On WJCP-Injective Rings

Raida D. Mahmood
Raida.1961@uomosul.edu.iq
Department of Mathematics
College of Computer Science and Mathematics
University of Mosul, Mosul, Iraq

Shahla M. Khalil
moayadshahla@gmail.com

Received on: 20/04/2011
Accepted on: 21/06/2011

ABSTRACT

As a generalization of right JCP—injective rings, we introduce the nation of right $WJCP$—injective rings, that is for any right nonsingular element a of R, there exists a positive integer n and $a^n \neq 0$ and any right R—homomorphism $f : a^n R \to R$, there exists $m \in R$ such that $f(a^n c) = m a^n c$ for all $c \in R$. In this paper, we first introduce and characterize a right $WJCP$—injective rings. Next, connection between such ring and quasi π—regular rings and S—weakly regular rings.

Keywords: right JCP—injective rings, right $WJCP$—injective rings, quasi π—regular rings, S—weakly regular rings.

Introduction:

Throughout this paper R denotes an associative ring with identity, and R—modules are unital. For $a \in R$, $r(a)$ and $l(a)$ denote the right annihilator of a and left annihilator of a, respectively. We write $J(R), Y(R), Z(R)$ for the Jacobson radical, the
right singular ideal and the left singular ideal, respectively. An element \(a \in R \) is called right (left) regular if \(r(a)=0 \) (\(l(a)=0 \)).[10]

A ring \(R \) is reduced if \(a^2=0 \) implies \(a=0 \) for all \(a \in R \), and \(R \) is called right \(C_2 \)-ring if every right ideal \(T \) which is isomorphic to summand of \(R \) is a summand [4].

A right \(R \)-module \(M \) is said to be right \(YJ \)-injective [1], if for any \(0 \neq a \in R \) there exists a positive integer \(n \) such that \(a^n \neq 0 \) and every right \(R \)-homomorphism of \(a^nR \) into \(M \) extended to one of \(R \) into \(M \).

Call a right \(R \)-module \(M \), \(JCP \)-injective, if for each \(k \notin Y(R) \), any right \(R \)-homomorphism \(kR \rightarrow M \) extended to \(R \). Examples of these module include right \(YJ \)-injective modules. The concept of \(JCP \)-injective was first introduced by Wei, [7]. As a generalization of this concept [5], introduced \(WJCP \)-injective as a right \(R \)-module \(M \), \(WJCP \)-injective, if for each \(a \notin Y(R) \), then there exists a positive integer \(n \) such that \(a^n \neq 0 \) and every right \(R \)-homomorphism from \(a^nR \) into \(M \) can be extended to one of \(R \) into \(M \).

A ring \(R \) is called strongly \(\pi \)-regular ring, if for every \(a \in R \) there exists a positive integer \(n \) such that \(a^n = a^{n+1}b \). [2].

A ring \(R \) is called \(S \)-weakly regular ring if for all \(a \in R \) then \(a \in aRa^2R \ (a \in Ra^2Ra) \). [3]

2- \(WJCP \)-Injective Rings:

In this section, some basic properties of \(WJCP \)-injective rings are given.

Definition 2.1:[5]

A right \(R \)-module \(M \) is said to be \(WJCP \)-injective if for each \(a \notin Y(R) \) there exists a positive integer \(n \) such that \(a^n \neq 0 \) and every right \(R \)-homomorphism from \(a^nR \) into \(M \) can be extended to one of \(R \) into \(M \). If \(R_k \) is \(WJCP \)-injective ring, we call \(R \) is right \(WJCP \)-injective ring.

Clearly, right \(YJ \)-injective rings are right \(WJCP \)-injective. The ring in Example (2.5,[5]) is a right \(WJCP \)-injective which is not right \(YJ \)-injective.

Theorem 2.2:

A ring \(R \) is a right \(WJCP \)-injective if and only if for \(a \notin Y(R) \) there exists a positive integer \(n \) such that \(a^n \neq 0 \) and \(Ra^n = lr(a^n) \).

