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ABSTRACT

In this paper, an operational matrix of integrations based on the Haar wavelet
method is applied for finding the numerical solution of non-linear third-order
boussinesq system and the numerical results were compared with the exact solution.
The accuracy of the obtained solutions is quite high even if the number of calculation
points is small, by increasing the number of collocation points the error of the solution
rapidly decreases as shown by solving an example. We have been reduced the boundary
conditions in the solution by using the finite differences method with respect to time.
Also we have reduced the order of boundary conditions used in the numerical solution
by using the boundary condition at x=L instead of the derivatives of order two with
respect to space.
Keywords: Boussinesq System, Haar Wavelets Method, Operational Matrix.
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1. Introduction.

As a powerful mathematical tool, Wavelet analysis has been widely used in image
digital processing, quantum field theory, numerical analysis and many other fields in the
recent years.

Haar wavelets have been applied extensively for signal processing in
communications and physics research, and more mathematically focused on differential
equations and even non-linear problems. After discrediting the differential equation in a
conventional way like the finite difference approximation, wavelets which can be used
for algebraic manipulations in the system of equations obtained which may lead to
better condition number of the resulting system [10].
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Using the operational matrix of an orthogonal function to perform integration for
solving, identifying and optimizing a linear dynamic system has several advantages: (i)
the method is computer oriented, thus solving higher order differential equation
becomes a matter of dimension increasing; (ii) the solution is a multi-resolution type
and (iii) the answer is convergent, even the size of increment is very large .

The main characteristic of the operational method is to convert a differential
equation into an algebraic one, and the core is the operational matrix for integration. We
start with the integral property of the basic orthonormal matrix, ¢(t) by writing the

following approximation:
ttt

[]] j #(t) dt dt dt...dt = Qg(t) | ()

where ¢(t)=[5,t) @) ... @,,(t)] inwhich the elements &,(t),,(t)...., 5, ,(t)
are the discrete representation of the basic functions which are orthogonal on the
interval [0,1) and Q¢ is the operational matrix for integration of ¢(t) [9].

Lepik [6] studied the application of the Haar wavelet transform to solve integral
and differential equations, he demonstrated that the Haar wavelet method is a powerful
tool for solving different types of integral equations and partial differential equations.
AL-Rawi and Qasem [1] found the numerical solution for nonlinear Murray equation by
the operational matrices of Haar wavelet method and compared the results of this
method with the exact solution, they transformed the nonlinear Murray equation into a
linear algebraic equations that can be solved by Gauss-Jordan method. Hariharan and
Kannan [5] developed an accurate and efficient Haar transform or Haar wavelet method
for some of the well-known non-linear parabolic partial differential equations. The
equations include the Nowell-whitehead equation, Cahn-Allen equation, FitzHugh-
Nagumo equation, and other equations.

Many authors have studied the solution for non-linear boussinesq systems.

Bona et al [3] derived a four-parameter family of boussinesq systems from the
two-dimensional Euler equations for free-surface flow and formulated criteria to help
decide which of these equations one might choose in a given modeling situation. The
analysis of the systems according to these criteria is initiated. Bona et al. [4] are
investigating numerically generalized solitary wave solutions of two coupled Kdv
systems of boussinesq type. We present numerical experiments describing the
generation and evolution of such waves, their interactions, the resolution of general
initial profiles into sequences of such waves, and their stability under small
perturbations. Anotonopoulos et al. [2] are studing three initial-boundary-value
problems for Bona-Smith family of Boussinesq systems corresponding, respectively, to
nonhomogeneous Dirichlet, reflection, and periodic boundary conditions posed at the
endpoints of a finite spatial interval, and establish existence and uniqueness of their
solutions. He proved that the initial-boundary-value problem with Dirichlet boundary
conditions is well posed in appropriate spaces locally in time, while the analogous
problems with reflection and periodic boundary conditions are globally well posed
under mild restrictions on the initial data. Micu et al. [8] are studing the internal
controllability and stabilizability of a family of boussinesq systems. The space of the
controllable data for the associated linear system is determined for all values of the four
parameters. As an application of this newly established exact controllability, some
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simple feedback controls are constructed such that the resulting closed-loop systems are
exponentially stable.

