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ABSTRACT

In this paper, we proposed a new three-term nonlinear Conjugate Gradient (CG)
method for solving unconstrained optimization problems. The new three-term method
generates decent direction with an inexact line search under Wolfe conditions and the
descent property of the new method is proved. Numerical results on some well-known
test function with various dimensions showed that the new method is an efficient .
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1. Introduction.
In this paper, we deal with conjugate gradient methods for solving the following
unconstrained optimization problem:
Minimize f(x) ...(2)
where f:R"—>R is smooth and its gradient g(x)=Vf(x) is available. Conjugate
gradient methods are very efficient for solving large-scale unconstrained optimization

problems (1). For solving this problem, starting from initial guess xoe R", a nonlinear
conjugate gradient methods generates a sequence {xx}as:

Xk+1 = Xk +a, dk k=1,2,... ...(2)
where step size «, is positive, which is computed by carrying out some line
search, and the direction dk is generated as:
-0, for k=1
d, = ...(3)
-0, +4.4d, 4 for k>2

In (3) Pk is known as conjugate gradient parameter. The search direction ,assumed
to be a descent one which is play the main role in these methods. On the other hand, the
step size ox gQuarantees the global convergence in some cases and is crucial in
efficiency. Plenty of conjugate gradient methods are known, and an excellent survey of
these methods, with special attention on their convergence, is given by Hager and
Zhang [5]. Different conjugate gradient algorithms correspond to different choices for
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the scalar Bk. The line search in the conjugate gradient algorithms often is based on
standard Wolf conditions. The standard Wolfe conditions [9,10] are

f(x, +ed)- f(x)<de0,d,, ...(4)
O¢ad > 09, d, , ...(5)

where dk is a decent direction and 0 < 6 < ¢ < 1. For some conjugate gradient
algorithms, stronger Wolfe conditions defined by:
f(x +ad,)-f(x)<dx0.d,, ...(6)

‘g(xk +akdk)Tdk‘S_ogIdk (7
are needed to ensure convergence and to enhance stability. It has been shown [9] that
for FR scheme, the strong Wolfe conditions may not yield a direction of decent unless
o <1/2. In typical implementations of the Wolfe conditions, it is most efficient to
choose o close to one.

It is known that choices of Pk affect numerical performance of the method, and
hence many researchers studied choices of Bk. Well-known formulas for Pk are the
Hestenes-Stiefel (HS) [6], Fletcher-Reeves (FR) [4],Conjugate-Decent(CD) [3]and Dai-
Yuan (DY) [2] formulas, which are respectively given by

T 2 2 2
i _ Vs g9 oo - 9T por _ 94

k=7 4T ' k = 2 k = ' k T 4T
disYia ”gk—l” A1 Yis

...(8)
de19s

Where || . || means the Euclidean norm and, Yk-1= gk - Qk-1.
Note that these formulas for Bk are equivalent each other if the objective function is
a strictly convex quadratic function and ox is the one dimensional minmizer.

2. Three-Term CG-Methods:

The first three-term nonlinear CG-method was presented by Nazareth [8], in which
the search direction is determined by:
VeV q 4 YiaYe g 9
Yed, ‘ YOy ! ®

The main property of dx is that, for convex quadratic function, it remains conjugate
even without ELS.

Zhang et al.[11] proposed the modified FR method (ZFR) which is defined by:

d, ==6,9, + f7d 4, ...(10)
where 6, =d; .y, , /|g.4|’. Since this search direction satisfies g;d, <—|g,| for

all k, It can be written by the three-term form:

dy =—0, +:8Fde—1_9k(l)gk1 .-(11)

where % = g7d, . /|g..|"-

They also proposed the modified PR method(ZPR) [12] and the modified HS
method(ZHS) [13],which are respectively given by:

d, =-g, +ﬁPde—1_‘9k(2)yk—1v ...(12)
d, =-g, +ﬁHsdk—l_9k(3)yk—1’ ...(13)
where ® =gld,,/|g..|" and 69 =gld,,/dl.y,,

These three-term conjugate gradient methods which always satisfy the sufficient
descent condition:

dk—l ==Yt
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grd, <—clg,|° . forall k,
for a positive constant ¢, Independently of line searches.
3. New Three-term CG-Method.
Mitras and Hassan [7] proposed a seven —parameter family defined by:
P e . S P N 70 (o Vo) + 24 9 + 6,90y +nlisl” ol 9 d +wi PO L (14)
Hlga]” + odis Y = A= - 0 )49,

where p=(y, , -2d,_ [« 1” ) Ak, uke[0,1] ,oke[0,1- uk], dke[0,1- Ak] and yke[0,1-

dkT 1Yk
ok], 9€[0,1-y, 1, ve[0,1- o], parameters.(i.e. Ak, Sk, 7, , ¢k and yk are impossible

to be equal to one at the same time; the same thing is also correct for uk and k).

