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ABSTRACT

In this paper, the stability analysis is performed on two Galerkin finite element
schemes for solving reaction-diffusion system with fast reversible reaction. Fourier
(Von Neumann) method is implemented to propose time-step criteria for the consistent
and the lumped schemes with four popular choices for 6. We have found that the two
schemes are unconditionally stable when 1/2<@# <1, while the consistent scheme is

stable under the conditions at <(Ax )2/6a and At <(AXx )2/6b when 8=0. Also, the
lumped scheme is stable under the conditions at <(Ax )’ /2a and at <(Ax )*/2b when
6=0.

Keywords: finite element scheme, reaction-diffusion system, consistent scheme,
lumped scheme
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1. Introduction.

Stability is a condition on the numerical solution, namely that all errors, such as
round-off errors (due to the finite arithmetic of the computer) must remain bounded
when the iteration process advances. That is, for finite values of At and Ax , the error
has to remain bounded, when the number of time steps tends to infinity [6].

Nevertheless, stability is probably the most pressing problem in any algorithm,
since it is necessary rather than sufficient condition for accuracy. It is generally the first
one to be encountered in any attempt to obtain a solution. Accuracy and computational
efficiency follow after one is assured that a meaningful computation can be carried
out successfully. Moreover, experience indicates that an unstable scheme is not
convergent [8].

Many methods have been developed for the analysis of stability; nearly, all of
them restricted to linear problems. But, even with this restriction, the investigation of
stability for initial, boundary value problems can be extremely complicated, particularly
in the presence of boundary conditions and their numerical representation [6].

At present, several techniques are available to analyze linear stability. This
includes the discrete perturbation method, the Hirt method, the matrix method and the
Von Neumann method. Comparing with other techniques, the Von Neumann method is
the most widely applied technique [11].

In recent years, many authors have successfully applied the Fourier (Von
Neumann) method to analyze the stability of finite element schemes [1-3,7].

The present paper has been organized as follows: Section 2 deals with the
methodology of the Fourier (Von Neumann) method. In Sections 3 and 4, we analyze
linear stability of the consistent and the lumped finite element schemes, respectively, for
the reaction-diffusion system by using the Fourier (Von Neumann) method. Practical
application of this analysis is provided in Section 5. Conclusions are given in Section 6.

In this work, we consider the reversible chemical reaction of the type 2A 0 B,
the reaction-diffusion system will take the form [4]:

u, =au, —2k (ku®-ky), in Qx(OT), ...(La)
v, =bv, +k(ku®-ky), in Qx(OT), ...(1.b)
with the boundary conditions

G_UZQZO, on oQx(0,T), ...(2)
OX  OX

and the initial conditions

u(x,0)=u,(x), v(x,0)=v,(x), in Q, ...(3)

where u(x,t)and v (x,t) are the concentrations of A and B respectively, a,b >0 are
diffusion coefficients, k,,k, are rate constants for the reactions 2A — B and
B — 2A respectively, k is the chemical kinetics factor.

2. Methodology of Fourier (Von Neumann) Method

The method developed by John Von Neumann has an interesting history. It started
in Los Alamos during the World War 1l as he was part of the team of high-level
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scientists developing the first nuclear device. Consequently, the method was classified
as ‘secret’, until its brief description in Crank and Nicholson (1947) and in a publication
by Charney et al. (1950) [6].

The methodology for the application of the Von Neumann stability condition can
be summarized as follows [6,10]:

1. Replace, in the numerical scheme, all the terms of the form u[":" by ¢™Pe!/ ">
where ¢ =e™ represent the Amplification Factor or Amplitude, £ >0 is the wave
number of x , »>0 is the wave number of t, p is determined according to the
number of time levels, ¢ is determined according to the number of space levels and
i =1,

2. As all the terms contain the factor ¢"e'”" | the next step is to simplify all the terms

by this factor
3. From the obtained relation, derive the explicit form of the amplification factor ¢ .

4. Check the Von Neumann stability condition, i.e., |¢|<1, which will provide an easy

way for distinguishing between unstable, conditionally stable or unconditionally
stable schemes.

