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ABSTRACT

A new graph distance based polynomial, called detour polynomial, is introduced.
The detour polynomial and the detour index of the corona G,0G, of two connected

disjoint graphs G, and G, are obtained in this paper.
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1. Introduction :

The concept of Hosoya polynomial was first put forward in 1988 by Hosoya [14].
Several authors, such as [1]-[4], [12], and [14]-[17] had obtained Hosoya polynomials
for special graphs, graphs having some kind of regularity and for compound graphs
obtained by using some well-known binary operations in graph theory.

In this paper, we consider finite connected graphs without loops or multiple edges.
For undefined concepts and notations see [6] and [13].

The standard distance d(u,Vv)between two vertices uand v in a connected graph
G is the length of a shortest u—vpath in G. This is not the only way, however, that
distance has been defined on the vertex set of a connected graph. The length of a longest
u—v path between two vertices u and v in a connected graph is called the detour
distance D(u,v) between u and v. As with standard distance, detour distance is a

metric on the vertex set of any connected graph [7]. A u—v path of length D(u,v) is
u—v detour. It is clear that D(u,v)=1 if and only if uv is a bridge of G, and
D(u,v)=p(G) -1 if and only if G contains a Hamiltonian u—v path. Furthermore,
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d(u,v) = D(u,v) for every two vertices u and v of G if and only if G is a tree. It is
possible, however, that d(u,v) = D(u,v) for some pairs u, v of distinct vertices in a
graph that contains no bridges. The detour eccentricity e,(v) of a vertex v is the
maximum detour distances from v to all other vertices in G. The detour radius
rad,(G) of a connected graph G is the minimum detour eccentricity among the
vertices of G, and the detour diameter diam,(G) is the maximum detour eccentricity
among the vertices of G. Since d(x,y)<D(x,y) for every two vertices x and y in
G, it follows that e(v)<e,(v)for every vertex v.Therefore, rad(G)<rad,(G) and
diam(G) < diam,(G) for every connected graph G ( see [9], [10] and [18]). In fact
rad, (G) < diam, (G) < 2rad, (G), see [9].

Let G be a connected graph of order p and size q. The detour polynomial of
G, denoted by D(G; x), is defined by

D(G;x)= > x°“Y u=v;V =V(G).

u, veV
It is clear that D(G;x):ZCD(G,k)xk, in which C,(G,k) is the number of
k>1
unordered pairs u, v such that D(u,v) =k .
Ami¢ and Trinajsti¢ [5] were first to consider the detour index dd(G) defined as

the sum of the detour matrix elements above the main diagonal. The detour index is
used in quantitative structure-activity relationship (QSAR) studies. Lukovits [15] tested
the detour index on the correlation of the boiling points of alkanes of cycloalkanes. The
detour index can also be obtained from the detour polynomial, because

d D(G;x)

dd(G) =) D(u,v) Rl =Y kCy(G,K).

Let C,(G;v,k) be the number of vertices u (= v) such that D(u,v) =k . Then, we
define for each vertex v of G :

ep (V)
D(G;V,X) = Y Cp(G;v,k)x* = xPt,
k=m(v) =Y,

U#v
where e, (v) is the detour eccentricity of vertex v, and m(v) is the minimum detour

distance from v. This polynomial is called the detour polynomial of vertex v. It is
clear that

D(G;x):%ZD(G;v,x).

veV

2. The Corona G,0G,:

The corona of two disjoint graphs G, and G, of orders p, and p,, respectively ,
is the graph G =G, oG, defined by taking one copy of G, and p, copies of G,, and
then joining the i™ vertex of G, to every vertex in the i ™ copy of G,, as illustrated in
Fig.2.1, where the copies of G, are denoted by G,, G,, ..., G,

V, =V(G) =%, VpienV, 1,

U =v(G)={u®, ul,...ul} fori=12..p,,
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V, =V (G,) ={u,, u,,..,u, },
and

Py .
u=yJu®m

i=1

W, @ 0
Uy Uy U,

@ 0 O
ug Uy U,

Fig.2.1 The corona G,0G,

It follows, from the definition of the corona G,0G,, that

p(G,0G,)=p,(L+Pp,),q(G,0G,) =0, + p,d, + P, P, and diam(G, o G, )=diam(G, )+2.
Note that G,0G, # G, oG, unless G, =G, .
Thus, the corona is a binary graph operation, it was defined for the first time by Frucht
and Harary [11] in 1970, and used in studying the automorphism group of graphs.
Recently, in 2007, the Hosoya polynomial of the corona of two graphs , with respect to
Steiner distance, was obtained [1]. So , we think that it is an interesting to obtain the
Hosoya polynomial of the corona with respect to detour distance.

