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ABSTRACT

This paper presents two modified Quasi-Newton algorithms which are designed
for solving nonlinear unconstrained optimization problems. These algorithms are based
on different techniques namely: Quasi-Newton conditions on quadratic and non-
quadratic objective functions. Experimental results indicate that the new proposed
algorithms are more efficient than the Yuan and Biggs- algorithms.
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1. Introduction.

Variable Metric or precisely Quasi-Newton (QN)-algorithms are used to solve a
class of numerical methods of the following unconstrained optimization problem :

min{f(x) ‘ x e R" } .......... @

where f is a smooth function of N variables [10]. We recall that these types of

methods are iterative. Starting with an initial point x, € R", they generate a sequence

X, € R", by the process

Xeq =X+ dy . (2)
where d, is a direction vector and the step size «, is chosen in such a way that

a, >0 and satisfies the Wolfe (W) conditions

f(x +ad)<f(x)+sadige 3

g (X +ady)" dy 25,dy g,

with ¢, <1/2 ando, <o, <1, where f, = f(x,), 9, =09(X,),9, is the gradient of

f evaluated at the current iterate X, [9]. The search direction is calculated by :
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d =-B'e, L (5)
where B, " is a symmetric positive definite matrix and satisfying the QN- equation
BeaVe =Yer (6)

where v, =X,,, —X, and y, =9g,,, —9, see [9, 10]. The search direction d, in
(5) is the solution of the following quadratic sub problem

min &(d) = f(xk)+dTg(xk)+%dTBkd, .......... 7

deR"
which is an approximation to problem (1) near the current iterate x,, since

9, (d) = f(x, +d), for small d . In fact, the definition of 9, (.) in (7) implies that

0 =1 (8)

V4@ =vi(x), (9)
and condition (&) is equivalent to

VI X —x)=Vi(x)=9Xs), (10)

Thus, V9 (x,, —X,) Is a quadratic interpolation of f, at x, and x,_,, satisfying
condition (8-10). Davidon [4] introduced ‘conic models' where a non-quadratic
function V., (d) is constructed and V9, (d) is satisfied at condition (8—-10) and the
interpolation condition
I Xa—x)=Ffx0 12)

more details can be found in [10].

In section (2), a modified Biggs's [1] and [2] update and Yuan's [10] update which
are based on the simple idea of approximation the objective function by different
techniques are induced. Finally, in section (3) numerical results with a brief discussion
are presented .

2. Two Modified QN-Methods.

The BFGS algorithm for unconstrained optimization problem (1) uses the search
direction(5), and the matrices B, are updated by the BFGS formula as :

gores _g _ BB | Yi¥k

w1 =B, VBV, Wy e 12)
which satisfied the QN equation (6). If Hia is the inverse of Bk+l, then
Hores =, - P FUYHy | Vi [1+ yg'jkyk} .......... (13)
Yie Vi Yi Vi Yie Vi

The BFGS method is one of the most efficient methods for solving the
unconstrained optimization problem (1). More details can be found in Fletcher [5].

In [7] and [10], approximate function 9 (d) in (7) is required to satisfy the
interpolation condition (11) instead of (10) This change was inspired from the fact that
for one dimensional problem, using (11) gives a slightly faster local convergence if we
assume ¢, =1 for all k. Equation (11) can be rewritten as

VBV =2 f(x) - F(% )+ Vi 0] - (14)
In order to satisfy (14), the BFGS formula is modified as follows :
B B !
Byu =By — Al +t Ybe . a5)

T kT !
Vi Bka Vi Y
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uan 2

where "= [f(x)= f (%) *ViGea] e (16)

Vk yk
If H,,, istheinverse of B, ,, then
H T TH T TH
H.,=H, - kkakT‘l'kak k+VkTVk { k_i_ykaYk} __________ 17
Yie Vi Yie Vi Yi Vi
with p, =1/t,.

