### On Simple Singular N-Flat Modules

#### Raida D. Mahmood

#### Dina A. Hadid

raida.1961@uomosul.edu.iq College of Computer Sciences and Mathematics University of Mosul, Mosul, Iraq

College of Basic Education University of Duhok, Duhok, Iraq

Received on: 04/04/2011 Accepted on: 16/05/2011

## **ABSTRACT**

Let I be a right ideal of a ring R, then R/I is right N-flat module if and only if for each  $a \in I$ , there exists  $b \in I$  and a positive integer n such that  $a^n \neq 0$  and  $a^n = ba^n$ . In this paper, we first introduce and characterize rings whose every simple singular right R-module is N - flat. Next, we investigate the strong regularity of rings whose every simple singular right R - module is N-flat. It is proved that:

R is strongly regular ring if and only if R is a wjc , MERT and  $\,2$  - primal ring whose simple singular right R- module is N - flat.

Let R be a wjc ring satisfying condition (\*). If every simple singular right R-module is N-flat. Then, the Center of R is a regular ring.

**Keywords:** N-Flat, MC2 - ring, WPSI ring, GQ - injective, CAM - ring

## حول المقاسات البسيطة المنفردة المسطحة من النمط N

دينا امير حديد

رائدة داؤد محمود

كلية التربية الاساسية

كلية علوم الحاسوب والرياضيات

جامعة الموصل، الموصل، العراق جامعة دهوك، دهوك، العراق

تاريخ قبول البحث: 2011/05/16

تاريخ استلام البحث: 2011/04/04

# الملخص

ليكن ا مثالي أيمن في الحلقة R ، فإن R/I يكون مقاساً مسطحاً من النمط N-1 أيمن إذا وفقط إذا لكل ليكن ا مثالي أيمن في الحلقة R ، فإن R/I يكون مقاساً مسطحاً من البحث, أولاً نقدم ونميز  $a^n=ba^n$  و  $a^n\neq 0$  وعدد صحيح موجب  $a^n\neq 0$  المنظمة بقوة والتي الحلقات التي فيها كل مقاس منفرد بسيط مسطحاً من النمط N-1 أما أبرز النتائج التي حصلنا عليها :

الحلقة R تكون منتظمة بقوة إذا وفقط إذا كانت R من النمط MERT, wjc وحلقة أولية من النمط - 2 والتي فيها كل مقاس منفرد بسيط مسطحاً من النمط - N أيمن .

التكن R حلقة من النمط wjc تحقق الشرط (\*). إذا كان كل مقاس منفرد بسيط مسطحاً من النمط N - النمض مركز الحلقة R يكون منتظماً.

الكلمات المفتاحية: مسطحة من النمط-N، حلقة من النمط-MC2، حلقة WPSI، الغامرة من النمط-GQ، حلقة من النمط-CAM.

### 1. Introduction

Throughout this paper , R denotes an associative ring with identity, and all modules are unitary right R - module. For any nonempty subset X of a ring R, r(X) and l(X) denote the right annihilator of X and the left annihilator of X, respectively . If  $X = \{a\}$ , we use the abbreviation l(a) and r(a). We write J(R), Z(R) and Y(R) for the Jacobson radical of R, the left singular ideal of R and the right singular ideal of R, respectively.

Recall that, Let I be a right ideal of a ring R, then R/I is a flat right R - module if and only if for each  $a \in I$ , there exists  $b \in I$  such that a = ba (cf. [7],[8],[3]). The generalization of flat module to N-flat module is performed as follows: Let I be a right ideal of a ring R, then R/I is a right N-flat module if and only if for each  $a \in I$ , there exists  $b \in I$  and a positive integer n such that  $a^n \neq 0$  and  $a^n = ba^n$  [1]. And, in [1], we give a lot of characterizations of right N - flat. For example,  $J(R) \cap Y(R) = (0)$ , if R satisfying condition (\*) whose every simple singular right R-module is N-flat.