We begin discussing the detour distance and detour diameter of G,0G,. Let

el)(w) be the detour eccentricity of vertex w in the graph G. , i=1,2 . Define the graph
G, as G, +K, .
Proposition 2.1: Let w, and w, be any two distinct vertices of G =G, oG, . Then, the
detour distance D (w,,w,) equals:

1) Dg (W W), if w,, w, €V (G,);

2) D, (W, w,), if w;, w, eV(G/) for 1<i< p;;

3) 1+e@(w,),if w, =v, and w, eV (G/) for somei, 1<i< p;;

4) Dg (v, v;)+eS (w,)+1, if w,=v, and w,eV(G}), where i=j and

1<i, j<pg;
5) DGl(vi,vj)+e,(32)(wl)+e§)(wz)+2, if w, eV(G)), w, eV(G]), where i= j
and 1<i, j<p,.

Proof: 1) Obvious .
2) Any detour between two vertices of G; , 1<i< p, must contain vertex v, and does

not contain another vertex of G, . Therefore Dg (W, w,) =D, (W, w,) .
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3) If w; is the detour eccentric vertex of w, in G/, thatis Dg (w,,W;) =e?(w,), then
a detour from v, to w, consists of the edge v,w, followed by the detour in G; between
W, to w, . Therefore D (w;,w,) =1+e? (w,).
4) In this case a detour between w, and w, in G consists of a detour between v, and
v; in G, followed by the edge v;,w; then the detour between w;and w, in G}, here w;
is the detour eccentric vertex of w, in G;. Thus

Dg (W, W,) = Dg, (Vi’Vj)+l+el(32)(W2)-
5) A detour between a vertex w; of G; and a vertex w, of G}, i# j, is constructed
from a detour from w, to w; ( the detour eccentric vertex of w,), followed by the edge
w;v;, then a detour from v; to v; in G,, then followed by the edge v;w; and finally
followed by a detour w,-w, in Gj. The length of this detour is

Dq, (v;,V;) +e% (w;) +e{’ (w,) +2. Hence , the proof is complete. m

Proposition 2.2: For a connected nontrivial graph G, and any connected graph G, ,
diamy ( G, 0 G,) =diam, (G,) + 2diam, (G,) + 2.
Proof: Let v;, v; be two vertices of G, such that Dg (v;,v;) =diam,(G,); and let u,,
u, be two vertices of G, such that D; (u;,u,) =diam;(G,) .
One may easily check from Fig.2.1 and Proposition 2.1(5) , that
De (Ul(i)1ulgj)) = DG,’ (ul(i)vulgi)) +1+ DG1 (v; 1Vj)+1+ DG; (Ul(j)' ulgj))
=diam, (G,) + 2diam, (G,) +2.
Now, let w,, w, be any two vertices of G,0G,, then:
1- If w;, w, eV(G,), then Dg(w,,w,) < diam,(G,);
2- If w, w,eV(G/) for some r, 1<r<p, then, let Q be a w, —w, detour. If
v, ¢V (Q) , then Dg (W, w,) <diamy(G,).
If v. eV (Q) , then Q—v, consists of two paths in G, each of length not more than
diam, (G,) . Thus D (w,, w,) < 2diam; (G,) + 2 ;
3- Ifw, eV(G/) and w, eV(G,), t=s, then
D (W, W, ) < diam, (G,) + 2diam ;(G,) + 2 ;
4- If w, eV(G,) and w, eV(G,), then
Ds (W, w,) < diam, (G,) +1+diam(G,) .
Therefore, for all cases of w, and w,, we have
Dg (W, w,) < diam, (G,) +2diam ;(G,) + 2.
Hence , the proof is complete. =
The minimum detour of a connected graph G is denoted by D, (G) , and

defined as
D, (G) =min{D(u,v): u=v,u,veV(G)}.
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Let H, and H, be disjoint connected graphs, and let u, and u, be vertices of
H, and H,, respectively. Then , the vertex identified graph H, e H, is obtained from
H, and H, by identifying the vertices u, and u,. We notice, that
Dyin (Hy @ H,) =min{D;, (H,) , D, (H,)}.

Applying this fact , we can easily prove the following proposition, which
determines D, (G,0G,) .

Proposition 2.3 : For disjoint connected nontrivial graphs G, and G, , we have
Dmin (Gl © GZ) = r’nin{Dmin (Gl) ' Dmin (G; )} '

3. The Detour Polynomial of G,0G, :

To determine the detour polynomial of the corona G,0G,, we introduce the
detour eccentric polynomial of a connected graph G, defined as follows:
Dce(GiX) = D x*.

veV (G)
For example:
Decc (Cp ; X) = px P
P
2,
2> xP, for even p
Decc(Pp; X) = = p-1
Pl 2
x 2 +2> xP, for odd p.
i=1

We shall obtain the detour polynomial of the corona G,oG, in terms of D(G;;x)
and D (G;;x),i=1 2.

ecc

We set the following definitions:

D(GV,iX) = 3 D(G,v;; %),
D(G,U®";x) = iD(G,u(”'x),

j!
j=

D(G,U;x) = iD(G,u -x).