However, condition (16) may be modified further to give :

odifie 1
0 =0 1000 2

T
k Yk

1
= [2(F () = F (%) V] G +V] G VT G ~V] 0,
Vi Yy
R — (18)
= J2(F () = F ) V] (G0 = 9) +V] (Gss +04)]
kak
:z(f(xk)_f(Xk+1))+VI(gk+1+gk)+vgyk

Vi Vi
In [6] and [7] if the objective function f is cubic along the line segment between
X,, and x,, then we have the following relation:
ViV =8 00+ 2 00, -6 f(x ) -T(X)] (19)
by considering the Hermit interpolation on the line betweenx, , and x, . Hence, it is
reasonable to require that the approximate Hessian satisfies the condition of
VI BeaaVi = 4Vng + 2VI9|<+1 - 6[f () —f (Xk+l)] ---------- (20)

Instead of (16). .
Biggs [1] and [ 2] give the update of (17) with the value t, chosen so that (20)

holds. The respected value of t, is given by

{2100 — VTL([f (x)— f (Xk+1)]+vl—gk+l) -2 (22

k Jk
Thus we can obtain another modified parameter from (21) by considering the

following relation :
2= 001 () 03]+ 209, -2

T

Vi Yk
3
=W(2[f(xk)— F ()] Ve Gt + Vi G V4 Gy — V4 0 ) — 2
k Jk
3 T T
:W(Z[f(xk)— P G- 0D+ (Ga +0) -2 (22)
k Jk
3
=—— ([ () = F )Y+ (91 +9) -2
kak
_ B(F (%) = f (%)) + 30 (Ga + ) + Ve Vi) _9

Ve Yy
2.1 Two Modified QN-Algorithms
The outline of the modified QN- algorithm is as follows :
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Step 0 : Choose an initial point x, € R"and an initial positive definite
matrix H, =1, ¢=1*10",set k =1.

Step1:1f |g,..|<e,stop.

Step 2 : Solve d, =—H, g, to obtain a search direction d, .

Step 3 : Generate a new iteration point by x,, = x, +,d, (Use Wolfe
line search technique to compute the parameter ¢, ) and calculate

the new updating formula (17-18) and (17-22),
if p, <0or p, >1then p, =1.

Step4: Set K=K+1and goto Step 1.
Assume that B, is positive definite and that v;y, >0, B,,, defined by (17) is

positive definite if and only if t, > 0. However, for a general nonlinear function f,
inexact line searches do not imply the positivity of t, and p, =1/t,, hence 0 < p, <1.

By slightly modifying the proof in Powell [8], it can be shown that algorithm 2.1
converges globally for convex objective functions with inexact line searches. Assume

X, converges to a strict local minimum x~ where Vf(x)=0and V?f(x") is
positive definite, and that f(x) is twice continuously differentiable. Then, it can be
proved that

limt, =2. (23)

k—o0

thus, it is reasonable to hope that local super linear convergence of the BFGS algorithm
can be extended to the modified algorithm where updating formula (17) is used. Details
of local analyses of the BFGS algorithm can be found in Dennis and More [3].

3. Numerical Results.

In this paper, we have proposed two versions of a modified VM-method, for
solving unconstrained minimization nonlinear problems. The computational
experiments show that the modified approaches given in this paper are successful. We
claim that the two modified (1) and (2) are better than the Yuan and Biggs methods.
We have selected (8) large scale unconstrained optimization problems in extended or
generalized form, for each test function, we have considered numerical experiment with
the number of variables, n= 100, 500 and 1000. The programs were written in Fortran
90. The same line search was employed in each algorithm, this was the cubic
interpolation technique which satisfies the conditions (3) and (4) for convex
optimization with ¢, =0.0001 and &, =0.9. We tabulate for comparison of these