The ring R is said to be 2 - primal if N(R) = P(R), where N(R) is the set of all nilpotent element and P(R) is the prime radical of R [4]. The ring R is called right wjc ring, if aRb = 0 for  $a,b \in R$ , implies bRa = 0 [12]. The ring R is said to be reduced if R has no nonzero nilpotent element. The ring R is called right SXM [12], if for each  $0 \ne a \in R$ ,  $r(a) = r(a^n)$  for all a positive integer n satisfying  $a^n \ne 0$ . For example, reduced rings are right SXM rings. The concept of regular rings was introduced in (1936) by Von Neumann [9]. The ring R is called MERT, if every essential maximal right ideal of R is an ideal. The ring R is called regular (strongly regular) ring, if for every  $a \in R$ , there exists  $b \in R$  such that a = aba ( $a = a^2b$ ). The ring R is called right weakly regular ring, if for every  $a \in R$ ,  $a \in aRaR$  [7].

## 2. Characterizations of Simple Singular R - Module is N - Flat

This section is devoted to study rings whose every simple singular right R-module is N-flat with some of their basic properties . On the other hand ,we characterized MC2 rings terms of simple singular right R - modules is N - flat .

### **Definition 2.1** [10]

The ring R is called right MC2 ring. If eRa=0 implies aRe=0, where  $a\in R$ ,  $e^2=e\in R$  and  $K\cong eR$  is minimal right ideal of R, or equivalently if eR are minimal,  $e^2=e\in R$ ; then K=gR for some  $g^2=g\in R$ .

We consider the condition (\*); R satisfies  $l(a) \subseteq r(a)$  for every  $a \in R$ .

### Theorem 2.2

Let R be a right MC2 ring satisfying condition (\*). If every simple singular right R - module is N - flat , then Z(R) = (0) .

**Proof**: Suppose that  $Z(R) \neq (0)$ , then there exists  $0 \neq a \in Z(R)$  such that  $a^2 = 0$ . We claim that Z(R) + r(a) = R. Otherwise, there exists a maximal right ideal M such that  $Z(R) + r(a) \subseteq M$ . If M is not essential, then M = r(e),  $e^2 = e \in R$ . Hence ea = 0 because  $a \in r(a) \subseteq M = r(e)$ . If  $eRa \neq 0$ , then eRaR = eR because eR is a minimal right ideal of R. Since  $a \in Z(R)$ ,  $eRaR \subseteq Z(R)$ , then  $e \in Z(R)$ , which is a contradiction. Hence, aRe = 0. Since R right MC2 ring, then aRe = 0,

 $e \in r(a) \subseteq M \subseteq r(e)$ , which is a contradiction . Hence , M is essential in R . Thus , R/M is N - flat , then there exists a positive integer n and  $b \in M$  such that  $a^n \neq 0$  and  $a^n = ba^n$ . Since  $a^2 = 0$ , then n = 1 and therefore  $(1-b) \in r(a) \subseteq M$  and  $1 \in M$ , which is a contradiction . Hence Z(R) + r(a) = R. Write 1 = x + y, where  $x \in Z(R)$  and  $y \in r(a)$ , then a = ax. Since  $x \in Z(R)$  and  $z \in Z(R)$  and

#### Theorem 2.3

Let R be a ring whose every simple singular right R-module is N - flat, satisfying condition (\*) .Then  $Z(R) \cap Y(R) = 0$ .

**Proof :** Suppose that  $Z(R) \cap Y(R) \neq (0)$ , then there exists  $0 \neq a \in Z(R) \cap Y(R)$  such that  $a^2 = 0$ . We claim that Z(R) + r(a) = R. Otherwise, there exists a maximal essential right ideal M such that  $Z(R) + r(a) \subseteq M$ . Thus, R/M is N - flat, then there exists  $b \in M$  and a positive integer n such that  $a^n \neq 0$  and  $a^n = ba^n$ . Since  $a^2 = 0$ , then n = 1, and therefore a = ba, which implies that  $(1-b) \in l(a) \subseteq r(a) \subseteq M$ ,  $1 \in M$ , which is a contradiction. Hence, Z(R) + r(a) = R. Write 1 = x + y,  $x \in Z(R)$ . Thus, l(1-x) = 0,  $l(x) \cap l(1-x) = 0$  and  $x \in Z(R)$ . Since a = ax, then  $y \in r(a)$ . This implies that contradiction. a, which is  $a \in l(1-x)$  because a = 0.  $Z(R) \cap Y(R) = (0)$ 

## Lemma 2.4 [1]

If R is a ring satisfying condition (\*) whose every simple singular right R-module is N - flat , then  $J(R) \cap Y(R) = (0)$ .