Proof:

Suppose that a ring \(R \) is right \(WJCP \)-injective. Then, for every \(0 \neq a \notin Y(R) \), there exists a positive integer \(n \) such that \(a^n \neq 0 \) and every right \(R \)-homomorphism from \(a^nR \) into \(R \) can be extended to endomorphism of \(R \). It is clear that \(Ra^n \subseteq l(r(a^n)) \). Let \(x \in l(r(a^n)) \), and \(f : a^nR \rightarrow R \) are defined by \(f(a^nr) = xr \), then, \(f \) is well defined right \(R \)-homomorphism because \(xr(a^n) = 0 \) So \(r(a^n) \subseteq r(x) \).

Since, \(R \) is right \(WJCP \)-injective, there exists \(c \in R \) such that \(f(a^n) = ca^n \). Then, \(x = f(a^n) = ca^n \in Ra^n \) which implies that \(lr(a^n) \subseteq Ra^n \). Consequently, \(lr(a^n) = Ra^n \)
Conversely, let \(a \not\in Y(R) \) there exists a positive integer \(n \) such that \(Ra^n = lr(a^n) \). Let \(f : a^nR \to R \) be any right \(R \) - homomorphism. Then, \(r(a^n) \subseteq r(f(a^n)) \), which implies \(f(a^n) \in lr(f(a^n)) \subseteq lr(a^n) = Ra^n \) and therefore \(f(a^n) = da^n \) for some \(d \in R \), this shows that \(R \) is right \(WJCP \)-injective.

Example: [7, Example 2.4]

Let \(V \) be a two- dimensional vector space over a field \(F \), the trivial extension \(R = T(F,V) = F \oplus V \) is commutative, local, artinian ring with \(J^2 = 0 \) and \(J(R) = Y(R) \). Now, if \(x \in R \) with \(x \notin Y(R) \), then \(x \) is invertible. So, \(l(r(x^n)) = R = R x^n \). This implies that \(R \) is right \(WJCP \)-injective.

Proposition 2.3:

Let \(R \) be a right \(WJCP \)-injective and \(Ra^n \subseteq Ra \) for all \(a \in R \) and a positive integer \(n \). Then, any right regular element of \(R \) is left invertible.

Proof:

Let \(a \in R \) and there exists a positive integer \(n \) such that \(r(a^n) = 0 \). Since, \(R \) is right \(WJCP \)-injective ring, then \(R = lr(a^n) = Ra^n \subseteq Ra \) by Theorem 2.2. In particular \(ra = 1 \) for some \(r \in R \). Hence, \(a \) is left invertible.

Wei and Chen [5] proved the following theorem:

Theorem 2.4:

Let \(R \) be right \(WJCP \)-injective ring. Then,

1. \(Y(R) \subseteq J(R) \)
2. \(R \) is a right \(C_2 \)-ring.

Following [6], a right \(R \)-module is called \(N \)-flat if for each \(a \in N(R) \) then, the mapping \(I_M \otimes i : M \otimes_kRa \to M \otimes_kR \) is monic, where \(i : Ra \to R \) is the inclusion map.

Lemma 2.5: [6]

Let \(I \) be a right ideal of \(R \). Then, \(R/I \) is \(N \)-flat right \(R \)-module if and only if \(Ia = I \cap Ra \) for all \(a \in N(R) \).

Theorem 2.6:

If \(R \) is a right \(WJCP \)-injective, \(l(a) \subseteq r(a) \) for every \(a \in R \) and every simple singular right \(R \)-module is \(N \)-flat, then \(Z(R) = 0 \).

Proof:

If \(Z \neq 0 \), then \(0 \neq b \in Z \) such that \(b^2 = 0 \). We show that \(Z + r(b) = R \). Otherwise there exists a maximal right ideal \(M \) such that \(Z + r(b) \subseteq M \). If \(M \) is not an essential right ideal of \(R \), then \(M = r(e) \) where \(e^2 = e \in R \). If \(be \neq 0 \), then \(beR \supseteq eR \) as right \(R \)-module by Theorem 2.4 (\(R \) is \(C_2 \)-ring). \(beR = gR \), where \(g^2 = g \in R \) so, \(g \in Z \) because \(beR \subseteq Z \). This is a contradiction. So, \(be = 0 \). Then \(e \in r(b) \subseteq M = r(e) \) which
is impossible. Thus, M is an essential right ideal of R, so R/M is N–flat, by Lemma 2.5, $b = ab$ for some $a \in M$, so $1 - a \in r(b) \subseteq M$ and then, $1 \in M$, which is a contradiction. Hence, $Z + r(b) = R$, let $1 = x + y$, $x \in Z$, $y \in r(b)$ then, $b = bx$ and so $b(1 - x) = 0$ since $x \in Z$ and $l(x) \cap l(1 - x) = 0$, $l(1 - x) = 0$, hence $b = 0$ which is a contradiction so $Z(R) = 0$. #

