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ABSTRACT 

 This paper presents two modified Quasi-Newton algorithms which are designed 

for solving nonlinear unconstrained optimization problems. These algorithms are based 

on  different techniques namely: Quasi-Newton conditions on quadratic and non-

quadratic objective functions. Experimental results indicate that the new proposed 

algorithms are more efficient than the Yuan and Biggs- algorithms.  
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الأمثلية غير المقيدة لحل مسائل شبـاه نيوتنأ خوارزميتان متطورتان من  
 عباس يونس البياتي باسم عباس حسن
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 ، الموصل، العراقجامعة الموصل

 03/10/2011 تاريخ قبول البحث:                               ٢٠/4/٢٠١١تاريخ استلام البحث: 

 الملخص
هذا البحث تم استحداث خوارزميتين جديدتين من خوارزميات أشـباه نيـوتن لحـل مئـاال المةليـة الةخ يـة في 

وغيــر المديــدات هاتــاا اليوارزميتــاا معتمــدتاا علــط تدييــات شــرول شــلياة نيــوتن يــو  غوا  الاــد  التر ي يــة وغيــر 
 ت Biggsو Yuanمدارنة  بيوارزميتي  التر ي يةت اليتااج العدغية أثلتت كفاءا اليوارزميتين المدتريتين

 طرااق شلياة نيوتن، شرل شلياة نيوتن، اليتااج العدغيةت :المفتاحية الكلمات

1. Introduction. 
Variable Metric or precisely Quasi-Newton (QN)-algorithms are used to solve a 

class of numerical methods of the following unconstrained optimization problem :   

 nRxxf )(min  )1(..........  

where f  is a smooth function of n  variables [10]. We recall that these types of 

methods are iterative. Starting with an initial point ,1

nRx  they generate a sequence 

,n

k Rx  by the process 

kkkk dxx +=+1 , )2(..........  

where kd  is a direction vector and the step size k  is chosen in such a way that 

0k  and satisfies the Wolfe (W) conditions 

k

T

kkkkkk gdxfdxf  1)()( ++  )3(..........  

k

T

kk

T

kkk gdddxg 2)(  +  )4(..........  

with 2/11  and 121  , where )( kk xff = , )( kk xgg = , kg  is the gradient of 

f evaluated at the current iterate kx [9]. The search direction is calculated by :  
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kkk gBd 1−−=  )5(..........  

where 1−

kB  is a symmetric positive definite matrix and satisfying the QN- equation  

,1 kkk yvB =+  )6(..........  

where kkk xxv −= +1  and kkk ggy −= +1 see [9, 10]. The search direction kd  in 

(5) is the solution of the following quadratic sub problem  

,
2

1
)()()(min dBdxgdxfd k

T

k

T

k
Rd n

++=


  )7(..........  

which is an approximation to problem (1) near the current iterate kx , since  

),()( dxfd kk +  for small d . In fact, the definition of (.)k  in (7) implies that  

),()0( kk xf=  )8(..........  

),()0( kk xf=  )9(..........  

and condition )6( is equivalent to  

),()()( 111 −−− ==− kkkkk xgxfxx  )10(..........  

Thus, )( 1 kkk xx − −  is a quadratic interpolation of kf  at kx  and 1−kx , satisfying 

condition )108( − . Davidon [4] introduced  'conic models'  where a non-quadratic 

function )(dk  is constructed and )(dk  is satisfied at condition )108( −  and the 

interpolation condition  

)()( 11 −− =− kkkk xfxx
. )11(..........  

more details can be found in [10]. 

In section (2),  a modified Biggs's [1] and [2] update and Yuan's [10] update which 

are based on the simple idea of approximation the objective function by different 

techniques are induced. Finally, in section (3) numerical results with a brief discussion 

are presented . 

2. Two Modified QN-Methods. 

The BFGS algorithm for unconstrained optimization problem (1) uses the search 

direction(5), and the matrices kB  are updated by the BFGS formula as : 

k

T

k

T

kk

kk

T

k

k

T

kkk
k

BFGS

k
yv

yy

vBv

BvvB
BB +−=+1  )12(..........  

which satisfied the  QN equation (6). If 1+kH
 is the inverse of  1+kB

, then  

  







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−=+
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k
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yHy
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vy

HyvvyH
HH 11      )13(..........  

