On Simple Singular N-Flat Modules

Raida D. Mahmood
raida.1961@uomosul.edu.iq
College of Computer Sciences and Mathematics
University of Mosul, Mosul, Iraq

Dina A. Hadid
College of Basic Education
University of Duhok, Duhok, Iraq

Received on: 04/04/2011
Accepted on: 16/05/2011

Abstract

Let I be a right ideal of a ring R , then R / I is right N -flat module if and only if for each $a \in I$, there exists $b \in I$ and a positive integer n such that $a^{n} \neq 0$ and $a^{n}=b a^{n}$. In this paper, we first introduce and characterize rings whose every simple singular right R-module is N - flat. Next, we investigate the strong regularity of rings whose every simple singular right R - module is N -flat. It is proved that : R is strongly regular ring if and only if R is a wje, MERT and 2 - primal ring whose simple singular right R - module is N - flat.

Let R be a wjc ring satisfying condition (*). If every simple singular right R module is N -flat .Then, the Center of R is a regular ring.

Keywords: N-Flat, MC2-ring, WPSI ring, GQ-injective, CAM - ring

$$
\begin{aligned}
& \text { حول المقاسات البسيطة المنفردة المسطحة من النمط N } \\
& \text { دينا امير حديد } \\
& \text { كلية التربية الاساسية } \\
& \text { جامعة دهوك، دهوك، العرق } \\
& \text { تاريخ قبول البحث: 2011/05/16 } \\
& \text { رائدة داؤد محمود } \\
& \text { كلية علوم الحاسوب والرياضيات } \\
& \text { جامعة الدوصل، الموصل، العرقق } \\
& \text { تاريخ استلام البحث: 2011/04/04 }
\end{aligned}
$$

ليكن ا مثالي أيمن في الحلقة R ، فإن R/l يكون مقاساً مسطحاً من النمط - N أيمن إذا وفقط إذا لكل
 الحلقات التي فيها كل مقاس منفرد بسيط مسطحاً من النمط - N . ونقوم بالبحث عن الحلقات المنتظمة بقوة والتي فيها كل مقاس منفرد بسيط مسطحاً من النهط - N . أما أبرز النتائج التي حصلنا عليها : R R
 . N - أيمن
N - حلقة من النمط wjc تحقق الشرط (*). إذا كان كل معاس منغرد بسيط مسطحاً من النمط R R لتكن
أيمن. فإن مركز الحلقة R يكون منتظماً.
الكلمات المفتاحية: مسطحة من النمط-N، حلقة من النمط-MC2، حلقة WPSI، الغامرة من النمط-GQ، حقة
من النمط-CAM.

1. Introduction

Throughout this paper , R denotes an associative ring with identity, and all modules are unitary right R - module. For any nonempty subset X of a ring $\mathrm{R}, r(X)$ and $l(X)$ denote the right annihilator of X and the left annihilator of X , respectively . If $X=\{a\}$, we use the abbreviation $l(a)$ and $r(a)$. We write $J(R), Z(R)$ and $Y(R)$ for the Jacobson radical of R , the left singular ideal of R and the right singular ideal of R , respectively.

Recall that, Let I be a right ideal of a ring R , then R / I is a flat right R - module if and only if for each $a \in I$, there exists $b \in I$ such that $a=b a$ (cf. [7] ,[8],[3]). The generalization of flat module to N -flat module is performed as follows : Let I be a right ideal of a ring R, then R / I is a right N -flat module if and only if for each $a \in I$, there exists $b \in I$ and a positive integer n such that $a^{n} \neq 0$ and $a^{n}=b a^{n}$ [1]. And, in [1], we give a lot of characterizations of right N - flat. For example, $J(R) \cap Y(R)=(0)$, if R satisfying condition $\left(^{*}\right)$ whose every simple singular right R -module is N -flat .