In this paper, we study the numerical solution for non-linear third-order boussinesq
system by the operational matrices of Haar wavelet method and we compare the results
of this method with the exact solution.

We organized our paper as follows. In section 2, the Haar wavelet is introduced
and an operational matrix is established. Section 3 function approximation is presented.
In section 4 Haar wavelets used to solve nonlinear boussinesq system. Section 5 deals
with the reducing of the order of boundary conditions used in the numerical solution.
Numerical results are presented in section 6. Concluding remarks are given in section 7.

2. Haar wavelet

The Haar functions are an orthogonal family of switched rectangular waveforms
where amplitudes can differ from one function to another. They are defined in the
interval [0,1] by ([5], [6] and [7] ):

1 £5X<k+1/2
m m
k+1/2 k+1
-1 <X<——
h, (x)= m m ..(2)
0 otherwise in [0,1)

Integer m=2',(j=0,12,...., J) indicates the level of the wavelet; k=0,1,2,..,m-1
is the translation parameter. Maximal level of resolution is J. The indix i is calculated
according to the formula i=m+k+1; in the case of minimal values. m=1,k=0 we have
i=2, the maximal value of i is i=2M =2, It is assumed that the value i=1
corresponds to the scaling function for which h =1 in [0]. Let us define the

collocation points x, =(1-0.5)/2M, (1 =1,2,...,2M)and discredit the Haar function

h,(x); in this way we get the coefficient matrix H(i,1) = (h.(X,)), which has the

dimension 2M*2M.
The operational matrix of integration P, which is a 2M square matrix, is defined
by the equation: [6]

P9 = [ h(x) dx .3
0
Pua()=[R,0dx , v=12,.. @
0
These integrals can be evaluated using equation (2) are given below:

X—a for x e[e, B)

Pi(X) =77 —X for xe[B,7) ...(5)
0 elsewhere
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%(X—oz)2 for x ele, p)
1 1 )
—=(y—x for x :
P, ()= 2m? 2@ ) €[B.y) .(6)
1
am for x e[y,
0 elsewhere
1 3
E(X—a) for xe[a, f)
! (x—,[j’)+l( —-x)° for x e[, 7)
Pa(X) =1 4m? 6" 7 (D)
" (x-5) for x < [.1)
4m
0 elsewhere
We also introduce the following notations:
1
Riv = [P, (%) dx ..(8)
0
1 2
E(l—a) for x e[, f)
1 1 )
-=(r-1 for x :
RL(X) =P, @) =1 4m? 2(7 ) e[B.,7)
1
P for x e[y,))
0 elsewhere

3. Function Approximation

Any square integrable function u(x) in the interval [0,1] can be expanded by a
Haar series of infinite terms :

u(x)=>.ch(x) , ie{ojuUN ...(9)
i=0
where the Haar coefficients c, are determined as follows:
1 1
%zjm@m@mx , %zzqw@namx
0 0

i=2'+k, j=0, 0<k<2!, xe[0))
Such that the following integral square error & is minimized:

L m-1 2
8:_!|:U(X)_§Cihi(x)j| dX, m=2j, JE{O}UN
Usually, the series expansion of (10) contains infinite terms for smooth u(x). If

u(x) is piecewise constant by itself, or may be approximation as piecewise constant
during each subinterval, then u(x) will be terminated at finite m terms, that is:
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m-1
.
u(x) =D chi (X) =y My (%) ...(10)
i=0
where the coefficients C(Tm) and the Haar function vector h,(x) are defined as:
T
Chmy =[Cor € oo Cug] v and Ny (X) = [ (), 1y (%), B OOT
where T means transpose. (see [6])
5.No. Haar functions | Integrals of Haar funcrions
bty _—
“ t . — t
2 N E— N
- L ole==" T t
5 hait) :— v, e '
B -1 Q ; — - t
haiy ! |—| f !
+ : 7 | T
[T I ] F '
5. 1 ' . t
hEit) : _| 1 ; '
4. “ [ 2138 e t
hidit) : ] 1 '
7. -1 I_I ' a1 o - t
LLOT 1+
g " |_ 2125 ___,-1._%.1 ;