3- The Connection between WJCP – Injective Rings and other Rings.

In this section, we give the relation between WJCP – injective, S – weakly regular rings, strongly π – regular rings.

Following [7], a ring R is called right quasi regular if $a \in aRa$ for all $a \in Y(R)$. Now, we give the generalized of quasi regular ring.

Definition 3.1:

A ring R is called right quasi π – regular rings if $a^n \in a^nRa^n$ for all $a \in Y(R)$ and a positive integer n. Clearly R is π – regular ring if and only if R is right non singular and right quasi π – regular.

Example:

Let Z_6 be a ring of integers modulo 6, then $Y(R) = \{0\}$ so for all $a \in Y(R)$, there exists a positive integer n such that $a^n = a^nRa^n$.

Proposition 3.2:

The following conditions are equivalent for a ring R:

1- R is right quasi π – regular ring.

2- Every R – module is WJCP – injective.

3- Every cyclic R – module is WJCP – injective.

Proof:

1 \rightarrow 2:

Let M be an R – module, $a \in R$ with $a \notin Y(R)$ and $f : a^nR \rightarrow M$ any right R-homomorphism. Since, R is right quasi π – regular rings $a^n = a^nba^n$ for some $b \in R$. Let $a^n = e$ and $f(e) = m$, where $m \in M$. Then, $g : R \rightarrow M$ is defined by $g(r) = mr$, $r \in R$ is a right R-homomorphism, and $g(a^n) = ma^n = f(e)a^n = f(a^nba^n)r = f(a^n)a^n r = f(a^n)r = f(a^n)r$ which implies that M is WJCP – injective.

2 \rightarrow 3:

is trivial.

3 \rightarrow 1:

Let $a \notin Y(R)$. Since, a^nR is WJCP – injective, then the identity map $a^nR \rightarrow a^nR$ can be extended to one of R into R. Hence, $a^n = a^nba^n$ for some $b \in R$. Thus, R is right quasi π – regular ring. #

A ring R right weakly principally small injective [5], if for any $a \neq 0 \in J(R)$, there exists a positive integer n such that $a^n \neq 0$ and any R–homomorphism from a^nR to R_a can be extended to R_a into R_a. Clearly, every right YJ – injective is right weakly principally small injective.
The following theorem is a generalization of [7, Theorem 2.9].

Theorem 3.3:

R is right YJ-injective if and only if R is right WJCP-injective and right weakly principally small injective.

Proof:

Assume R is YJ-injective, then R is right WJCP-injective and weakly principally small injective. Conversely, let R be a right WJCP-injective, then by Theorem 2.4, $Y(R) \subseteq J(R)$.

Let $a \in R$. If $a \notin Y(R)$, then by Theorem 2.2., then $a \notin Y(R)$. If $l(r(a^n)) = Ra^n$. Then $x \in l(r(a^n))$ is clear. Let $Ra^n \subseteq l(r(a^n))$. $Ra^n = l(r(a^n))$ we claim that $a \in J(R)$ is a well defined f. Then, $f(a^nr) = xr$ be defined by $f : a^nR \to R$. Let $r(a^n) \subseteq r(x)$ right R-homomorphism. Since R is right weakly principally small injective, there exists a right R-homomorphism $g : R \to R$ such that $f(a^n) = g(a^n)$. Hence, $x = f(a^n) = g(a^n) = g(1)a^n \in Ra^n$ and so $l(r(a^n)) \subseteq Ra^n$, hence $Ra^n = l(r(a^n))$ therefore, R is YJ-injective. #

Lemma 3.4:[8]

If R is S-weakly regular ring if and only if R is reduced weakly regular ring.