The ring R is said to be 2 - primal if $N(R)=P(R)$, where $N(R)$ is the set of all nilpotent element and $\mathrm{P}(\mathrm{R})$ is the prime radical of R [4]. The ring R is called right wjc ring, if $a R b=0$ for $a, b \in R$, implies $b R a=0$ [12]. The ring R is said to be reduced if R has no nonzero nilpotent element. The ring R is called right SXM [12], if for each $0 \neq a \in R, r(a)=r\left(a^{n}\right)$ for all a positive integer n satisfying $a^{n} \neq 0$. For example, reduced rings are right SXM rings. The concept of regular rings was introduced in (1936) by Von Neumann [9] . The ring R is called MERT, if every essential maximal right ideal of R is an ideal. The ring R is called regular (strongly regular) ring, if for every $a \in R$, there exists $b \in R$ such that $a=a b a\left(a=a^{2} b\right)$.The ring R is called right weakly regular ring, if for every $a \in R, a \in a R a R$ [7] .

2. Characterizations of Simple Singular \mathbf{R} - Module is \mathbf{N} - Flat

This section is devoted to study rings whose every simple singular right R -module is N -flat with some of their basic properties. On the other hand, we characterized MC2 rings terms of simple singular right R - modules is N - flat .

Definition 2.1 [10]

The ring R is called right MC2 ring. If $e R a=0$ implies $a R e=0$, where $a \in R$, $e^{2}=e \in R$ and $K \cong e R$ is minimal right ideal of R , or equivalently if $e R$ are minimal, $e^{2}=e \in R$; then $K=g R$ for some $g^{2}=g \in R$.
We consider the condition (${ }^{*}$) ; R satisfies $l(a) \subseteq r(a)$ for every $a \in R$.

Theorem 2.2

Let R be a right MC2 ring satisfying condition (*). If every simple singular right R - module is N - flat, then $Z(R)=(0)$.

Proof : Suppose that $Z(R) \neq(0)$, then there exists $0 \neq a \in Z(R)$ such that $a^{2}=0$.We claim that $Z(R)+r(a)=R$. Otherwise, there exists a maximal right ideal M such that $Z(R)+r(a) \subseteq M$. If M is not essential, then $M=r(e), e^{2}=e \in R$. Hence $e a=0$ because $a \in r(a) \subseteq M=r(e)$. If $e R a \neq 0$, then $e R a R=e R$ because $e R$ is a minimal right ideal of R. Since $a \in Z(R), e R a R \subseteq Z(R)$, then $e \in Z(R)$, which is a contradiction. Hence , $a R e=0$.Since R right MC2 ring , then $a R e=0$,
$e \in r(a) \subseteq M \subseteq r(e)$, which is a contradiction. Hence, M is essential in R . Thus, R / M is N - flat, then there exists a positive integer n and $b \in M$ such that $a^{n} \neq 0$ and $a^{n}=b a^{n}$. Since $a^{2}=0$, then $n=1$ and therefore $(1-b) \in r(a) \subseteq M$ and $1 \in M$, which is a contradiction. Hence, $Z(R)+r(a)=R$. Write $1=x+y$, where $x \in Z(R)$ and $y \in r(a)$, then $a=a x$. Since $\quad x \in Z(R)$ and $l(x) \cap l(1-x)=0, l(1-x)=0$. Thus, $a=0$ because $a \in l(1-x)$, which is a contradiction. This implies that $Z(R)=(0)$

Theorem 2.3

Let R be a ring whose every simple singular right R -module is N - flat, satisfying condition $(*)$.Then,$Z(R) \cap Y(R)=(0)$.
Proof : Suppose that $Z(R) \cap Y(R) \neq(0)$, then there exists $0 \neq a \in Z(R) \cap Y(R)$ such that $a^{2}=0$. We claim that $Z(R)+r(a)=R$. Otherwise, there exists a maximal essential right ideal M such that $Z(R)+r(a) \subseteq M$. Thus, R / M is N - flat ,then there exists $b \in M$ and a positive integer n such that $a^{n} \neq 0$ and $a^{n}=b a^{n}$. Since $a^{2}=0$, then $n=1$, and therefore $a=b a$, which implies that $(1-b) \in l(a) \subseteq r(a) \subseteq M, 1 \in M$, which is a contradiction. Hence , $Z(R)+r(a)=R$. Write $1=x+y, x \in Z(R)$.Thus, $l(1-x)=0, l(x) \cap l(1-x)=0$ and $x \in Z(R)$. Since $a=a x$, then $y \in r(a)$ This implies that contradiction. a, which is $a \in l(1-x)$ because $a=0$ ■. $Z(R) \cap Y(R)=(0)$