Fig. 1. First eight Haar functions [6]
4 . Mathematical Model

In this section, we will consider the following nonhomogeneous system [8]:

3 3
ML N9 urall b 9Y ot
ot. OX OX. OXx OX.: Ot. (1
, ,
8v+6u +Vav+cau_d o’V —g(x.t)

ot. ox. X  Ox  OxIot

where f and g are given functions. For x.e(0,27)t. €(0,T). With initial
conditions [8]:
u(x.,0) = u,(x.) v(x.,0)=v,(x.) x.e[0,27] ...(12)
and periodic boundary conditions :

avmlngj@mL) for  te(0T) , O<r<r,

OX+ (13)
S,

q
&q@¢y:5“@mn) for  te(0T) , 0<q<q,

ox]

where the parameters a, b, ¢, and d are constant, but not completely independent .
they are in fact required to fulfill the relations :

a+b:%(®21/3) c+d:%(1d>2) >0
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where ® € [0 ,1]. The number of boundary conditions depends on the values of the
parameters . for instance, if a=b=0 then r, =0, if a=0 and b#0 then r, =1 and if a#0
then r, =2 the values of g0 depend on the parameters ¢ and d in a similar way .

Since the Haar wavelets are defined for x<[0,1], we must first normalize system
(11) and initial-boundary condition (12) and (13) in regard to x .
We change the variables [7]:

x:i(x,k—xmin , t=t.—-t, , L=b-a=27-0

27
then the system (11) and the initial —boundary conditions (12) become:

1 a b
U +—V, +— (uv)+ Vi — 7 U = F(X,1)

L L L (14
v+1u +1W+Cu —d =g(x,t)

L L [ e T2 e
with initial -boundary conditions:
u(x,0) = u0 (x) , v (x,0) =v0 =(x) ...(15)
o'v o'v

0t)= 1t for t e(0,T) , 0<r<r,
Cren-21ey <)

...(16)

ou ou
6Xq(Ot) axq(lt) for  t e(0,T) , 0<qg<q,

Now, let us divide the interval (0,T] into N equal parts of length At = T /n and
denote to ts = (s-1) At,s=1,2,.....n.
We assume that u”(x,t) can be expanded in terms of Haar wavelets as follows:

o) =S e MM =CIh()  te(L] a7

where the row vector C(m) is constant in the subinterval t e (t,,t,,;]. Integrating

(15) with respect to t from t, to t and third with respectto x from 0 to x , we
obtain:

u”(x,t) =(t—t)Cl h (x)+u”(x,t,) ...(18)
u"(x,t) = (t—t,)Cp, P, (¥) +[u"(x,t) —u"(0,t,)] .(19)
+u”(0,t)
u'(x,t) = (t—t,)Cy P, (x) +[U'(x,t,) —u'(0,t,)] 20
+ X[u"(0,t ) —u"(0,t,)]+u’'(0,t ) -+(20)
u(x,t) = (t-t,)Cl P () +[u (x,t,)—u (0.t,)—xu'(0,t,)]
2 (21
+X?[u"(0,t )—u"(0,t,)]+ xu’(0,t ) +u(0, t) @D
Now, the differential of equation (21) with respect t, we get:
u(x,t)=CJ I3(x)jt?u”(Ot )+xu"(0,t )+u(0,t) ...(22)

We can use the backward finite different formula in equation (22) , we get :

i(x,t)=Cl pua(%) + [”(Ot) u”(O,ts)}_ X{u'(o’t)_u,(o’tﬂ{U(O’t)_uw’tsq )