3. Stability Analysis of the Consistent Finite Element Scheme
This method supposes that the solutions can be separated by the forms:

m+p _ em+p,iB(n+q)Ax
un+q — o € '
Vv mep m+peiﬁ'(n+q)Ax ,

n+q

where p will take the values p=0 and p =1 for two time level scheme and q will
take the values g =—1, g =0 and q =1 for three space level scheme.
To apply this method, the system (1) must be in the linearized form [5,10]

aat—uzagji+2kk2v, ...(4.9)
%:bsxzvz—kkzv, ...(4.b)
For some values of k and k,, we can neglect the terms which contain kk, , so we have
%“ _ 27“ ..(5.a)
ov o

E:baxz' ...(5.b)

For the equations (5.a) and (5.b), assembling the equations of the elements
X,, <X <X, and x, <x <Xx,,,, we write the recurrence relations at node X, as:

n-1—

( fa ij o (Zea 2Ax) - ( fa ij o
e UM S e UM | = — |u Mt
AX  BAt AX 3At AX  BAt

:(w+A_x]um +(_z(1_e)a+zAx]um+(w+A_xjum .(6)

AX 6At ) " AX 3At )" AX 6At ) "

and

( & Ax) o (290 2ij o ( 12 ij -
——t— |V, | — =V, | ——F— |V
AX  BAt AX  3At AX  BAt
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:(M+A_xjv:]l+(_2(l—9)b | 2 jvnm +(M+£)v:ﬂ_ ..(7)

AX 6AL AX 3At AX BAt
To apply Fourier (Von Neumann) method [6], we substitute u™® =¢m*Pe'/(ma)

n+q 1

v = gmeRe AN i the equations (6) and (7) respectively, we obtain

n+q 2

(—ﬁ+A—Xjé’1m+leiﬂ(nl)Ax (26’& L 28X 2AX j m+lei/JnA>< +(—E+A—X) 1m+1eiﬁ(n+l)Ax

AX  BAt Ax  3At AX  BAt
_ (1_‘9)a+A_X lmei/}(n—l)Ax n (1 Q)a 2AX meiﬂnAx n (1_9)a+A_X 1meiﬂ(n+1)Ax,
AX 6At AX 3At AX 6At
and
(_@_i_ AX j 2m+1ei/3(n—l)Ax (200 ZAXj m+1eiﬂnAx +(_&+ AX j m+1ei/3(n+1)Ax
AX  BAt AX  3At AX  BAt
(1 e)b AX meiﬂ(n—l)Ax + (1 e)b ZAX mei,b‘nAx + (1 H)b AX melﬁ'(n+1)A>< )
AX 6At AX 3At AX 6At

Dividing the above equations by ¢&"e'”" and ¢J'e'”"™ respectively and simplifying,
to obtain

) ) 1-— ) )
((_@‘FA_Xj(elﬂAx +e7|ﬂAx) 263. 2AX jé, (( g)a_’_A_XJ(emAx +e—|ﬂAx)
AX  BAt AX 3At AX 6At

2(1-0)a_2ux

AX 3At

and

((_&_{_A_Xj(eimx +e_iﬂAX) 2(9b ZAX jé/ [(1—0)b +A_XJ(eiﬁAx +e—iﬁAX)
AX  BAt AX 3At AX 6At

_2(1-0)b L2
AX 3AL

Using the relation e'™ +e " =2cos(pAx ) and simplifying, we derive the explicit
form of the amplification factors as follows:

L) (e ()
[P o ()
and
Sl o i )|

gz =
ﬂsinz (’BAX]JFAX(S— 2sin’ (ﬂAXD
AX 2 3At 2

To satisfy the Von Neumann stability condition, we must have |¢;|<1, |¢,|<1, ie.,
4(1—
4t a)asinz(mxj AX (3 2 (ﬂAx D
AX 2 3At 2 <1
msinZ(ﬂAx j+AX(3—Zsin2(ﬂAx D
AX 2 3At 2
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Sl 9 1 Gl )
w5 e )

Since 0<sin*(pAx /2)<1 and 0<60 <1 so that, the right-hand sides of the above

inequalities are always true.
To satisfy the left-hand sides of the above inequalities, this depends on the value of
@ which has the following choices [9]:

1. Forward Difference Method: when @ =0, we obtain
ﬁsinz(’gAx ) 2AX (3 osin (ﬂAx D
AX 2 3At 2

and

)

The worst situation occurs when sin’(pAx/2)=1, so that, the scheme is
conditionally stable with the following conditions:

2
At <)
6a

6b
2. Central Difference Method: when ¢ =1/2, we obtain

0< Zﬂ[3—25in2 (’Bﬂn
3At 2

and

2A A
0< 8X 3-2sin® (ﬁ_xj .
3At 2

So that, the scheme is unconditionally stable.
3. Galerkin’s Method: when 6 =2/3, we obtain

- 4a sin (’BAXJ ZAX(S 2sin’ (’BAXD,
3AX 2 3At 2

and

_ sinz(ﬂAX jg 20x (3—25in2(ﬂﬂD.
3AX 2 3At 2

Hence, the scheme is unconditionally stable.
4. Backward Difference Method: when € =1, we obtain

—ﬁsn (’BAXJ<2£(3 2sin’ ('Bﬂn
AX 2 3At 2

—ﬂsinz(ﬂij 24X (3 2sin ('&ﬁD
AX 2 3At 2

121




Ann J. Al-Sawoor & Mohammed O. Al-Amr

So that, the scheme is unconditionally stable.
4. Stability Analysis of the Lumped Finite Element Scheme
For the equations (5.a) and (5.b), assembling the equations of the elements

X,, <X <x,and x, <x <X,,,, we write the recurrence relations at node x, as:
ea m+1 (Zga AX) m+1 ea m+1
__un—l H——t—— un __un+1
AX AX At AX
1-0)a 2(1-0)a Ax 1-0)a
(00, (2002w (0)a, ®
AX AX At AX
and
aa m+1 (Za) AX) m+1 90 m+1
T VA H——t— Vn __Vn+1
AX AX At AX
1-6)b 2(1-0)b  Ax 1-6)b
:( ) Vr:n—1+ - ( ) T Vr:n+( ) Vrr1n+1' -(9)
AX AX At AX

To apply Fourier (Von Neumann) method, we substitute u™® =g Pe!/m o™

n+q

v P = g i the equations (8) and (9) respectively, we obtain

n+q

_ﬁ ézm+1ei,8(n—l) (20& AX j m+1eiﬂnAx _@éxmﬂeiﬂ(ml)m
Ax 7 AX At Ax 7
_ (1_0)3' é,meiﬁ(n—l)Ax 2(1 g)a AX é/meiﬁnAx + (1_0)8' meiﬂ(n+l)Ax
- 1 1 !
AX AX At AX
and
_@ 2m+1eiﬂ(n—1)Ax (290 +A_Xj m+1eiﬁnAx _ﬂ 2m+1eiﬂ(n+l)Ax
AX AX At AX
_ (1_0)b m |/?(n ~1)Ax + (1 H)b AX meiﬁnAx + (1_9)b meiﬁ(n+l)Ax
- 2 2
AX AX At AX

Dividing the above equations by ¢"e'”" and ¢;'e'”™ respectively and simplifying, to
obtain

(_ﬁ(eimx +e—i/3Ax) 29& ij (1_0)a(eiﬁA>< +e—iﬁAx)_2(1_9)a+Ax
AX

AX At AX AX At
and
(_ﬂ(eiﬁﬁx +e—iﬂAx) 20b AX) (1_9)b (eiﬁAx +e—iﬂm)_2(1_9)b+g.
AX AX At AX AX At

Using the relation e'”™ +e " =2cos(pAx ) and simplifying, we derive the explicit
form of the amplification factors as follows:

4(1—.9)aSinz (ﬂéx j+Ax

‘= AX At
1" 40a . '
AX 2 At

and
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_4-ep [ﬁix )+Ax

o M At
2 4tb '
sinz(ﬂAX j+AX
AX 2 At

To satisfy the Von Neumann stability condition, we must have |¢;|<1, |¢,|<1,ie.,
4(1-
ll a)asinz(ﬂéx )+AX

B AX At _
4gasinz(ﬁAX j+A)(
AX 2 At
and
4(1-60)b . A A
- (1-0) sz(ﬁ X j+x
o 2 ) Mgy
sinz('gAX j+AX
AX 2 At

Since, 0<sin*(BAx/2)<1 and 0<@<1 so that, the right-hand sides of the above
inequalities are always true.