algorithms, the number of function evaluations (NOF) and the number of iterations
(NOI) .
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Table (3.1)
Algorithm Yuan Modified Yuan
Problem n NOI NOF NOI NOF
1 100 63 164 34 93
500 65 161 44 113
1000 103 260 89 224
2 100 250 709 237 663
500 748 2013 761 2038
1000 1208 3030 1191 2933
3 100 27 85 30 92
500 31 88 31 92
1000 29 88 33 98
4 100 11 45 9 34
500 13 56 10 42
1000 13 56 10 42
5 100 224 605 240 646
500 590 1483 594 1444
1000 807 1845 542 1199
6 100 8 21 8 21
500 9 23 9 23
1000 9 23 9 23
7 100 6 20 6 20
500 6 20 6 20
1000 6 20 6 20
8 100 62 135 62 125
500 72 145 72 145
1000 118 289 82 165
Total 4478 11384 4115 10315
Table (3.2)
Algorithm Biggs Modified Biggs
Problem n NOI NOF NOI NOF
1 100 42 101 41 103
500 43 108 41 103
1000 124 305 109 269
2 100 253 725 260 741
500 846 2524 823 2439
1000 1347 3711 1341 3677
3 100 24 76 31 92
500 35 106 27 81
1000 28 82 35 109
4 100 11 45 11 45
500 22 93 15 66
1000 21 83 19 79
5 100 250 707 268 737
500 675 1772 635 1617
1000 1002 2449 995 2486
6 100 9 27 9 27
500 9 27 9 27
1000 9 27 9 27
7 100 6 21 6 21
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500 6 21 6 21
1000 6 21 6 21
8 100 90 181 90 181
500 117 235 181 237
1000 131 263 130 261
Total 5106 13710 5097 13467

Table (3.1) gives a comparison between the Yuan-algorithm and the modified
Yuan--algorithm for convex optimization , this table indicates that the modified
algorithm saves 8 % NOI and 9% NOF, overall against the standard Yuan--algorithm,
especially for our selected test problems. The Percentage Performance of the
improvements of the Table (3.1) is given by the following table:

Table (3.3) Relative Efficiency of the Yuan and the Modified Yuan.

Tools Yuan Modified Yuan
NOI 100 % 91.89 %
NOF 100 % 90.60 %

However, Table (3.2) gives a comparison between the Biggs-algorithm and the
modified Biggs-algorithm for convex optimization, this table indicates that the modified
algorithm saves 0.5% NOI and 1.5% NOF, overall against the standard Biggs algorithm,
especially for our selected test problems. The Percentage Performance of the
improvements of the Table (3.2) is given by the following table:

Table (3.4) Relative Efficiency of the Biggs and Modified Biggs

Tools Biggs Modified Biggs
NOI 100 % 99.82 %
NOF 100 % 98.22 %
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Appendix

1.Generalized Powell function:
n/4

f(x)= Z(mes _10X4i—2)2 +5(Xy 4 — X4i)2 + (Xgia — 2X4i)2 +10(X, o — X4i)4 + Xy = 2%y — X4i)2)

Starting point: (3,1,0,L,...ccccc. oevernns e )’
2.Generalized Wood function:

f (X — §4 4i-2 in_g)z + (1_ X4i—3)2 + 90(X4i - in_l)Z + (1— X4i—1)2 +
=) 10.2((Xy;_, —1)% + (X4 =12 +19.8((Xy;_, —1) + (X,; —1))

Starting point: (—3,—1,—3,—L,...ccccce cererrenns .. )’
3.Miele function:

n/4

f(x)= Z[eXp( X4i3) = Xaip1? +100(X4_, — X4i5)° +[tan(x,;; — %,)]* + Xii—3 + (%, —1)°

Starting point: (1, 2, 2, 2,.cevees v )"
4. Cantrell function:
n/4

f(x)= Z[eXp( Xaia) = Xai o 1" +100(Xy 5 — X5 1)° +[taN ™ (Xg 4 — X,)]* + X5 s
=

Starting point: (1, 2, 2, 2,.ccceeee varee. )T
5.Rosenbrock function:
n/2

Q) =2 (00(xy — X51)* + (1= Xz,)")

i=1
Starting point:(-1.21,-1.21,.....) "
6.Beale function:

f(X)=L5-%x1-X,))*+(2.25— %, (1—%x5)* +(2.652— x, (1 - x3)?

Starting point: (0,0, ...cccccet everres o )T
7.Shallow function:
n/2

f(x) = Z((Xzzi—l — X X5i1) 2 + (L= Xp4)?)

Starting point:(—2,.....c.c. ceceeen. .. )’

8.Welfe function:

n1
f(x)=(-x(3-%/2) +2x, -1)* + L~ XB=%B-x%12)+2x,, -1 +(x

|:1

X (3%, /2 -1)?

n+el

Starting  point: (=1, coccccccecovverre o )
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