At At At
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Now, the integrating equation (17) with respect to x from 0 to x , we get :
0"(x,t) = Cppy, () +U"(0,1)

then, using the backward finite difference formula :
u”(0,t) — u”(O,ts)]

u"(x,t) =Cp pi1(X) +[ o ...(24)
also,
U'(x,t) = Cy pi, (X) + X [u”(o, H gtu”(o,ts)} {u’(o,t) ;tu’(O, ts)} ...(25)

Similarly, we assume that v”(x,t) can be expanded in terms of Haar wavelets as
follows:

v"(x,t) = mids (mh. (x) =D, h_(x) ...(26)

V"(x,t) = (t_— t.)D.h_ (X) +V"(x,t,) ..(27)

V'(x,t) = (t—t)D} p;, (X) + [V'(x,t,) V(0,1 )] +V'(0, 1) (28)

V(X t) = (t—t,) Dy Py, (X) +[V(X,t,) = V(0,8 )]+ X[v"(0,) —v"(0,t, )]+ V'(O,t) ...(29)
T ' Xz " "

V0 ) = (E-t)D] P (X)+ YD) VO LT -XVO.L) + = VO -V OL )]+ (30

+xv'(0,t) +v(0,t)

oy T x_2 v'(0,t)-v"(o,t,), V'(0,t)-Vv'(0,t,), v(0,t)-v(O,t,)

V(x,t) =Dy pis(X)+ 5 [ At 1+X A 1+ A | -..(31)

iy . v'(0,t) -v"(0,t,), Vv'(0,t)—V'(0,t,)

V'(X,t) = Dy p; o (X) + X[ At 1+ At ] -+(32)

V(x,t) = D p,, (0 + (LoD OL)y .33)

At
Now, we can substitute the equations (18)—(25) respect to u(x,t) and the equations
(27) — (33) respect to v(x,t) in the system (14) , we get :
2

T X " " Xr, , 1
CrPia )+ U (0.0~ <o,ts)]+E[u (0,t)-u (o,ts)]+E[u<o,t)—u(0,ts)]+

1 . 1._, Xy " 1., '
EAtDm pi,z(X)+E[V (X7ts)]+E[V O,t)—v (O,ts)]+E[V (0,t) -v'(0,t,)]+

b
L*At
—%[u(x,ts)v’(x,ts) +u'(X, tv(x,t,)] ...(34a)

a a m b " "
MDY, (0 + SV 00) T3 Cr Py ()~ T [0 O U (O )] = (xt)
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2

- X y " X ., , 1
Dn pi,g(X)+2—At[v (0,t)—v (O,ts)]+A—t[v O,t)-v (O,IS)]+A—t[V(O,t)—V(O,ts)]+

%Atc; b, (%) +1u'(x,ts) +5[u"(o,t) —u"(o,ts)]+1[u'(o,t) _uOt )]+

%AtC h (x)+ u’”(x - DT p,l(x)— [v"(0 t)—-v"(0,t,)]
=g(xt )—E[v(x,ts)v’(x,ts)] ...(34b)
Then

CT p|3(x) CT pll(x)+ DT p|2( ) 7Dmhm( )

2

' ' " " X '
= f(xt )—I[U(X,ts)v (x.t;) +u (X’tS)V(X’tS)]_TAt[u 0.0 -u(O0.L)]- LU O.H-uO.L)]

1 1, . , 1, , a .,
~ MO U] = VL) = VIO =IO )] - V0D~ V0 )] - 5 V(L)

" " ...(35a)
2LCT 200+ 51CT, (9 + D] s ()3 DL P ()
1 , y " X ., ,
- gxt )~ L VX L)V (x,ts)]—z—m[v O -VOL)- [V OH-VOL)
—i[v(o,t)—v(o,ts)]—iu'(x,to—E[u"(o,t)—u"(o,ts)]—%[u'(o,t)—u'(o,ts)]
" " d ...(35b)

L3
The functlon u(O,t),u (0,t),u"(0,1),v(0,t),v'(0,t) andv"(0,t)are found by using the
boundary condition (16) and the functions u(x,t,),u’(x,t,),u”(x,t), v(x,t,),v'(x,t,) and
v"(x,t,) are found by using initial conditions (15) in the first step .
The Haar coefficient vectors C! and D, are calculated from the solution of linear
system (35).
5. Reducing of the Order of Boundary Conditions:

We can reduce the order of the boundary conditions used in equations (18)-(25)
by using the boundary condition at x=1 and notation (8) instead of the derivatives

u”(0,t) and u"(0,t).
The values of unknown term u”(0,t) and u"(0,t;) can be calculated by
integrating equation (19) fromO0to 1 and is given by

ju"(x t) = j(t t)Cr ,1(x)dx+_[u"(x,t)dx+j[u"(0t) u"(0,t,)] dx

ThIS |mpI|es that
U@Lt -u'(0t)=(t-t)Cq R.(¥) +[U'Lt)-u'(0,t)]+[u"(0,t ) ~u"(0,1,)]
and
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[U"(0,t ) ~u"(0,t,)] = ~(t —t,)CF R, (%) +[U'L 1) ~u'(L )]

...(36)
—[U'(o,t) - U,(O, ts )]
such that
%(1—05)2 for x e[a, B)
1 2
R =PL@={am’ 2 forxelp.n) -(37)
4;2 for x e[y,
0 elsewhere
By substituting equation (36) in equations (18)-(25), we get:
u”(x,t) = (t—t,)Cl h_(x)+u"(x,t,) ...(38)
u"(xt)=(t-t )Cm .l(X)+U”(X,ts) (39)
+[— t—t,)Cp R (X) +[u'(Lt) —u'Lt,)]-[u'(0,t) -u'(0,t, )]]
u'(x,t)=(t— t)Cm P,(x)+u'(x,t;) +[u’(0,t )—u'(0,t,)] (40)
X[ (t-1) CF R, (0 + [ (L) — '@ t)] - [W'(0, 1) - w0, 1,)]]
u(x,t) = (t-t,)Cp Py()+u (xt)+[u(0,t)—u (0,t,)]
+x[u’(0,t ) —u’(0,t)] ..(41)

2

+ 1) CLRL 00+ @Y —w@ )] - [ (©0) - u©.)]]
Now, the different equation (41) with respect t, we get:

u(x,t)=C_ Pa(x)+ [u'(0,t)-u'(0,t)]+ ————[u (O,t)—u (O,t))]
(t- s) (t-t) (42)

-Gl R 00+ WD)~ )] -[U 00 -u' O]

2(t t)
004) =GP0 + [ ACIR .00 + (08 0) -t )~ 0.)-w 0,

+i[u’(0,t)—u’(0,ts)]
u'(xt)=Cy pi,l(x)%t[—AtC R, () + (UL t)-ut,)-uO.)-u(rt,)) ..(44)

Similarly, we can reduce the order of the boundary conditions used in equations
(27)-(33) by using the boundary condition at x=1 and notation (8) instead of the
derivatives v"(0,t) and Vv"(0,t,).

When x = 1 from equation (29), we get :

.(43)

V'(0.1) -v'(0,t,) = ~(t t,)D,R . () + V(L) -V (L t)]-[V(0,1) ~v(Qt,)] .(45)
By substituting the equation (45) in equation (27) — (33), we get :-
V"(x,t) = AtD, h. (X) +V"(X,t,) ...(46)

VXD = ML P, (0 V(X ) + |- ADIR,, 00+ (VL1 -V(LL )-(0.0)-v0., )] .47
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V'(x,t) = AtD] p,, (X) +V'(x,t,) + [v/(0,t) - v'(0, 1, )]+

o[ ADTR, 00+ (VL) VL) ((0,)-v(0.1, )] 9
V(x,t) = AtD] p; 5 (X) +V(x,t,) + [v(0,t) - v(0,t, )]+ x[v'(0,t) —v'(0,t,) |+
2 ...(49
L ADR 00+ (VLD -vAL) -0 -v(OL) -
H000) = DL o0+ [ ADER (0 + (VL) VL) (V(0,)-v (0., ]+
X 2At 1 ..(50)
VOOV SV D -vOL)]
V(%) =D} p,,(X) [ ADIR, () + (VL) - VL, ))- (V(0.)-v(ot, )]+
At (51

