9.Sum of Quartics function:
f() =2 (x -0’
i=1
Starting point: (2, v cevvvveees o )
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