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ABSTRACT 

 In this paper, the stability analysis is performed on two Galerkin finite element 

schemes for solving reaction-diffusion system with fast reversible reaction.  Fourier 

(Von Neumann) method is implemented to propose time-step criteria for the consistent 

and the lumped schemes with four popular choices for  . We have found that the two 

schemes are unconditionally stable when 11 2   , while the consistent scheme is 

stable under the conditions ( )
2

6t x a    and ( )
2

6t x b    when 0 = . Also, the 

lumped scheme is stable under the conditions ( )
2

2t x a    and ( )
2

2t x b    when 

0 = . 
 

Keywords: finite element scheme, reaction-diffusion system, consistent scheme, 

lumped scheme 

 
 الانتشار مع تفاعل عكسي سريع-حليل استقرارية فوريير لطريقتي العناصر المحددة لنظام التفاعلت

 
 عمرو  آل عمر محمد     الساعور جلال آن

 ،الرياضيات قسم

 ، والرياضيات الحاسوب علوم كلية 

 ، الموصل، العراقالموصل جامعة
 

 الملخص

الانتشار مع -العناصر المحددة لكليركن لحل نظام التفاعلتحليل الاستقرارية لطريقتي تم  ،في هذا البحث   
تفاعل عكسي سريع. ولقد تم تطبيق طريقة فوريير )فون نيومان( لايجاد معيار خطوة الزمن للطريقتين المتسقة 

نحوٍ غير مشروط عندما . وقد وجدنا ان كلتا الطريقتين مستقرتين على والمكتلة ولأربع اختيارات معروفة لـ 
1

1
2

   بينما تكون الطريقة المتسقة مستقرة تحت الشروط( )
2

6t x a    و( )
2

6t x b    عندما

0 ), اما الطريقة المكتلة فتكون مستقرة تحت الشروط = )
2

2t x a   و( )
2

2t x b    عندما
0 =. 
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 الانتشار، الطريقة المتسقة، الطريقة المكتلة.-طريقة العناصر المحددة، نظام التفاعل  الكلمات المفتاحية:

1. Introduction. 
 Stability is a condition on the numerical solution, namely that all errors, such as 

round-off errors (due to the finite arithmetic of the computer) must remain bounded 

when the iteration process advances. That is, for finite values of t  and x , the error 

has to remain bounded, when the number of time steps tends to infinity [6]. 

 Nevertheless, stability is probably the most pressing problem in any algorithm, 

since it is necessary rather than sufficient condition for accuracy. It is generally the first 

one to be encountered in any attempt to obtain a solution. Accuracy and computational 

efficiency follow after one is assured that a meaningful computation can be carried     

out successfully. Moreover, experience indicates that an unstable scheme is not 

convergent [8]. 

 Many methods have been developed for the analysis of stability; nearly, all of 

them restricted to linear problems. But, even with this restriction, the investigation of 

stability for initial, boundary value problems can be extremely complicated, particularly 

in the presence of boundary conditions and their numerical representation [6]. 

At present, several techniques are available to analyze linear stability. This 

includes the discrete perturbation method, the Hirt method, the matrix method and the 

Von Neumann method. Comparing with other techniques, the Von Neumann method is 

the most widely applied technique [11]. 

In recent years, many authors have successfully applied the Fourier (Von 

Neumann) method to analyze the stability of finite element  schemes [1-3,7].  

The present paper has been organized as follows: Section 2 deals with the 

methodology of the Fourier (Von Neumann) method. In Sections 3 and 4, we analyze 

linear stability of the consistent and the lumped finite element schemes, respectively, for 

the reaction-diffusion system by using the Fourier (Von Neumann) method. Practical 

application of this analysis is provided in Section 5. Conclusions are given in Section 6. 

In this work, we consider the reversible chemical reaction of the type 2A B , 

the reaction-diffusion system will take the form [4]: 

( )2

1 2
2 , in  (0, ),

t xx
u au k k u k v T= − −                 …(1.a) 

( )2

1 2
, in  (0, ),

t xx
v bv k k u k v T= + −                 …(1.b) 

with the boundary conditions 

0, (0, ),
u v

on T
x x

 
= = 

 
        …(2) 

and the initial conditions  

( ) ( ) ( ) ( )0 0
, 0 ,    , 0 ,    ,u x u x v x v x in= =         …(3) 

where ( , )u x t and ( , )v x t  are the concentrations of A and B respectively, , 0a b 
 are 

diffusion coefficients, 1 2,k k  are rate constants for the reactions 2A B→ and 

2B A→ respectively, k is the chemical kinetics factor. 