1 ! !
L on-vion)
V(0 =D (0 + - ADTR, 00+ ()L, )-(0.) V(0 )] 5)

Now, we can substitute the equations (38) — (44) with respect to u(x,t) and the
equations (46) — (52) with respect to v(x,t) in the system (14) , we get :

. x> ¢ b .t b ~r
Cmpi,s(x)__c Ril(x)__ZC pil(x)+_ZCmRi'1(X)

P2 (0~ DIR, (0 + 5 DI, (0

2

= f(X,t )—E[U(X,ts)V’(X,ts)+U,(X,ts)V(X,ts)]—ﬁ[u'(l,t)—U'(l,ts)]

2

X , , X , , 1
+2_At[u (0,t)—u (O,ts)]—zt[u (0,t)—u (O,ts)]—A—t[u(O,t)—u(O,ts)]

—iv'(x,m—l[v'(o -V )]—ftv'(l 0 —v'(l,ts)]%[v'(o,t)—v'(o,ts)]

a

L3
At
L

X2

m |1(X)_ p|1(X)+ 2 m |1(X)

...(53a)

n P2 (X) - R (X) + C h (X)+DTD.3(X)

’ [ [ X2 ’ 1
—g(x.t )—E[v(x,t W (x,ts)]—ﬂ[v Lt )-v (1,ts)]+m[v 0.t)-v(Ot,)]
X, , 1 1,
—E[v 0,t )—v (O,ts)]—E[v(O,t )—v(O,ts)]—Eu (xt,)
—i[u'(o,t)—u'(Ot )]—i[u'(l ) -u'(Lt, )]+5[u'(o t)-u'(0,t,)]

—Fu( )+ [v(lt) v(lt)] [v(Ot) v(o.t)] ...(53b)
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The functions u(0,t),u(d,t),u’(0,t),u’(Lt),v(0,t),v'(L, t)v'(0,t) are found by using
the boundary conditions (69), and the functions u(x,t,),u’(x,t,),u”(0,t,),v(X,t,),V'(X,t,)
and u”(x,t,) are found by using initial conditions (69) in the first step .

The Haar coefficient vectors C] and D], are calculated from the solution of the

linear system (53a)

and (53b)

6. Numerical Results

In this section, we have solved nonhomogenous Boussinesq system (14) with the

initial-boundary conditions (15) and (16) by using two formula:

a-) We have solved system (14) with the initial-boundary conditions (15)-(16) by
using the linear system (35a) and (35b) such that [8] :

u(@0,t )=v(0,t )=0 :

887“(0,'[ ):%(O,t ) =2mcos(t)

o°u o0%v

ax_z(oit)=87(olt)=o )

t >0

u(x,0) = v(x,0) =sin(27x)
f (x,t) = 2sin(272x) cos(27x) cos® (t) — (1+b) sin(22x)sin(t) + (1— a) cos(27x) cos(t)

g(x,t) =sin(27x) cos(27x) cos? (t) — (L1+d) sin(27x)sin(t) + (1—c) cos(22x) cos(t)

Mt y=Y (1t )=27cos(2r +1)
OX OX

o°u

ax—z(l,t )=a7(1,t )=0

ulLt )=v(Lt )=0

o0%v

This process is started with the initial condition:
u(x,ty) = v(x,t,) =sin(22x)

u(xt)=Vv(xt)=

27 CoS(27X)

u (xt) =V (xt,)=—(27)° cos(27x)
The exact solution of Boussinesq system (14) is given by:
u(x,t) = v(x,t) =sin(27x) cos(t)
Results of the computer simulation are presented in Tables (1) and (2) where

m=16 , where [4 ]:

L=2z,a=_b=-"

30

7 —2
15’

c=—.,d =1,At=10*5,t=0.001.
5 2

0<x<1
0<x<1
0<x<1

...(54)

...(55)

...(56)

...(37)

Table (1) Comparison of the numerical solution and the exact solution

of u(x,t) when m=16.