The BFGS method is one of the most efficient methods for solving the 

unconstrained optimization problem (1). More details can be found in Fletcher [5].  

In [7] and [10], approximate function )(dk  in (7) is required to satisfy the 

interpolation condition (11) instead of (10) This change was inspired from the fact that 

for one dimensional problem, using (11)  gives a slightly faster local convergence if we 

assume 1=k  for all .k  Equation (11)  can be rewritten as  

 111 )()(2 +++ +−= k

T

kkkkk

T

k gvxfxfvBv . )14(..........  

 In order to satisfy (14), the BFGS formula is modified as follows : 

k

T

k

T
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k
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k
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kkk
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yv

yy
t

vBv

BvvB
BB +−=+1 ,  )15(..........  
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where    11)()(
2

++ +−= k

T

kkk

k

T

k

Yuan

k gvxfxf
yv

t  )16(..........  

If 1+kH  is the inverse of  1+kB , then 

  







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+
−=+
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HH 1      )17(..........  

with  kk t/1= .  

However, condition (16)  may be modified further to give : 

 

 

 

k

T

k

k

T

kkk

T

kkk

kk

T

kkk

T

kkk

k

T

k

k

T

kk

T

kk

T

kk

T

kkk

k

T

k

k

T

kkk

k

T

k

Modified

k

yv

yvggvxfxf

ggvggvxfxf
yv

gvgvgvgvxfxf
yv

gvxfxf
yv

t

+++−
=

++−+−=

−+++−=

+−=

++

+++

+++

++

)())()((2

)()())()((2
1

))()((2
1

2))()((2
1

11

111

111

11

1
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In [6] and [7] if the objective function f  is cubic along the line segment between 

1−kx  and kx , then we have the following relation:  

 )()(624 11111

2

1 kkk

T

kk

T

kkk

T

k xfxfgvgvvfv −−+= −+−−−−  
)19(..........  

by considering the Hermit interpolation on the line between 1−kx  and kx . Hence, it is 

reasonable to require that the approximate Hessian satisfies the condition of 

 )()(624 111 +++ −−+= kkk

T

kk

T

kkk

T

k xfxfgvgvvBv
. )20(..........  

Instead of (16).  

Biggs [1] and [ 2] give the update of (17) with the value kt  chosen so that (20) 

holds. The respected value of kt  is given by   

  2))()((
6

11 −+−= ++ k

T
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k

T

k

Biggs

k gvxfxf
yv
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)21(..........  

Thus we can obtain another modified parameter from (21) by considering the 

following relation : 
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. )22(..........  

2.1 Two Modified QN-Algorithms  

The outline of the modified QN- algorithm is as follows : 
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Step 0 : Choose an initial point nRx 1 and an initial positive definite    

              matrix IH =1 , 410*1 −= , set .1=k  

Step 1 : If   1+kg  , stop . 

Step 2 : Solve kkk gHd −=   to obtain a search direction kd . 

Step 3 : Generate a new iteration point by kkkk dxx +=+1 ( Use Wolfe 

              line search technique to compute the parameter k ) and calculate  

               the new updating formula (17-18) and (17-22),   

             if 0k  or 1k  then 1=k . 

Step 4 : Set 1+= kk  and go to Step 1 . 

         Assume that  kB  is positive definite and that 0k

T

k yv , 1+kB  defined by (17) is 

positive definite if and only if .0kt  However, for a general nonlinear function f , 

inexact line searches do not imply the positivity of kt  and kk t/1= , hence 10  k . 

By slightly modifying the proof in Powell [8], it can be shown that algorithm 2.1 

converges globally for convex objective functions with inexact line searches. Assume 

kx converges to a strict local minimum *x where 0)( * = xf and  )( *2 xf  is 

positive definite, and that )(xf is twice continuously differentiable. Then, it can be 

proved that  

       1lim =
→

k
k

t . )23(..........  

thus, it is reasonable to hope that local super linear convergence of the BFGS algorithm 

can be extended to the modified algorithm where updating formula (17) is used. Details 

of local analyses of the BFGS algorithm can be found in Dennis and More [3]. 