According to [11], a right R - module M is said to be right weakly principally small injective (WPSI) if for any  $0 \neq a \in J(R)$ , there exists a positive integer n such that  $a^n \neq 0$  and any right R - homomorphism from  $a^n R \to M$  can be extended to  $R \to M$ . A ring R is called right WPSI if  $R_R$  is a right WPSI.

## Definition 2.5 [6]

The ring R is said to be right(left) mininjective if every R - homomorphism from a minimal right(left) ideal of R to  $R_R$  can be extended from R to  $R_R$ .

### Lemma 2.6 [11]

If R is a left (right) WPSI ring, then:

- 1.  $J(R) \subseteq Z(R) \ (J(R) \subseteq Y(R))$ .
- 2. R is a left (right) mininjective ring .

## Corollary 2.7

Let R be a right MC2 ring , left WPSI satisfying condition (\*). If every simple singular R - module is N - flat , then J(R) = (0) .

**Proof :** From Lemma 2.6 , we have  $J(R) \subseteq Z(R)$  . So J(R) = (0) because Z(R) = (0) , by Theorem 2.2.

## **Proposition 2.8**

Let R be a right WPSI ring, whose every simple singular right R- module is N-flat and satisfying condition (\*). Then, Z(R) = (0).

**Proof:** By Lemma 2.4,  $J(R) \cap Y(R) = (0)$ . Since R is a right WPSI ring then,  $J(R) \subseteq Y(R)$  Lemma 2.6, so  $J(R) = J(R) \cap Y(R) = (0)$  and R is a right mininjective ring Lemma 2.6. Therefore, R is a right MC2 ring [5, Theorem 1.14]. Hence, by Theorem 2.2. Z(R) = (0)

## 3. Certain Rings Whose every Simple Singular R - Module is N - Flat

In this section , we study the relation between rings whose every simple singular right R - modules are N - flat , reduced rings and strongly rings by adding some types of rings such as wjc and MC2 rings , and other types of rings .

#### Theorem 3.1

Let R be a wjc ring satisfying condition (\*) .If every simple singular right R- module is N - flat . Then , R is a semiprime .

**Proof :** Suppose that I is an ideal of R with  $I^2=0$ . If  $I\neq 0$ , then there exists  $0\neq a\in I$  such that aI=0 and so  $a^2=0$ . First observe r(a) which is an essential right ideal of R. if not , then there exists a nonzero right ideal K of R such that  $r(a)\cap K=0$ . Since  $aKI\subseteq aI=0$ ,  $KI\subseteq r(a)\cap K=0$ . Since R is a wjc ring, IK=0. Hence, aK=0 and so  $K\subseteq r(a)\cap K=0$ , which is a contradiction .Hence, r(a) is essential and  $r(a)\neq R$ , Thus, there exists a maximal essential right ideal M of R containing r(a). Hence, r(a) is simple singular R - module and so is N - flat. Since R/M is N- flat, then there exists  $d\in M$  and a positive integer n such that  $a^n\neq 0$  and  $a^n=da^n$ , since  $a^2=0$ , then n=1, so that a=da and we get  $(1-d)\in l(a)\subseteq r(a)\subseteq M$ , where  $1\in M$ , which is also a contradiction. Hence, I=0 and so R is a semiprime.

### **Definition 3.2** [13]

The ring R is called strongly right min-abel if every right minimal idempotent element  $e \in R$ , is a left semicentral element.