Lemma 2.4 [1]

If R is a ring satisfying condition (*) whose every simple singular right R - module is N - flat, then $J(R) \cap Y(R)=(0)$
According to [11] , a right R - module M is said to be right weakly principally small injective (WPSI) if for any $0 \neq a \in J(R)$, there exists a positive integer n such that $a^{n} \neq 0$ and any right R - homomorphism from $a^{n} R \rightarrow M$ can be extended to $R \rightarrow M$. A ring R is called right WPSI if R_{R} is a right WPSI.

Definition 2.5 [6]
The ring R is said to be right(left) mininjective if every R - homomorphism from a minimal right(left) ideal of R to R_{R} can be extended from R to R_{R}.

Lemma 2.6 [11]
If R is a left (right) WPSI ring, then :

1. $J(R) \subseteq Z(R)(J(R) \subseteq Y(R))$.
2. R is a left (right) mininjective ring

Corollary 2.7

Let R be a right MC2 ring, left WPSI satisfying condition (*). If every simple singular R - module is N - flat , then $J(R)=(0)$.

Proof : From Lemma 2.6, we have $J(R) \subseteq Z(R)$. So $J(R)=(0)$ because $Z(R)=(0)$, by Theorem 2.2

Proposition 2.8

Let R be a right WPSI ring, whose every simple singular right R - module is N flat and satisfying condition (*).Then , $Z(R)=(0)$.

Proof : By Lemma 2.4, $J(R) \cap Y(R)=(0)$. Since R is a right WPSI ring then, $J(R) \subseteq Y(R)$ Lemma 2.6, so $J(R)=J(R) \cap Y(R)=(0)$ and R is a right mininjective ring Lemma 2.6.Therefore, R is a right MC 2 ring [5,Theorem 1.14]. Hence , by Theorem 2.2. $Z(R)=(0)$

3. Certain Rings Whose every Simple Singular R-Module is \mathbf{N} - Flat

In this section, we study the relation between rings whose every simple singular right R - modules are N - flat, reduced rings and strongly rings by adding some types of rings such as wje and MC2 rings , and other types of rings .

Theorem 3.1

Let R be a wje ring satisfying condition (*) .If every simple singular right R - module is N - flat . Then , R is a semiprime .

Proof : Suppose that I is an ideal of R with $I^{2}=0$. If $I \neq 0$, then there exists $0 \neq a \in I$ such that $a I=0$ and so $a^{2}=0$. First observe $\mathrm{r}(\mathrm{a})$ which is an essential right ideal of R . if not , then there exists a nonzero right ideal K of R such that $r(a) \cap K=0$. Since $a K I \subseteq a I=0, K I \subseteq r(a) \cap K=0$. Since R is a wjc ring, $I K=0$. Hence, $a K=0$ and so $K \subseteq r(a) \cap K=0$, which is a contradiction .Hence, $r(a)$ is essential and $r(a) \neq R$, Thus, there exists a maximal essential right ideal M of R containing $\mathrm{r}(\mathrm{a})$. Hence, R / M is simple singular R - module and so is N - flat . Since R / M is N - flat, then there exists $d \in M$ and a positive integer n such that $a^{n} \neq 0$ and $a^{n}=d a^{n}$, since $a^{2}=0$, then $n=1$, so that $a=d a$ and we get $(1-d) \in l(a) \subseteq r(a) \subseteq M$, where $1 \in M$, which is also a contradiction. Hence, $I=0$ and so R is a semiprime

Definition 3.2 [13]

The ring R is called strongly right min-abel if every right minimal idempotent element $e \in R$, is a left semicentral element .
We now consider other condition for right simple singular R -module N -flat to be semiprime.