The seven-parameter family contains already existing twelve well-known
formulas for Pk, SO there were 27=128 cases,12 cases were succeeded,116 cases were
failed.

In the present work, we derived a new three term conjugate gradient method from
this family. We choose one of the failed cases that is when (4,68, 7,¢,v, u,») are equal

to (0,1,0,0,1,0,1) respectively ,so B*'*" yield to:

B = — 0 Vs~ 28 )+ 9 Vs + P' G, ...(15a)
Y
where p=(y, ,-2d,, "yk 1" S22 ) using (ILS) eq.(15a) became:
1Y
B = 10g 195 n 1 Y, —2d, ||yk—l||2 T g, ...(15b)
deaYias  GeaYa | GV

Now we know that :

A =—0 + A,
2 d,d} d.yr 2|y, | dydf

dTy, Oy dry, Ok — @Ay, ) Ok
v dde  dyye 2”yk” d dT]
dlye Oy (@)
_deK _akdde 2”yk” d,dy

Aoy deye Ay’
We see Q,,, is not symmetric, to symmetrize Q, ,we add and subtract the term

dk+1 ==0yqt

dk+1 :_[I -

dk+l = _Qk+1gk+l where Qk+l: I

.
yﬁi to get:
di ¥

oo vdD Al e ddl 2y ddy
Q= I ——F -~ 7~ 7 + Ty \2
ey deye deye  diyy (de yi)

Use the Lipschitz condition for the third term to the numerator and denominator to

get:
Q= I- dye +Y.de dkdkT akdkdkT 2”yk” d,dy
k+1

de Yy dd dy Yy (de i)’
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Qlil: I - dkyg:— ykdkT +( Tl - ?k + 2”yk”22) k Uk
k Vi deyie  diye (dey)
Hence, Q/, is symmetric, but not satisfy QN condition i.e. Q/ ,yk# Vi, to forces
Q/, to satisfy QN condition we can write it as:
o, = I_dky[:-yde d.dy dde[ . 2y, [d, o + (20, dly, yﬁyk)dkdkT
dy Vi ded,  dyy, (dgy)? ded,  diydiy,
Therefore, a direct computation shows Q] ,yx=vk hence Q/, is symmetric and
satisfy QN condition, it remains to show that Q* is positive definite or equivalently
the search directions generated by:

des =—Q% 0 ...(16)
are decent directions for all k. Now, our direction can be written as:

2
d,.,=—( _dkyz +yde d.dy akdkd; +2||yk|| d,dy
+1
dly,  did,  dly, (@)

+(2a,

AV YY) Ay
dyd, dEyk dy ¥ Jes

We call eq. (16) a new three- term conjugate gradient method. So we can write
the direction of the new three-term method as follows:

— Ok for k=0
ds T ..(17)
' d 9. 1 Vil di 9i.
—Oyat c;(l'(r kkl Yy + dlz'yk (y;—gkﬁ—l_szgk-*—l_”k”j-l—%)d fork >1

Note: Abbo has proposed formula which is nearly similar to (17). For more details
See [1].

3.1 New Algorithm

Step 2. if |g, <0 then stop.

Step 3. Compute dk using (17 ).
Step 4. Find the step length ax satisfying (6 ) (7) set Xk+1=Xk+okx.
Step 5. Set k=k+1, go to step 2.

4. Descent Property of the New Algorithm

The search directions generated by (17) are descent for all k if the step size
satisfies Wolfe conditions.
Proof: Let di=-gs, for k=1 assume dk gk <0, then for k=k+1 we have:

dlg,, 1 y [ df 9.
dk+1 = _gk+l + Cll(gg;kl yk + dl'(ryk (y;—gk-v-l _akd;—gkﬂ _%)dk
dT T
dea=-7—-1{ (dk yk) (S P "'(d[yk)(dljgkﬂ)yk +dl-<ryk[y;—gk+1_akdl-<rgk+l _M]dk}
(dg k) d Yy
L0 = @’y ) ——{-(d V)2 9ea G + (g Y (A 90 (Vi i)
Y

+(dg YOOy 94 ) (Ve i) — 2, ¢ Yy (dy 940)® = Vi Vi (A 910) 3
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'-dkT+1gk+1 (d ) { (d kyk) gk+lgk+l+2(dk yk)(d;—gkﬂ)(y;gkﬂ)
Y

= (dg Yi)(dg 91)® = (Ve Vi )(A4yn)?