We now consider other condition for right simple singular R-module N-flat to be semiprime.

### Theorem 3.3

Let R be a strongly right min - abel ring satisfying condition(\*). If every simple singular right R - module is N - flat , then R is a semiprime ring.

**Proof :** Let  $a \in R$  satisfyies aRa = 0. Suppose that  $a \neq 0$ . Then , there exists a maximal right ideal M is of R containing r(a). If M is not essential in R. Then , M is a direct summand of R , since M is maximal . So we can write M = r(e) for some  $0 \neq e^2 = e \in R$ ,  $b \in R$  and hence eb = 0. Because eR is a minimal right ideal of R and R is a strongly right min-abel ring, be = ebe = 0. Thus ,  $e \in r(b) \subseteq M = r(e)$ , whence e = 0. This is a contradiction. Therefore, M must be an essential right ideal of R. Thus , R/M is N-flat and so there exists  $d \in M$  such that a = da implies that  $(1-d) \in l(a) \subseteq r(a) \subseteq M$  whence  $1 \in M$ . This is also a contradiction. Hence, R is a semiprime ring.

## Theorem 3.4

Let R be a strongly right min - able with  $l(a^n) \subseteq r(a)$  for every  $a \in R$  and appositive integer n . If every simple singular right R - module is N - flat . Then, R is a right weakly regular ring.

**Proof:** We show that RaR + r(a) = R for any  $a \in R$ . Suppose that there exists  $b \in R$  such that  $RbR + r(b) \neq R$ . Then, there exists a maximal right ideal M of R containing RbR + r(b). If M is not essential in R. Then, M is a direct summand of R because M is maximal.

By a similar method of proof used in Theorem 3.3, M is an essential right ideal of R. Thus, R/M is N - flat and so there exists a positive integer n such that  $b^n \neq 0$  and  $b^n = cb^n$  for some  $c \in M$ , implies that  $(1-c) \in l(b^n) \subseteq r(b) \subseteq M$ , whence  $1 \in M$ , a contradiction. Therefore, R is a right weakly regular.

According to [1], rings satisfying condition (\*), and right GQ -injective whose every simple singular right R- module is N-flat are always regular .But ,in general rings satisfying condition (\*) and left GQ - injective whose every simple singular right R- module is N-flat need not be regular .This leads to the following theorem:

#### Theorem 3.5

Let R be a left GQ - injective , right MC2 ring whose every simple singular right R - module is N - flat and satisfying condition (\*). Then , R is a regular ring .

**Proof:** First R is left GQ - injective, then Z(R) = J(R) and R/J(R) is a regular ring . From Theorem 2.2, Z(R) = (0). Hence, J(R) = Z(R) = (0), which implies R is a regular ring .

### **Definition 3.6** [2]

R is called a right CAM-ring , if for any maximal essential right ideal M of R (if it exits ) and for any right subideal I of M which is either a complement right subideal of M or a right annihilator ideal in R , I is an ideal of M.

Right CAM-ring generalizes semisimple artinian . [2] shows that semiprime right CAM - ring R is either semisimple artinian or reduced . If R is also simple singular right R - module is N - flat , then R is either semisimple artinian or strongly regular ring. We yield the following theorem :

#### Theorem 3.7

Let R be a wjc right CAM-ring , satisfying condition (\*) whose every simple singular right R - module is N - flat .Then , R is either a semisimple artinian or strongly regular ring.

**Proof :** From Theorem 3.1 R is semiprime .If R is not a semisimple artinian, then R is reduced .Let  $0 \neq a \in R$  . If  $aR \oplus r(a) \neq R$ , then  $aR \oplus r(a) \subseteq M$  for some maximal right ideal M of R . If M is not an essential right ideal of R, then M = eR, where  $e^2 = e \in R$ . Because R is reduced, ae = ea = 0 and  $e \in r(a) \subseteq M = r(e)$ , a contradiction. Hence, M is an essential right ideal of R and so R/M is a singular simple right R - module. Since R/M is N - flat, then there exists  $b \in M$  and a positive integer n such that  $a^n \neq 0$  and  $a^n = ba^n$ . Now, we obtain  $(1-b) \in r(a)$ , so  $1 \in M$ , a contradiction. Hence,  $aR \oplus r(a) = R$  and then R is a strongly regular ring.  $\blacksquare$  An idempotent  $e \in R$  is called right semicentral if ea = eae for all  $a \in R$  [13].