Theorem 3.3

Let R be a strongly right min - abel ring satisfying condition(*). If every simple singular right R - module is N - flat , then R is a semiprime ring.
Proof : Let $a \in R$ satisfyies $a R a=0$. Suppose that $a \neq 0$. Then , there exists a maximal right ideal M is of R containing $\mathrm{r}(\mathrm{a})$. If M is not essential in R . Then , M is a direct summand of R , since M is maximal. So we can write $M=r(e)$ for some $0 \neq e^{2}=e \in R, b \in R$ and hence $e b=0$. Because $e R$ is a minimal right ideal of R and R is a strongly right min-abel ring, $b e=e b e=0$. Thus, $e \in r(b) \subseteq M=r(e)$, whence $e=0$. This is a contradiction. Therefore, M must be an essential right ideal of R .Thus , R/M is N-flat and so there exists $d \in M$ such that $a=d a$ implies that $(1-d) \in l(a) \subseteq r(a) \subseteq M$ whence $1 \in M$.This is also a contradiction. Hence, R is a semiprime ring

Theorem 3.4

Let R be a strongly right min - able with $l\left(a^{n}\right) \subseteq r(a)$ for every $a \in R$ and appositive integer n . If every simple singular right R - module is N - flat. Then, R is a right weakly regular ring .
Proof : We show that $R a R+r(a)=R$ for any $a \in R$. Suppose that there exists $b \in R$ such that $R b R+r(b) \neq R$. Then , there exists a maximal right ideal M of R containing $R b R+r(b)$. If M is not essential in R . Then, M is a direct summand of R because M is maximal .

By a similar method of proof used in Theorem 3.3, M is an essential right ideal of R . Thus, R / M is N - flat and so there exists a positive integer n such that $b^{n} \neq 0$ and $b^{n}=c b^{n}$ for some $c \in M$, implies that $(1-c) \in l\left(b^{n}\right) \subseteq r(b) \subseteq M$, whence $1 \in M$, a contradiction. Therefore, R is a right weakly regular .
According to [1], rings satisfying condition (*), and right GQ -injective whose every simple singular right R - module is N -flat are always regular . But ,in general rings satisfying condition $\left(^{*}\right)$ and left GQ - injective whose every simple singular right Rmodule is N -flat need not be regular .This leads to the following theorem:

Theorem 3.5

Let R be a left GQ - injective, right MC2 ring whose every simple singular right R - module is N - flat and satisfying condition (*).Then , R is a regular ring .

Proof : First R is left GQ - injective, then $Z(R)=J(R)$ and $R / J(R)$ is a regular ring . From Theorem 2.2, $Z(R)=(0)$. Hence , $J(R)=Z(R)=(0)$, which implies R is a regular ring

Definition 3.6 [2]

R is called a right CAM-ring, if for any maximal essential right ideal M of R (if it exits) and for any right subideal I of M which is either a complement right subideal of M or a right annihilator ideal in R, I is an ideal of M .
Right CAM-ring generalizes semisimple artinian . [2] shows that semiprime right CAM - ring R is either semisimple artinian or reduced. If R is also simple singular right R module is N - flat, then R is either semisimple artinian or strongly regular ring. We yield the following theorem :

Theorem 3.7

Let R be a wjc right CAM-ring, satisfying condition $\left({ }^{*}\right)$ whose every simple singular right R - module is N - flat .Then , R is either a semisimple artinian or strongly regular ring.
Proof : From Theorem 3.1 R is semiprime .If R is not a semisimple artinian, then R is reduced .Let $0 \neq a \in R$. If $a R \oplus r(a) \neq R$, then $a R \oplus r(a) \subseteq M$ for some maximal right ideal M of R . If M is not an essential right ideal of R , then $M=e R$, where $e^{2}=e \in R$. Because R is reduced, $a e=e a=0$ and $e \in r(a) \subseteq M=r(e)$, a contradiction. Hence, M is an essential right ideal of R and so R / M is a singular simple right R - module. Since R / M is N - flat, then there exists $b \in M$ and a positive integer n such that $a^{n} \neq 0$ and $a^{n}=b a^{n}$. Now, we obtain $(1-b) \in r(a)$, so $1 \in M$, a contradiction. Hence, $a R \oplus r(a)=R$ and then R is a strongly regular ring An idempotent $e \in R$ is called right semicentral if $e a=e a e$ for all $a \in R$ [13].