To satisfy the left-hand sides of the above inequalities, this depends on the value of
@ which has the following choices [9]:

1. Forward Difference Method: when 6 =0, we obtain
ﬁsinz(ﬂAx jg 2AX |
AX 2 At
and

ﬂsin2 (—ﬂAX js—ZAX .
AX 2 At
The worst situation occurs when sin’(fAx/2)=1, so that, the scheme is

conditionally stable with the following conditions:

A< (%)
2a

and
A 2
Ecas
2b
2. Central Difference Method: when ¢ =1/2, we obtain
0< 2AX ,
At

and
0< 28X
At

So that, the scheme is unconditionally stable.

3. Galerkin’s Method: when ¢ =2/3, we obtain

_ 4a SinZKﬂAx )S 2AX

3AX 2 At
and
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3AX 2 )7 At
Hence, the scheme is unconditionally stable.
4. Backward Difference Method: when 6 =1, we obtain

4a . AX 2AX
——sin? (ﬂ_j <=7

4o Sinz(ﬁAx )< 2AX

AX 2 At
and
4b
——sin? (—'BAX js—ZAX :
AX 2 At

So that, the scheme is unconditionally stable.
5. Practical Application

We consider the reaction of the reversible dimerization of o-phenylenedioxy-
dimethylsilane (2, 2-dimethyl-1, 2, 3-benzodioxasilole) which has been described by the
following reaction-diffusion system [4]:

u, =au,, —2k (ku®—ky ), in [0,0.1]x(0,T),

v, =bv, +k(ku®—ky), in [0,0.1]x(0,T),

with the boundary conditions

u, (0,t)=u, (0.Lt)=v, (0,t)=v, (0.1t)=0,

and the initial conditions u, and v, are defined as follows:

0 for x €[0,0.03]
u, (x)= %Sin(SoTﬂ(x —0.03)) for x €[0.03,0.1],
and
v.(x)= %cos(SoTﬂxj for x €[0,0.07]

0 for x €[0.07,0.1],

The rate constants for both reactions can be estimated at the temperature T =298K
which as follows:
k, ~1.072-10*L’mol * and k, ~2.363-10°L*mol 2,
and diffusion coefficients
a~1579-10°m? ™" and b=~1.042-10°m? ™.
It is possible to choose the chemical kinetics factor where k >0.

To check the validity of the obtained stability properties for the consistent scheme,
we plot the amplification factors ¢; and &, for all the wavenumbers in the range

pe(-r, ), where o= pAx [1], i.e.,
—4(1_€)asin2((p)+Ax(S—ZSinz((DD
¢ = AX 2 3At 2
msin2(¢)+m(3—2sinz(¢j)
AX 2 3At 2
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and
—74(1_9)b sin’ [(0)+A)((3—25in2 ((pD
£ = AX 2 3At 2 .
2 4‘9bsin2(¢j+AX(3—23in2(¢jj
AX 2 3At 2
///// 087 \\\ /'/ \
27 1 \\\ /// 087 \\'\
i 0.6 NN ; \%
_/'// 1 \ NN //// \\\

PRy 0.4+ \ NS ; 0.6 \\\-
- ] Nt 1/ N
,// / 0.2 \ \\$ #,/'//// \ \\\.\

/ ] \ // / 0.4 \ N
T A A A . \ N\
/ 021 * / 0.2 \

/ 0.4- \ / \\

/ 061 \ YA 1 0 1 AR

/ | \ / o \
/ °* N "2 \.

[—-6-0 0-1/2—— 0-2/3 —-— 0-1] |—-6-0 0-1/2—— 6-2/3 —-— 6-I]
(@) (b)

Fig.1. (a) the amplification factor ¢ (b) the amplification factor &, with wavenumber
@ € (-, ) for the consistent scheme with different choices for 6 when Ax =0.001 and
At =100

The amplification factors ¢, and ¢, do not exceed 1.0 for any wavenumber for

any choice of 6 because the central, Galerkin and backward, consistent schemes are
unconditionally stable, while the stability conditions of the forward, consistent scheme
are satisfied (see Fig.1).