3. Numerical Results. 

In this paper, we have proposed two versions of a modified VM-method, for 

solving unconstrained minimization nonlinear problems. The computational 

experiments show that the modified approaches given in this paper are successful. We 

claim that the two modified (1) and (2)  are better than the Yuan and Biggs methods. 

We have selected (8) large scale unconstrained optimization problems in extended or 

generalized form, for each test function, we have considered numerical experiment with 

the number of variables, n=  100, 500 and 1000. The programs were written in Fortran 

90. The same line search was employed in each  algorithm, this was the cubic 

interpolation technique which satisfies the conditions (3) and (4) for convex 

optimization with 0001.01 =  and 9.02 = . We tabulate for  comparison of  these  

algorithms, the number of function evaluations (NOF) and  the number of iterations 

(NOI) . 
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Table (3.1) 

Algorithm  Yuan  Modified Yuan 

Problem n NOI NOF NOI NOF 

1 

 

100 63 164 34 93 

500 65 161 44 113 

1000 103 260 89 224 

2 

 

100 250 709 237   663 

500 748 2013 761 2038 

1000 1208 3030 1191   2933 

3 

 

100 27 85 30 92 

500 31       88 31 92 

1000 29 88 33 98 

4 100 11 45 9 34 

500 13 56 10 42 

1000 13 56 10 42 

5 100 224 605 240   646 

500 590 1483 594 1444 

1000 807 1845 542 1199 

6 100 8 21 8 21 

500 9 23 9 23 

1000 9 23 9 23 

7 100 6 20 6 20 

500 6 20 6 20 

1000 6 20 6 20 

8 100 62    135 62   125 

500 72 145 72 145 

1000 118 289 82 165 

Total  4478 11384 4115 10315 
 

Table (3.2) 

Algorithm  Biggs   Modified Biggs  

Problem n NOI NOF NOI NOF 

1 

 

100 42 101 41 103 

500 43 108 41 103 

1000 124 305 109 269 

2 

 

100 253 725 260 741 

500 846 2524 823 2439 

1000 1347 3711 1341 3677 

3 

 

100 24 76 31 92 

500 35 106 27 81 

1000 28 82 35 109 

4 100 11 45 11 45 

500 22 93 15 66 

1000 21 83 19 79 

5 100 250 707 268 737 

500 675 1772 635 1617 

1000 1002 2449 995 2486 

6 100 9 27 9 27 

500 9 27 9 27 

1000 9 27 9 27 

7 100 6 21 6 21 
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500 6 21 6 21 

1000 6 21 6 21 

8 100 90 181 90 181 

500 117 235 181 237 

1000 131 263 130 261 

Total  5106 13710 5097 13467 
 

Table (3.1) gives a comparison between the Yuan-algorithm and the modified 

Yuan--algorithm for convex optimization , this table indicates that the modified 

algorithm saves 8 % NOI and 9% NOF, overall against the standard Yuan--algorithm, 

especially for our selected test problems. The Percentage Performance of the  

improvements of the Table (3.1) is  given by  the following table: 

Table (3.3) Relative Efficiency of the Yuan and the Modified Yuan. 

Tools Yuan  Modified Yuan 

NOI 100   % 91.89  % 

NOF 100   % 90.60  % 
 

However, Table (3.2) gives a comparison between the Biggs-algorithm and the 

modified Biggs-algorithm for convex optimization, this table indicates that the modified 

algorithm saves 0.5% NOI and 1.5% NOF, overall against the standard Biggs algorithm, 

especially for our selected test problems. The Percentage Performance of the  

improvements of the Table (3.2) is  given by  the following table: 
 

Table (3.4)  Relative Efficiency of the Biggs and Modified Biggs 

Tools Biggs  Modified Biggs 

NOI 100   % 99.82  % 

NOF 100   % 98.22  % 
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