Lemma 3.8 [12]

Let R be a MERT ring and every right minimal idempotent in $R / J(R)$ is right semicentral .Then , $R / J(R)$ is reduced

Proposition 3.9

Let R be a MERT ring and every right minimal idempotent of $R / J(R)$ is right semicentral. If every simple singular right R - module is N - flat. Then , $R / J(R)$ is a strongly regular ring.
Proof: By Lemma 3.8, $R / J(R)$ is reduced. Let $\overline{0} \neq \bar{a} \in \bar{R}=R / J(R)$. We first that $\bar{R} \bar{a} \bar{R}+r(\bar{a})=\bar{R}$. Suppose that it is not ; then there exists a maximal right ideal M of R such that $\bar{R} \bar{a} \bar{R}+r(\bar{a}) \subseteq M / J(R)$. Since R^{\prime} is reduced , $\bar{R} \bar{a} \bar{R}+r(\bar{a})$ is an essential right ideal of R^{\prime}. Therefore, R / M is simple singular right R - module and so R / M is N -flat .
Now, it is easy to show that there exists a positive integer n and $c \in M$ such that $a^{n} \neq 0$ and $a^{n}=c a^{n}$. Since M is an ideal of R , we have $1 \in M$, which is a contradiction. Hence, $\bar{R} \bar{a} \bar{R}+r(\bar{a})=\bar{R}$. Let $\bar{a}=\bar{a} \bar{d}$, where $\bar{d} \in \bar{R} \bar{a} \bar{R}$. Then, $(\overline{1}-\bar{d}) \in r(\bar{a})$. If $\quad \bar{a} \bar{R}+r(\bar{a}) \neq \bar{R}$, then there exists a maximal right ideal L of R such that $\bar{a} \bar{R}+r(\bar{a}) \subseteq L / J(R)$. Since $R / J(R)$ is reduced, we have $L / J(R)$ is an ideal of $R / J(R)$. Hence , L is also an ideal of R , and so $\bar{d} \in \bar{R} \bar{a} \bar{R} \subseteq L / J(R)$, and hence $\overline{1} \in L / J(R)$, which is also a contradiction. Thus , $\bar{a} \bar{R}+r(\bar{a})=\bar{R}$, and so $R / J(R)$ is strongly regular ring.

Lemma 3.10 [4]

For any $a \in \operatorname{Cent}(R)$ (The Center of R), if $a=\operatorname{ara}$ for some $r \in R$; Then there exists $b \in \operatorname{Cent}(R)$ such that $a=a b a$

Lemma 3.11 [4]

If R is a semiprime ring ;then $r\left(a^{n}\right)=r(a)$ for any $a \in \operatorname{Cent}(R)$ and a positive integer n

Proposition 3.12

Let R be a wjc ring satisfying condition (*). If every simple singular right R module is N - flat. Then, the Center of R is a regular ring.
Proof : Let a be a nonzero element in $\operatorname{Cent}(\mathrm{R})$. First, we will show that $a R+r(a)=R$ for any $a \in \operatorname{Cent}(R)$. If not, there exists a maximal right ideal M of R such that $a R+r(a) \subseteq M$. Since $a \in \operatorname{Cent}(R), a R+r(a)$ is an essential right ideal and so M must be an essential right ideal of R . Therefore, R / M is N - flat, so there exists $c \in M$ and a positive integer n such that $a^{n} \neq 0$ and $a^{n}=c a^{n}=a^{n} c$ implies that $(1-c) \in r\left(a^{n}\right) \subseteq r(a) \subseteq M$ (Theorem 3.1 and Lemma 3.11) and so $1 \in M$, which is a contradiction. Therefore, $a R+r(a)=R$ for any $a \in \operatorname{Cent}(R)$ and so we have $a=a r a$ for some $r \in R$. Applying Lemma 3.10, $\operatorname{Cent}(\mathrm{R})$ is a regular ring

Theorem 3.13

R is strongly regular ring if and only if R is a wjc, MERT and 2 - primal ring whose every simple singular right R - module is N - flat.