2. Methodology of Fourier (Von Neumann) Method 

The method developed by John Von Neumann has an interesting history. It started 

in Los Alamos during the World War II as he was part of the team of high-level 
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scientists developing the first nuclear device. Consequently, the method was classified 

as ‘secret’, until its brief description in Crank and Nicholson (1947) and in a publication 

by Charney et al. (1950) [6]. 

The methodology for the application of the Von Neumann stability condition can 

be summarized as follows [6,10]: 

1. Replace, in the numerical scheme, all the terms of the form m p

n q
u

+

+
 by ( )i n q xm p

e



+ +  

where t
e





=  represent the Amplification Factor or Amplitude, 0   is the wave 

number of x , 0   is the wave number of t , p is determined according to the 

number of time levels, q is determined according to the number of space levels and 

1i = − . 

2. As all the terms contain the factor m i n x
e




 , the next step is to simplify all the terms 

by this factor 

3. From the obtained relation, derive the explicit form of the amplification factor  . 

4. Check the Von Neumann stability condition, i.e., 1  , which will provide an easy 

way for distinguishing between unstable, conditionally stable or unconditionally 

stable schemes. 

3. Stability Analysis of the Consistent Finite Element Scheme 

This method supposes that the solutions can be separated by the forms: 
( )

1
,

i n q xm p m p

n q
u e




+ + +

+
=  

( )
2

,
i n q xm p m p

n q
v e




+ + +

+
=  

where p  will take the values 0p =  and 1p =  for two time level scheme and q  will 

take the values 1q = − , 0q =  and 1q =  for three space level scheme. 

To apply this method, the system (1) must be in the linearized form [5,10] 
2

22
2 ,

u u
a kk v

t x

 
= +

 
                  …(4.a) 

2

22
,

v v
b kk v

t x

 
= −

 
                  …(4.b) 

For some values of k  and 2k , we can neglect the terms which contain 2kk , so we have 

2

2
,

u u
a

t x

 
=

 
                   …(5.a) 

2

2
.

v v
b

t x

 
=

 
                   …(5.b) 

For the equations (5.a) and (5.b), assembling the equations of the elements 

1n nx x x−    and 1n nx x x +  , we write the recurrence relations at node nx  as: 

1 1 1

1 1

2 2

6 3 6

m m m

n n n

a x a x a x
u u u

x t x t x t

  + + +

− +

  
− + + + + − +
     

     
     
     

 

( ) ( ) ( )
1 1

1 2 1 12
,

6 3 6

m m m

n n n

a a ax x x
u u u

x t x t x t

  
− +

− − −  
= + + − + + +

     

     
     
         

 …(6) 

and 

1 1 1

1 1

2 2

6 3 6

m m m

n n n

b x b x b x
v v v

x t x t x t

  + + +

− +

  
− + + + + − +
     

     
     
     
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( ) ( ) ( )
1 1

1 2 1 12
.

6 3 6

m m m

n n n

b b bx x x
v v v

x t x t x t

  
− +

− − −  
= + + − + + +

     

     
     
     

    …(7) 

To apply Fourier (Von Neumann) method [6], we substitute ( )
1

i n q xm p m p

n q
u e




+ + +

+
= , 

( )
2

i n q xm p m p

n q
v e




+ + +

+
=  in the equations (6) and (7) respectively, we obtain 

( ) ( ) ( )

1 ( 1) 1 1 ( 1)

1 1 1

( 1) ( 1)

1 1 1

2 2

6 3 6

1 2 1 12
,

6 3 6

m i n x m i n x m i n x

m i n x m i n x m i n x

a x a x a x
e e e

x t x t x t

a a ax x x
e e e

x t x t x t

  

  

  
  

  
  

+ −  +  + + 

−   + 

  
− + + + + − +
     

− − −  
= + + − + + +

     

     
     
     

     
     
     

and 

( ) ( ) ( )

1 ( 1) 1 1 ( 1)

2 2 2

( 1) ( 1)

2 2 2

2 2

6 3 6

1 2 1 12
.

6 3 6

m i n x m i n x m i n x

m i n x m i n x m i n x

b x b x b x
e e e

x t x t x t

b b bx x x
e e e

x t x t x t

  

  

  
  

  
  

+ −  +  + + 

−   + 

  
− + + + + − +
     

− − −  
= + + − + + +

     

     
     
     

     
     
     

Dividing the above equations by 
1

m i n xe    and 
2

m i n xe    respectively and simplifying, 

to obtain 

( )
( )

( )

( )

1

12 2

6 3 6

2 1 2
,

3

i x i x i x i x
aa x a x x

e e e e
x t x t x t

a x

x t

    




 −   − 
−  

− + + + + = + +
     

− 
− +

 

   
    
    

 
and 

( )
( )

( )

( )

2

12 2

6 3 6

2 1 2
.