...(18)

Now
(dk yk)(d Okt ) (Yk i )=(( dk yk)gk+l)T ((d;gkﬂ)yk)

Let u=(d{ Y, )0 v=(dkgk+1)yk then

UTVSE[UTU+VTV] _[(dk Y,)? gk+1 Oex + (A5 9a)* (Ve Vi)
substitute in (18) we get

dk+lgk+1 (d ) [ (dk yk) gk+lgk+l+2( [(dk yk) gk+1gk+1+(d gk+l) (yk yk)]
k

-, (dg y, )(dg gk+l) —(d¢ gk+1) (Ve YOl

01O < d? k) Tl a, (dg ¥, )(d 9,,1)°]

1
LG < @ k)[ —a, (d¢ 9,.4)°]
By Wolfe condition d,y, > 0,then d,,, descent for all k.

5. Numerical Result

Tables (1) ,(2), (3) and (4) are comparing between new algorithm and Zhang, Zhou
and Li three-term conjugate gradient methods. The comparison involves some well-
known test function with different dimensions(500,1000,5000,10000). The program is
written in double precision using Fortran(2000) .The comparative Performance of the
algorithm is evaluated by considering both the total number of function evaluations
which is normally assumed to be the most costly factor in each iteration and the total

number of iterations. The actual convergence criterion was |g,[|<10°. All these

algorithms are implemented with the standard Wolfe line search conditions with
p=.001, o=0.9. The results indicate that the new algorithm is more efficient.

Table(1) Numerical Comparisons between the New Method and Zhang, Zhou and Li
Methods (N=500)

New Method ZFR ZPR ZHS)
TESTFUNCTION NOF(NOI) NOF(NOI) OF(NOI) NOF(NOI)

1-POWELL3 63(31) fail 42(20) 48 (22)
2-WOOD 70(31) 62 (27) 67 (30) 63 (28)
3-CUBIC 44(16) 45(16) 45(16) 44 (16)
4-SHALLOW 25 (10) 25 (10) 25 (10) 25 (10)
5-SUM 117(24) 139(24) 136(25) 107(20)
6-BELL 27(11) 27 (11) 27 (11) 29 (12)
7-ROSEN 38 (16) 76 (30) 76 (30) 76 (30)
8-RECIP 18 (6) 18 (6) 18 (6) 18 (6)
9-HELICAL 71 (32) 81 (39) 68 (32) 66 (31)
10-CANTREL
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Table(2) Numerical Comparisons between the New Method and Zhang, Zhou and Li
Methods (N=1000)

New Method ZFR ZPR ZHS
ULEAFEEN ST NOF(NOI) NOF(NOI) OF(NOI) NOF(N)OI)
1-POWELL3 63(31) fail 42(20) 48 (22)
2-WOOD 70(31) 62 (27) 67 (30) 63 (28)
3-CUBIC 44(16) 45(16) 45(16) 44 (16)
4-SHALLOW 25 (10) 25 (10) 25 (10) 25 (10)
5-SUM 119(21) 105(26) 105(26) 121(24)
6-BELL 27(11) 29 (12) 27 (11) 29 (12)
7-ROSEN 38 (16) 76 (30) 76 (30) 76 (30)
8-RECIP 18 (6) 18 (6) 18 (6) 18 (6)
9-HELICAL 71 (32) 81 (39) 68 (32) 66 (31)
10-CANTREL 287 (33) 433 (50) 345 (39) 564(59)

Table(3) Numerical Comparisons between the New Method and Zhang, Zhou and Li
Methods(N=5000)

New Method ZFR ZPR ZHS
TEST FUNCTION NOF(NOI) NOF(NOI) OF(NOI) NOF(NOI)
| 1-POWELL3 63(31) fail 42(20) 48 (22)
70(31) 62 (27) 67 (30) 63 (28)
44(16) 45(16) 45(16) 44 (16)
|l 2-sHALLOW 25 (10) 25 (10) 25 (10) 25 (10)
5-SUM 190(31) 149(33) 149(33) 170(33)
6-BELL 27(11) 29 (12) 27 (11) 29 (12)
7-ROSEN 38 (16) 76 (30) 76 (30) 76 (30)
8-RECIP 18 (6) 18 (6) 18 (6) 18 (6)
9-HELICAL
10-CANTREL

Table(4) Numerical Comparisons between the New Method and Zhang, Zhou and Li
Methods(N=10000)

New Method
NOF(NOI) NOF(NOI) OF(NOI) NOF(NOI)

1-POWELL3 63(31) fail 42(20) 48 (22)
2-WOOD 70(31) 62 (27) 67 (30) 63 (28)
3-CUBIC 44(16) 45(16) 45(16) 44 (16)
4-SHALLOW 25 (10) 25 (10) 25 (10) 25 (10)
5-SUM 125(31) 220(40) 219(38) 232(55)
6-BELL 27(11) 29 (11) 27 (11) 29 (12)
7-ROSEN 38 (16) 76 (30) 76 (30) 76 (30)
8-RECIP 18 (6) 18 (6) 18 (6) 18 (6)
9-HELICAL 71 (32) 68 (32)
10-CANTREL

TEST FUNCTION
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