Proof : First, we show that R is reduced. In fact, if $a^{2}=0$ for some $0 \neq a \in R$. Then, we have $R a R+r(a)=R$. If not, then there exists a maximal right ideal M of R containing $R a R+r(a)$. Observe that M must be an essential right ideal of R . If not, then M is a direct summand of R . So we can write $M=r(e)$ for some idempotent e of R . Thus $e R a=0$. Since R is a wjc ring, $a R e=0$ and $a e=0$. Hence, $e \in r(a) \subseteq r(e)$; whence $e=0$, it is a contradiction. Therefore, M must be an essential right ideal of R . Then, R/M is N - flat ,there exists a positive integer n and $b \in M$ such that $a^{n} \neq 0$ and $a^{n}=b a^{n}$. Since $a^{2}=0$, then $n=1$ and therefore $a=b a$ which implies $(1-b) \in M$ and so $1 \in M$ by M is an ideal of R . This is a contradiction. Hence $R a R+r(a)=R$ and so $a=a d$ for some $d \in R a R$. Since R is 2 - primal ring, $d \in J(R)$. Hence , $(1-d)$ is right inveritable v in R such that $v(1-d)=1$, $v(a-d a)=a$ which yield $a=0$.

Next, we show that $a R+r(a)=R$ for each $a \in R$. If not, then there exists $b \in R$ and a maximal right ideal L of R containing $b R+r(b)$. Observe that L must be essential, so there exists a positive integer n and $d \in M$ such that $a^{n} \neq 0$ and $a^{n}=d a^{n} \quad$. Now , $(1-d) \in l\left(a^{n}\right)=r\left(a^{n}\right)=r(a) \subseteq L$. so $1 \in L$, which is a contradiction, therefore $a R+r(a)=R$. Hence, R is strongly regular ring .

Conversely : it is obvious.

REFERENCES

[1] Mahmood, R.D. and Husam Q.M. (2010) ; "On N-flat rings", Received, J. Al Rafiden of Comp. and Math.
[2] Ming, R.Y.C. (1983) ; " On Quasi-Frobeniusean and artinian Rings", Pub. De Linstitute Mathématique, 33(47) , pp. 239-245.
[3] Ming, R.Y.C. (1995); " On Von Neumann, regularity, injectivity and flatness" , Yokohama Math. , Vol. 43, pp.37-44 .
[4] Nam, S.B. (1999) ; "A note on simple singular GP-injective modules", J. Kangweon - Kyungki. Mth. J. 7(2), pp.215-218.
[5] Nicholson, W.K. and Yousif , M. F. (1997) ;" Mininjevtive rings " , J. Algebra, Vol. 187, pp. 548-578.
[6] Nicholson, W.K. and Yousif M.F. (2004) ; " Weakly continuous and C2 - rings" , Comm. In Algebra, pp. 2429-2466.
[7] Ramamurthi, V.S. (1975); "On injectivity and flatness of certain cyclic modules" , Proc. Amer. Math. Soc., 48, pp.21-25.
[8] Rege, M.B. (1986) ; " On Von Neumann regular rings and SF- rings" , Math. Japonica, 31(6), pp. 927-936.
[9] Von Neumann J. (1936) ; " On regular rings " , Proc. Nat. Sci. U.S.A. 22, pp. 707-713.
[10] Wei, J.C. (2005) ; " The rings characterized by minimal left ideal", Acta. Math. Sinica, English Series 21(3), pp. 473-482.
[11] Wei , J.C. and Chen , J.H. (2007) ; " Nil-injective rings " , Inter . J. of Algebra 2, pp. 1-21.
[12] Wei , J.C. (2007); "On simple singular YJ- injective modules", Sou. Asiam Bull. Of Math. 31, pp. 1-10.
[13] Wei , J.C. (2008); "Certain rings whose simple singular modules are niliniective" , Turk J. Math .32, pp. 393-408.