3

i x i x i x i x
bb x b x x

e e e e
x t x t x t

b x

x t

    




 −   − 
−  

− + + + + = + +
     

− 
− +

 

   
    
      

Using the relation ( )2cos
i x i x

e e x
 


 − 
+ =   and simplifying, we derive the explicit 

form of the amplification factors as follows: 

( ) 2 2

1

2 2

4 1
sin 3 2sin

2 3 2
,

4
sin 3 2sin

2 3 2

a x x x

x t

a x x x

x t

  


  

−   
− + −

 
=

  
+ −

 

    
    
    

    
    
    

 

and 

( ) 2 2

2

2 2

4 1
sin 3 2sin

2 3 2
.

4
sin 3 2sin

2 3 2

b x x x

x t

b x x x

x t

  


  

−   
− + −

 
=

  
+ −

 

    
    
    

    
    
    

 

To satisfy the Von Neumann stability condition, we must have 1 1  , 2 1  , i.e., 

( ) 2 2

2 2

4 1
sin 3 2sin

2 3 2
1 1,

4
sin 3 2sin

2 3 2

a x x x

x t

a x x x

x t

  

  

−   
− + −

 
−  

  
+ −

 

    
    
    

    
    
    

 

and 
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( ) 2 2

2 2

1

4 1
sin 3 2sin

2 3 2
1.

4
sin 3 2sin

2 3 2

b x x x

x t

b x x x

x t

  

  
− 

−   
− + −

 


  
+ −

 

    
    
    

    
    
    

 

Since ( )2
0 sin 2 1x    and 0 1   so that, the right-hand sides of the above 

inequalities are always true.  

To satisfy the left-hand sides of the above inequalities, this depends on the value of 

  which has the following choices [9]: 

1. Forward Difference Method: when 0 = , we obtain 

2 24 2
sin 3 2sin ,

2 3 2

a x x x

x t

   
 −

 

    
    
    

 

and 

2 24 2
sin 3 2sin .

2 3 2

b x x x

x t

   
 −

 

    
    
    

 

The worst situation occurs when ( )2
sin 2 1x = , so that, the scheme is 

conditionally stable with the following conditions: 

( )
2

,
6

x
t

a


    

and 

( )
2

.
6

x
t

b


   

2. Central Difference Method: when 1 2 = , we obtain 

22
0 3 2sin ,

3 2

x x

t

 
 −



  
  
  

 

and 

22
0 3 2sin .

3 2

x x

t

 
 −



  
  
  

 

So that, the scheme is unconditionally stable. 

3. Galerkin’s Method: when 2 3 = , we obtain 

2 24 2
sin 3 2sin ,

3 2 3 2

a x x x

x t

   
−  −

 

    
    
    

 

and 

2 24 2
sin 3 2sin .

3 2 3 2

b x x x

x t

   
−  −

 

    
    
    

 

Hence, the scheme is unconditionally stable. 

4. Backward Difference Method: when 1 = , we obtain 

2 24 2
sin 3 2sin ,

2 3 2

a x x x

x t

   
−  −
 

    
    
    

 

and 

2 24 2
sin 3 2sin .

2 3 2

b x x x

x t

   
−  −
 

    
    
    
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So that, the scheme is unconditionally stable. 

4. Stability Analysis of the Lumped Finite Element Scheme 

For the equations (5.a) and (5.b), assembling the equations of the elements 

1n nx x x−    and 1n nx x x +  , we write the recurrence relations at node 
nx  as: 

1 1 1

1 1

2m m m

n n n

a a x a
u u u

x x t x

  + + +

− +


− + + −
   

 
 
   

( ) ( ) ( )
1 1

1 2 1 1
,

m m m

n n n

a a ax
u u u

x x t x

  
− +

− − −
= + − + +

   

 
 
 

     …(8) 

and 

1 1 1

1 1

2m m m

n n n

b b x b
v v v

x x t x

  + + +

− +


− + + −
   

 
 
   

( ) ( ) ( )
1 1

1 2 1 1
.

m m m

n n n

b b bx
v v v

x x t x

  
− +

− − −
= + − + +

   

 
 
 

     …(9) 

To apply Fourier (Von Neumann) method, we substitute ( )
1

i n q xm p m p

n q
u e




+ + +

+
= , 

( )
2

i n q xm p m p

n q
v e




+ + +

+
=  in the equations (8) and (9) respectively, we obtain 

( ) ( )