Then
D(G:x) = %[D(G,Vl; x)+ D(G,U;x)].

Proposition 3.1:
D(G,V,; X) =2D(G;; X) + Xp; Dy (G,; X) + 2XD. (G,; X)D(G,; X) .

Proof: From Proposition 2.1, for each v, €V (G,), we have
Py D P
D(G,vi;x):zx vivy) ZXD(vi,W) + ZXD(V"W) .
j=1

weu O weu )
ji ji

Summing over all i=1, 2, ..., p1, we get
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Py
z De; (% 2: Z Z 14Dg, (V;,
D(G,Vl;X) — X oy (VihVj) +p, yHes2 (W) o i oy (Vi V) e (U)
i jevy weV, i1 weu )

i#] i#]

=2 D(G;; xX) + pxD

ecc

(G,;x)+xD,

ecc

(G,;x).2D(G;;x). m

Proposition 3.2:
D(G,U;x) =2p,D(G,;x)— p,xD

ecc

+X*[Dyee (G,: V) 2D(Gy: X)

Proof: From Proposition 2.1, for each u”, i=1,2, .., p, and j=1, 2, .., p,, we have

(G,;x)+xD,

ecc

(G;;%).2D(G;; )

Py n=p;, p,=k
(D yy — +op(). Dg, (V; Vi )+1+eccp (u;) 2+ecc (U;)+ecop (U )+ Dg, (Vi ,Vy)
D(G'ui ’X)_D(Gz;ui ,X)+ZX Gtk ° + z X ° D%k G\ .
k=1 -1 k=1
K#j ne ]

Summing over both j=12,..,p, and i=1 2,.. p,, we get , using the above
notations and definitions:
D(G,U;x) = p,[2D(G;; x) — XxD,..(G,; X)] + xD
+X°D,.(G,; X).D,..(G,; X).2D(G,; X) .
Hence, the proof is complete. m

(G,;%).2D(G;; )

ecc

ecc

Theorem 3.3: For connected nontrivial graphs G, and G, , the detour polynomial of the
corona graph G, oG, is

D(G,0G,;X) =[1+xD,..(G,; X)]>.D(G,; x) + p,D(G;; x).
Proof: From Propositions 3.1 and 3.2, we obtain

D(G,06,X) =5 [2D(G;1) + Py (G5 X) + 2D, (G2 WD(Gy )

ecc

+2p,D(G;; X) — pXD,..(G,; X) +2xD,. (G,; X).D(G,; X)
+2X*D(Gy; X)[Dy (G5 M)I°]
= D(G; X) + 2xD,.(G,; X). D(G,; X) + p,D(G; ; X)
+ X*[Deee (G, X)I* - D(Gy; %)
=[1+xD,.(G,;X).D(G,;X)+ p,D(G;;X). =

ecc

To obtain the detour index of the corona G,0G,, we give the definition of the
eccentricity sum of a graph, denoted by S (G):

Sex(G) = D ecco(v).
veV (G)
Corollary 3.4: The detour index of G, oG, is given as
dd(G,0G,) = L+ p,)*.dd(G) + p.(p, —D(P, +1)[P; + Seee (G)] + p..dd(G;) .
Proof: Taking the derivative of D(G,0 G, ;x) given in Theorem 3.3, with respect to x,
we get
D'(G, 0 Gy; X) = [1+ XD, (G, X)I°.D'(Gy3 X) .
+2[1+ XD, (G,; X)].[ D (G,; X) + XD, (G,; X)]. D(G;; X)
+p,D'(G; ;%)
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Then, putting x =1, we get
dd(G,0G,) = D'(G,0G,}])

=1+ p,)*dd(Gy) + 2(L+ p,)[ P, + D (Gz;l)]-% (P, —1) + p,dd(G;)

Then , simplifying the above expression and noticing that
Décc (GZ 71) = Secc (GZ) '
we get the required formula of dd(G,0G,). =

Example: Let G, =C, the cycle of order n, and G, =K_,, the complete graph of order
m, then

n+l
NX" 4+ X"+ x 2), foroddn,
D(C,;x) =

n

l+E 1 5
N(X" 4+ X" 2 4.+ X 2+Ex2), forevenn,

Decc(Km; X) = mxm_]"
and

D(G,;x)=D(K, ;;X) :%m(m +1)x".

m+l;
Thus, using Theorem 3.3, we get
D(C,oK,;X)= %nm(m +1)x"

n+l

n(x"*+x"?+ .. +x2) , foroddn

+ @+ mx™)?, LT
aoqon
N+ X" 4 L X2 +5x%) . forewenn.
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