### Lemma 3.8 [12]

Let R be a MERT ring and every right minimal idempotent in R/J(R) is right semicentral. Then, R/J(R) is reduced.

## **Proposition 3.9**

Let R be a MERT ring and every right minimal idempotent of R/J(R) is right semicentral. If every simple singular right R - module is N - flat. Then, R/J(R) is a strongly regular ring.

**Proof**: By Lemma 3.8, R/J(R) is reduced. Let  $\overline{0} \neq \overline{a} \in \overline{R} = R/J(R)$ . We first that  $\overline{R} \ \overline{a} \ \overline{R} + r(\overline{a}) = \overline{R}$ . Suppose that it is not; then there exists a maximal right ideal M of R such that  $\overline{R} \ \overline{a} \ \overline{R} + r(\overline{a}) \subseteq M/J(R)$ . Since R' is reduced,  $\overline{R} \ \overline{a} \ \overline{R} + r(\overline{a})$  is an essential right ideal of R'. Therefore, R/M is simple singular right R- module and so R/M is N-flat.

Now, it is easy to show that there exists a positive integer n and  $c \in M$  such that  $a^n \neq 0$  and  $a^n = ca^n$ . Since M is an ideal of R, we have  $1 \in M$ , which is a contradiction. Hence,  $\overline{R} \, \overline{a} \, \overline{R} + r(\overline{a}) = \overline{R}$ . Let  $\overline{a} = \overline{a} \, \overline{d}$ , where  $\overline{d} \in \overline{R} \, \overline{a} \, \overline{R}$ . Then,  $(\overline{1} - \overline{d}) \in r(\overline{a})$ . If  $\overline{a} \, \overline{R} + r(\overline{a}) \neq \overline{R}$ , then there exists a maximal right ideal L of R such that  $\overline{a} \, \overline{R} + r(\overline{a}) \subseteq L/J(R)$ . Since R/J(R) is reduced, we have L/J(R) is an ideal of R/J(R). Hence, L is also an ideal of R, and so  $\overline{d} \in \overline{R} \, \overline{a} \, \overline{R} \subseteq L/J(R)$ , and hence  $\overline{1} \in L/J(R)$ , which is also a contradiction. Thus,  $\overline{a} \, \overline{R} + r(\overline{a}) = \overline{R}$ , and so R/J(R) is strongly regular ring.

### Lemma 3.10 [4]

For any  $a \in Cent(R)$  ( The Center of R ), if a = ara for some  $r \in R$ ; Then there exists  $b \in Cent(R)$  such that a = aba.

### Lemma 3.11 [4]

If R is a semiprime ring ;then  $r(a^n) = r(a)$  for any  $a \in Cent(R)$  and a positive integer n.

## **Proposition 3.12**

Let R be a wjc ring satisfying condition (\*). If every simple singular right R -module is N - flat . Then , the Center of R is a regular ring.

**Proof :** Let a be a nonzero element in Cent(R). First , we will show that aR+r(a)=R for any  $a\in Cent(R)$ . If not, there exists a maximal right ideal M of R such that  $aR+r(a)\subseteq M$ . Since  $a\in Cent(R)$ , aR+r(a) is an essential right ideal and so M must be an essential right ideal of R. Therefore, R/M is N - flat, so there exists  $c\in M$  and a positive integer n such that  $a^n\neq 0$  and  $a^n=ca^n=a^nc$  implies that  $(1-c)\in r(a^n)\subseteq r(a)\subseteq M$  (Theorem 3.1 and Lemma 3.11) and so  $1\in M$ , which is a contradiction. Therefore, aR+r(a)=R for any  $a\in Cent(R)$  and so we have a=ara for some  $r\in R$ . Applying Lemma 3.10, Cent(R) is a regular ring.