( ) ( ) ( ) ( ) ( )

1 11 1 1

1 1 1

1 1

1 1 1

2

1 2 1 1
,

i n x i n xm m i n x m

i n x i n xm m i n x m

a a x a
e e e

x x t x

a a ax
e e e

x x t x

 

 

  
  

  
  

−  + + +  +

−  + 


− + + −
   

− − −
= + − + +

   

 
 
 

 
 
 

 

and 

( ) ( )

( ) ( ) ( ) ( ) ( )

1 11 1 1

2 2 2

1 1

2 2 2

2

1 2 1 1
.

i n x i n xm m i n x m

i n x i n xm m i n x m

b b x b
e e e

x x t x

b b bx
e e e

x x t x

 

 

  
  

  
  

−  + + +  +

−  + 


− + + −
   

− − −
= + − + +

   

 
 
 

 
 
 

 

Dividing the above equations by 
1

m i n x
e




  and 
2

m i n x
e




  respectively and simplifying, to 

obtain 

( )
( )

( )
( )

1

1 2 12
,

i x i x i x i x
a aa a x x

e e e e
x x t x x t

     


 −   − 
− − 

− + + + = + − +
     

 
 
   

and 

( )
( )

( )
( )

2

1 2 12
.

i x i x i x i x
b bb b x x

e e e e
x x t x x t

     


 −   − 
− − 

− + + + = + − +
     

 
 
 

 

Using the relation ( )2cos
i x i x

e e x
 


 − 
+ =   and simplifying, we derive the explicit 

form of the amplification factors as follows: 

( ) 2

1

2

4 1
sin

2
,

4
sin

2

a x x

x t

a x x

x t

 


 

−  
− +

 
=

 
+

 

 
 
 

 
 
 

 

and 
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( ) 2

2

2

4 1
sin

2
.

4
sin

2

b x x

x t

b x x

x t

 


 

−  
− +

 
=

 
+

 

 
 
 

 
 
 

 

To satisfy the Von Neumann stability condition, we must have 1 1  , 
2 1  , i.e., 

( ) 2

2

4 1
sin

2
1 1,

4
sin

2

a x x

x t

a x x

x t

 

 

−  
− +

 
−  

 
+

 

 
 
 

 
 
 

 

and 

( ) 2

2

1

4 1
sin

2
1.

4
sin

2

b x x

x t

b x x

x t

 

 
− 

−  
− +

 


 
+

 

 
 
 

 
 
 

 

Since, ( )2
0 sin 2 1x    and 0 1   so that, the right-hand sides of the above 

inequalities are always true.  

To satisfy the left-hand sides of the above inequalities, this depends on the value of 

  which has the following choices [9]: 

1. Forward Difference Method: when 0 = , we obtain 

24 2
sin ,

2

a x x

x t

 


 

 
 
 

 

and 

24 2
sin .

2

b x x

x t

 


 

 
 
 

 

The worst situation occurs when ( )2sin 2 1x = , so that, the scheme is 

conditionally stable with the following conditions: 

( )
2

,
2

x
t

a


   

and 

( )
2

.
2

x
t

b


   

2. Central Difference Method: when 1 2 = , we obtain 

2
0 ,

x

t





 

and 

2
0 .

x

t





 

So that, the scheme is unconditionally stable. 

3. Galerkin’s Method: when 2 3 = , we obtain 

24 2
sin ,

3 2

a x x

x t

 
− 

 

 
 
 

 

and 
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24 2
sin .

3 2

b x x

x t

 
− 

 

 
 
 

 

Hence, the scheme is unconditionally stable. 

4. Backward Difference Method: when 1 = , we obtain 

24 2
sin ,

2

a x x

x t

 
− 
 

 
 
 

 

and 

24 2
sin .

2

b x x

x t

 
− 
 

 
 
 

 

So that, the scheme is unconditionally stable. 

5. Practical Application 

We consider the reaction of the reversible dimerization of o-phenylenedioxy-

dimethylsilane (2, 2-dimethyl-1, 2, 3-benzodioxasilole) which has been described by the 

following reaction-diffusion system [4]: 

( )

( )

2

1 2

2

1 2

2 , in  [0,0.1] (0, ),

, in  [0,0.1] (0, ),

t xx

t xx

u au k k u k v T

v bv k k u k v T

= − − 

= + − 
 

with the boundary conditions 

( ) ( ) ( ) ( )0, 0.1, 0, 0.1, 0,x x x xu t u t v t v t= = = =  

and the initial conditions 0u  and 0v  are defined as follows: 

( )
 

( )  
0

  0,0.03

1 50
sin 0.03   0.03,0.1 ,

2 7

0 for x

u x
x for x





=
− 

 
 
 







 

and 

( )
 

 
0

1 50
cos   0,0.07

4 7

0   0.07,0.1 ,

x for x
v x

for x




=



  
  

 



 

The rate constants for both reactions can be estimated at the temperature 298T K=  

which as follows: 
4 2 2

1 1.072 10k L mol− −    and   6 2 2

2 2.363 10 ,k L mol− −   

and diffusion coefficients 
9 2 11.579 10a m s− −    and   

9 2 11.042 10b m s− −  . 