—-If——\ —
,//‘7/ M // \\‘\\.
-/'///// \ N 7 0.5 \\\'\
;‘/ . \ \‘\ ; #'/_/'///// ' \':-\_\
-3 2/ 1 0 1 Q\z 3 -_// / \ -
/ \ Y I R S
/ 1 \ / * \
/ \ / \
/ \ / \
/ \ / \
/ \ / | \
/ \ / \
Y \ J/ 15 \
[—-e=0 0=12 ——0=23 — — o-1] [—-e=0 0=12 ——0=2/3 —-— 0=1]
(a) (b)
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Fig.2. (a) the amplification factor ¢ (b) the amplification factor &, with wavenumber
@ € (—r, zr) for the consistent scheme with different choices for & when Ax =0.001 and
At =200
The amplification factors ¢; and ¢, for the forward, consistent scheme increase to
exceed 1.0 with the increase of At, i.e. £, exceed 1.0 when At >105.5520372 and ¢,

exceed 1.0 when At >159.9488164 , because the stability conditions are not satisfied (see
Fig.2).

To check the validity of the obtained stability properties for the lumped scheme,
we plot the amplification factors ¢, and &, for all the wavenumbers in the range

¢ e (-, ), where ¢ = pAX ,i.e.,

‘= AX At
L 460a .
ﬁas,nz((ﬂjﬁx
AX 2) At
and
_44(1_0)b Sinz (¢j+A)(
P At
2 4o '
sin2(¢)+AX
AX 2 At
J1— ],(}--.
7 N / \\
7 N p 0.8 \_\
Y 06 NN y N
7 N ‘// N
T /o NN . A e A
- Ve / \\ - /./ // \\,\
‘_/// 0.2 \ \\__ —.—_//' // \ N '\‘\__
/ 1 \ . 04 \ NS
- T T T T // \“—
- 5 ] 0| 1 \ 2 3 - / \ h
/ 0.2 *\ / 0.2 \
/ \ / \
/ 0.6-—: \\ -3 / T T "p 2 \ 3
// il \\ // 02 \\_
|60 e-12——0=23—— o-1] |— 60 =12 ——0=23— — 61
(a) (b)

Fig.3. (a) the amplification factor ¢ (b) the amplification factor &, with wavenumber
@ € (—r, ) for the lumped scheme with different choices for & when Ax =0.001 and
At =300

The amplification factors ¢, and ¢, do not exceed 1.0 for any wavenumber for

any choice of 6 because the central, Galerkin and backward, lumped schemes are
unconditionally stable, while the stability conditions of the forward, lumped scheme are
satisfied (see Fig.3).
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'7’/?/\‘\\ /%/ \'\\‘
- AN 7/ N
——— /// \ N T - ’// 0.5 \\‘\
) N NN
-3 22 / 1 0 1 \cp 2 3 ,/// / \ \\\‘_
/ \ — \— .
/ \ -3 2 0 1 hY 2 3
/ -1 \ / \
/ \ / 05 \
/ | \ / \
/ \ / \
e
(@) (b)

Fig.4. (a) the amplification factor ¢ (b) the amplification factor ¢, with wavenumber
@ € (—r, ) for the lumped scheme with different choices for § when Ax =0.001 and
At =500
The amplification factors ¢, and ¢, for the forward, lumped scheme increase to
exceed 1.0 with the increase of At, i.e. £, exceed 1.0 when At >316.6561114 and ¢,

exceed 1.0 when At >479.8464492, because the stability conditions are not satisfied
(see Fig.4).
It should be mentioned that we use Maple software to obtain these plots in Figs.1-4.

6. Conclusions

In this work, Fourier stability analysis was performed on two finite element
schemes for solving Reaction-diffusion system which describes a reversible chemical
reaction. We conclude that the consistent and the lumped finite element schemes are
unconditionally stable when 1/2 <6 <1 while the consistent scheme is stable under the

conditions at<(ax ) /6a and at<(ax)’/6b when 6=0. Also, the lumped scheme is

stable under the conditions at <(Ax )/2a and at <(ax )’ /20 when 0=0. Therefore, the

forward, lumped scheme has better conditional stability properties than the forward,
consistent scheme.
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