Now, we have the following theorem:

Theorem 3.5:

Let R be a ring whose simple singular right R-modules are WJCP-injective. Then, R is reduced if and only if R is S-weakly regular ring.

Proof:

If R is S-weakly regular ring then, R is reduced by Lemma 3.4. Conversely, assume that R is reduced. For any $0 \neq a \in R$, if $Ra^2R + r(a) \neq R$, then there exists a maximal right ideal M of R containing $Ra^2R + r(a)$. If M is not an essential right ideal in R, then $M = r(e), e^2 = e \in R$. Therefore, $ea = 0$, since R is abelian, $ae = 0$ hence, $e \in r(a) \subseteq M = r(e)$, which is a contradiction. So, M is an essential right ideal in R by hypothesis, R/M is WJCP-injective. Since, R is reduced, $Y(R) = 0$. Hence, there exists a positive integer n such that $a^{2n} \neq 0$ and any right R-homomorphism $a^{2n}R \to R/M$ can be extended to $R \to M$. Set $f : a^{2n}R \to R/M$ is defined by $f(a^{2n}x) = x + M, x \in R$. Then, f is a well defined right R-homomorphism. Hence, there exists $g : R \to R/M$ such that $1 + M = f(a^{2n}) = g(a^{2n}) = g(1)a^{2n} = ca^{2n} + M$ where, $g(1) = c + M$, so $1 - ca^{2n} \in M$. Since, $ca^{2n} \in Ra^2R \subseteq M$, $1 \in M$ which is a contradiction. Hence, $Ra^2R + r(a) = R$. In particular, $ca^2d + x = 1$, for some $c, d \in R$, $x \in r(a)$, then $a = aca^2d$. Therefore, R is S-weakly regular rings. #

Definition 3.6:[9]
R is called right $\text{CAM} − \text{ring}$, if for any maximal essential right ideal M of R (if it exists) and for any right sub ideal I of M which is either a complement right sub ideal of M or a right annihilator ideal in R, I is an ideal of M.

Show that semi prime right $\text{CAM} − \text{ring}$, R is either semi simple artinian or reduced.

Lemma 3.7:[9]

If R is a semi prime right $\text{CAM} − \text{ring}$ then, R is either semi simple artinian or reduced.

Theorem 3.8:

Let R be a semi prime right $\text{CAM} − \text{ring}$, quasi duo ring whose simple singular right $R −$ modules are $\text{WJCP} − \text{injective}$. Then R is strongly $\pi − \text{regular ring}.$

Proof:

If R is not a semi simple artinian ring then, R is reduced so R is a right non singular ring. Let $0 \neq a \in R$. If $a^n R + r(a^n) \neq R$, then there exists a maximal right ideal M of R such that $a^n R + r(a^n) \subseteq M$. If M is not an essential right ideal of R, then $M = r(e)$ where $e = e^2 \in R$ because R is reduced $ea = ae = 0$ and $e \in r(a) \subseteq M = r(e)$ is contradiction. Hence, M is an essential right ideal of R and so R/M is a singular simple right $R −$ module. By hypothesis R/M is right $\text{WJCP} − \text{injective}$. Then, there exists $c \in R$ such that $1 − ca^n \in M$. But, then $1 \in M$ because R is a quasi duo ring and M is an ideal. It is contradiction. Hence, $a^n R + r(a^n) = R$ and R is a strongly $\pi − \text{regular ring}.$

We conclude the paper with a few characteristic properties of $\text{WJCP} − \text{injective}$ ring.

Proposition 3.9:

Let R be a reduced ring and every left principle ideal is a left annihilator of an element in R. Then, the followings are

1- R is strongly regular.
2- R is right $\text{YJ} − \text{injective}.$
3- R is $\text{WJCP} − \text{injective}.$
4- R is simple $\text{WJCP} − \text{injective}.$
5- R is simple singular $\text{WJCP} − \text{injective}.$
6- R is $S − \text{weakly regular ring}.$

Proof:

$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$, $6 \rightarrow 1$ are trivial

$5 \rightarrow 6$: by Theorem 3.5. #
REFERENCES