It is possible to choose the chemical kinetics factor where 0k  . 

To check the validity of the obtained stability properties for the consistent scheme, 

we plot the amplification factors 1  and 2  for all the wavenumbers in the range 

( , )   − , where x =  [1], i.e., 

( ) 2 2

1

2 2

4 1
sin 3 2 sin

2 3 2
,

4
sin 3 2 sin

2 3 2

a x

x t

a x

x t

  


  

− 
− + −

 
=


+ −

 

    
    
    

    
    
    
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and 

( ) 2 2

2

2 2

4 1
sin 3 2 sin

2 3 2
.

4
sin 3 2 sin

2 3 2

b x

x t

b x

x t

  


  

− 
− + −

 
=


+ −

 

    
    
    

    
    
    

 

 

       
(a)      (b) 

Fig.1. (a) the amplification factor 
1

 (b) the amplification factor 
2

  with wavenumber 

( , )   − for the consistent scheme with different choices for   when 0.001x =  and 

100t =   

The amplification factors 
1

  and 
2

  do not exceed 1.0 for any wavenumber for 

any choice of   because the central, Galerkin and backward, consistent schemes are 

unconditionally stable, while the stability conditions of the forward, consistent scheme 

are satisfied (see Fig.1). 

  

       
(a)      (b) 
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Fig.2. (a) the amplification factor 
1

 (b) the amplification factor 
2

  with wavenumber 

( , )   − for the consistent scheme with different choices for   when 0.001x =  and 

200t =   

The amplification factors 
1  and 

2  for the forward, consistent scheme increase to 

exceed 1.0 with the increase of t , i.e. 
1

  exceed 1.0 when 105.5520372t   and 
2

  

exceed 1.0 when 159.9488164t  , because the stability conditions are not satisfied (see 

Fig.2). 

To check the validity of the obtained stability properties for the lumped scheme, 

we plot the amplification factors 1  and 2  for all the wavenumbers in the range 

( , )   − , where x =  ,i.e., 

( ) 2

1

2

4 1
sin

2
,

4
sin

2

a x

x t

a x

x t

 


 

− 
− +

 
=


+

 

 
 
 

 
 
 

 

and 

( ) 2

2

2

4 1
sin

2
.

4
sin

2

b x

x t

b x

x t

 


 

− 
− +

 
=


+

 

 
 
 

 
 
 

 

 

       
(a)      (b) 

Fig.3. (a) the amplification factor 
1

 (b) the amplification factor 
2

  with wavenumber 

( , )   − for the lumped scheme with different choices for   when 0.001x =  and 

300t =   

The amplification factors 
1

  and 
2

  do not exceed 1.0 for any wavenumber for 

any choice of   because the central, Galerkin and backward, lumped schemes are 

unconditionally stable, while the stability conditions of the forward, lumped scheme are 

satisfied (see Fig.3).  
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(a)      (b) 

Fig.4. (a) the amplification factor 
1

 (b) the amplification factor 
2

  with wavenumber 

( , )   − for the lumped scheme with different choices for   when 0.001x =  and 

500t =   

The amplification factors 
1

  and 
2

  for the forward, lumped scheme increase to 

exceed 1.0 with the increase of t , i.e. 1  exceed 1.0 when 316.6561114t   and 
2

  

exceed 1.0 when 479.8464492t  , because the stability conditions are not satisfied 

(see Fig.4). 

       It should be mentioned that we use Maple software to obtain these plots in Figs.1-4.  

6. Conclusions 

In this work, Fourier stability analysis was performed on two finite element 

schemes for solving Reaction-diffusion system which describes a reversible chemical 

reaction. We conclude that the consistent and the lumped finite element schemes are 

unconditionally stable when 11 2    while the consistent scheme is stable under the 

conditions ( )
2

6t x a    and ( )
2

6t x b    when 0 = . Also, the lumped scheme is 

stable under the conditions ( )
2

2t x a    and ( )
2

2t x b    when 0 = . Therefore, the 

forward, lumped scheme has better conditional stability properties than the forward, 

consistent scheme. 
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