The value x Wavelet solution Exact solution Absolute error
of u(x,t) of u(x,t)
0.1963 0.19509022447441 0.19509022447098 3.4362e-012
0.5890 0.55556995549255 0.55556995523451 2.5804e-010
0.9817 0.83146919781950 0.83146919656777 1.2517e-009
1.3744 0.98078479348397 0.98078479001063 3.4733e-009
1.7671 0.98078479745969 0.98078479001063 7.4491e-009
2.1598 0.83146921041976 0.83146919656777 1.3852e-008
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2.5525 0.55556997896256 0.55556995523451 2.3728e-008
2.9452 0.19509026338454 0.19509022447098 3.8914e-008
3.3379 -0.1950901616976 -0.1950902244709 6.2773e-008
3.7306 -0.5555698537465 -0.5555699552345 1.0149e-007
4.1233 -0.8314690302700 -0.8314691965677 1.6630e-007
4.5160 -0.9807845125815 -0.9807847900106 2.7743e-007
4.9087 -0.9807843190110 -0.9807847900106 4.7100e-007
5.3014 -0.8314683853672 -0.8314691965677 8.1120e-007
5.6941 -0.5555685433918 -0.5555699552345 1.4118e-006
6.0868 -0.1950877499729 -0.1950902244709 2.4745e-006

Table (2) Comparison of the numerical solution and the exact solution

of v(x,t) when m=16.

The value x | Wavelet solution of v(x,t) Exiit\fg(l Lg on Absolute error
0.1963 0.19509022447438 0.19509022447098 3.4011e-012
0.5890 0.55556995549153 0.55556995523451 2.5702e-010
0.9817 0.83146919781287 0.83146919656777 1.2451e-009
1.3744 0.98078479345550 0.98078479001063 3.4449e-009
1.7671 0.98078479736385 0.98078479001063 7.3532e-009
2.1598 0.83146921014530 0.83146919656777 1.3578e-008
2.5525 0.55556997826015 0.55556995523451 2.3026e-008
2.9452 0.19509026172483 0.19509022447098 3.7254e-008
3.3379 -0.1950901653992 -0.1950902244709 5.9072e-008
3.7306 -0.5555698616600 -0.5555699552345 9.3574e-008
4.1233 -0.8314690466654 -0.8314691965677 1.4990e-007
4.5160 -0.9807845457596 -0.9807847900106 2.4425e-007
4.9087 -0.9807843849577 -0.9807847900106 4.0505e-007
5.3014 -0.8314685146372 -0.8314691965677 6.8193e-007
5.6941 -0.5555687940181 -0.5555699552345 1.1612e-006
6.0868 -0.1950882315789 -0.1950902244709 1.9929e-006

b-) We have solved system (14) with the initial-boundary conditions (15) and (16)
by using the linear system (53a) and (53b) such that [8]:
u@0,t )=v(0,t )=0 : uiLt)=v@t)=0

;i’(o,t ):(fx"(o,t )=27c0s(t) ;ij(l,t ):aa):’(u yoomcoszeiy 20 OY
u(x,0) = v(x,0) =sin(22x) ...(59)
f (x,t) = 2sin(22x) cos(27x) cos® (t) — (1+b) sin(27x) sin(t) + (1— a) cos(27x) cos(t) (60)

g(x,t) =sin(22x) cos(22x) cos? (t) — (1+d) sin(27x) sin(t) + (1 - ¢) cos(22x) cos(t)
This process is started with initial condition:

u(x,t,) = v(x,t,) =sin(22x) 0<x<1
u(x,t) =V (x,t,) =27 cos(27x) 0<x<1
u (xt)=Vv (xt,)=—(27)° cos(22x) 0<x<1

Results of the computer simulation are presented in tables (3) and (4) where m=16,
where
L=27,a=_Lb="c="2d=1 At=10° t=0.001.
30 15 5 2
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Table (3) Comparison of the Numerical Solution and the Exact Solution

of u(x,t) when m=16.