## Theorem 3.13

R is strongly regular ring if and only if R is a wjc , MERT and 2 - primal ring whose every simple singular right R- module is N - flat.

**Proof :** First , we show that R is reduced . In fact , if  $a^2 = 0$  for some  $0 \neq a \in R$  . Then , we have RaR + r(a) = R . If not , then there exists a maximal right ideal M of R containing RaR + r(a). Observe that M must be an essential right ideal of R. If not , then M is a direct summand of R . So we can write M = r(e) for some idempotent e of R. Thus eRa = 0. Since R is a wjc ring , aRe = 0 and ae = 0. Hence ,  $e \in r(a) \subseteq r(e)$  ; whence e = 0, it is a contradiction . Therefore , M must be an essential right ideal of R. Then , R/M is N - flat ,there exists a positive integer n and  $b \in M$  such that  $a^n \neq 0$  and  $a^n = ba^n$  . Since  $a^2 = 0$  , then n = 1 and therefore a = ba which implies  $(1-b) \in M$  and so  $1 \in M$  by M is an ideal of R . This is a contradiction . Hence RaR + r(a) = R and so a = ad for some  $d \in RaR$  . Since R is 2 - primal ring ,  $d \in J(R)$ . Hence , (1-d) is right invertable v in R such that v(1-d) = 1 , v(a-da) = a which yield a = 0 .

Next, we show that aR + r(a) = R for each  $a \in R$ . If not, then there exists  $b \in R$  and a maximal right ideal L of R containing bR + r(b). Observe that L must be essential, so there exists a positive integer n and  $d \in M$  such that  $a^n \neq 0$  and  $a^n = da^n$ . Now,  $(1-d) \in l(a^n) = r(a^n) = r(a) \subseteq L$ , so  $1 \in L$ , which is a contradiction, therefore aR + r(a) = R. Hence, R is strongly regular ring.

**Conversely**: it is obvious.

### <u>REFERENCES</u>

- [1] Mahmood, R.D. and Husam Q.M. (2010); "On N-flat rings", Received, J. Al-Rafiden of Comp. and Math.
- [2] Ming, R.Y.C. (1983); "On Quasi-Frobeniusean and artinian Rings", Pub. De L'institute Mathématique, 33(47), pp. 239-245.
- [3] Ming, R.Y.C. (1995); "On Von Neumann, regularity, injectivity and flatness", Yokohama Math., Vol. 43, pp.37-44.
- [4] Nam, S.B. (1999); "A note on simple singular GP-injective modules", J. Kangweon Kyungki. Mth. J. 7(2), pp.215-218.
- [5] Nicholson, W.K. and Yousif, M. F. (1997); "Mininjevtive rings", J. Algebra, Vol. 187, pp. 548-578.
- [6] Nicholson, W.K. and Yousif M.F. (2004); "Weakly continuous and C2 rings", Comm. In Algebra, pp. 2429-2466.
- [7] Ramamurthi, V.S. (1975); "On injectivity and flatness of certain cyclic modules", Proc. Amer. Math. Soc., 48, pp.21-25.
- [8] Rege, M.B. (1986); "On Von Neumann regular rings and SF- rings", Math. Japonica, 31(6), pp. 927-936.
- [9] Von Neumann J. (1936); "On regular rings", Proc. Nat. Sci. U.S.A. 22, pp. 707-713.
- [10] Wei, J.C. (2005); "The rings characterized by minimal left ideal", Acta. Math. Sinica, English Series 21(3), pp. 473-482.
- [11] Wei, J.C. and Chen, J.H. (2007); "Nil-injective rings", Inter. J. of Algebra 2, pp. 1-21.
- [12] Wei, J.C. (2007); "On simple singular YJ- injective modules", Sou. Asiam Bull. Of Math. 31, pp. 1 10.
- [13] Wei, J.C. (2008); "Certain rings whose simple singular modules are nil-iniective", Turk J. Math .32, pp. 393 408.