The value x

Wavelet solution

Exact solution

Absolute error

of u(x,t) of u(x,t)
0.1963 0.19509022454205 0.19509022447098 7.1074e-011
0.5890 0.55556995659652 0.55556995523451 1.3620e-009
0.9817 0.83146920004959 0.83146919656777 3.4818e-009
1.3744 0.98078479619490 0.98078479001063 6.1843e-009
1.7671 0.98078479984483 0.98078479001063 9.8342e-009
2.1598 0.83146921097669 0.83146919656777 1.4409e-008
2.5525 0.55556997511001 0.55556995523451 1.9876e-008
2.9452 0.19509025051388 0.19509022447098 2.6043e-008
3.3379 -0.1950901918556 -0.1950902244709 3.2615e-008
3.7306 -0.5555699160344 -0.5555699552345 3.9200e-008
4.1233 -0.8314691511077 -0.8314691965677 4.5460e-008
4.5160 -0.9807847389022 -0.9807847900106 5.1108e-008
4.9087 -0.9807847340725 -0.9807847900106 5.5938e-008
5.3014 -0.8314691367523 -0.8314691965677 5.9815e-008
5.6941 -0.5555698925947 -0.5555699552345 6.2640e-008
6.0868 -0.1950901602334 -0.1950902244709 6.4238e-008
Table (4) Comparison of the Numerical Solution and the Exact Solution of v(x,t) when
m=16.
The value x Wavelet solution Exact solution Absolute error
of v(x,t) of v(x,t)
0.1963 0.19509022454146 0.19509022447098 7.0485e-011
0.5890 0.55556995659693 0.55556995523451 1.3624e-009
0.9817 0.83146920005372 0.83146919656777 3.4859¢e-009
1.3744 0.98078479620167 0.98078479001063 6.1910e-009
1.7671 0.98078479984803 0.98078479001063 9.8374e-009
2.1598 0.83146921096912 0.83146919656777 1.4401e-008
2.5525 0.55556997508411 0.55556995523451 1.9850e-008
2.9452 0.19509025046061 0.19509022447098 2.5990e-008
3.3379 -0.1950901919465 -0.1950902244709 3.2524e-008
3.7306 -0.5555699161759 -0.5555699552345 3.9059¢-008
4.1233 -0.8314691513148 -0.8314691965677 4.5253e-008
4.5160 -0.9807847391926 -0.9807847900106 5.0818e-008
4.9087 -0.9807847344632 -0.9807847900106 5.5547e-008
5.3014 -0.8314691372570 -0.8314691965677 5.9311e-008
5.6941 -0.5555698932144 -0.5555699552345 6.2020e-008
6.0868 -0.1950901609407 -0.1950902244709 6.3530e-008
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Fig. (2) Comparison of the Numerical Solutions and the Exact Solution

When m=16.
Table (5) the mean square error of numerical solution when
L=27,a=_"b="c="2d=1 t=0001
30 15 5 2

m Uey — U‘ Vex — V‘

8 1.2400e-007 1.2304e-007

16 5.4617e-008 5.4492¢-008

32 3.5526e-008 3.5503e-008

64 9.9082e-009 9.9058e-009
128 8.7514e-009 8.7489¢-009

7. Conclusions

In this paper, solving the non-linear third-order Boussinesq system by using Haar
wavelet method was discussed. The fundamental idea of Haar wavelet method is to
convert the third-order Boussinesqg system into a group of algebra equations which
involves a finite number of variables.

We found that Haar wavelet had good approximation effect by comparing with
exact solution of Boussinesq system at the same time. The bigger resolution J is
obtained more accurate approximation in the solution, as note in tables (1) and (2) when
m=16. Also, when m=32 , m=64 , m=128 , ..., we can obtain the results closer to the
exact values as noted in table (5).

We have also been reducing the boundary conditions used in the solution by using
the finite different method with respect to time and by using the notation (8) when x=L
respect to space and the results were of a high resolution as note in tables (3) and (4)
and Figure (2). Matlab language is used in finding the results and figure draw, it's a
characteristic at high accuracy and large speed.
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