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ABSTRACT 

In this paper, we investigated a new improved Conjugate  Gradient (CG) 

algorithm of a Three-Term type (TTCG) based on Dai and Liao procedure to improve 

the CG algorithm  of (Hamoda, Rivaie, and Mamat / HRM). The new CG-algorithm 

satisfies both the conjugacy condition and the sufficient descent condition. The step-size 

of this TTCG-algorithm would be computed by accelerating the Wolfe-Powell line 

search technique. The proposed new TTCG algorithms have demonstrated their global 

affinity in certain specific circumstances given in this paper. 

Keywords: Three-Term Conjugate Gradient, Scaling Parameter, Conjugacy Property, 

Search Directions, Large Dimensions, Wolfe-Powell Line Search.  

                                      

 خوارزمية كفؤة للتدرج المترافق الطيفي ذات الحدود الثلاث لحل المسائل التصغيرية غير المقيدة

صابرين محمود عباس      

والرياضيات                         وبكلية علوم الحاس
، الموصل، العراقلجامعة الموص  

 عباس يونس البياتي

العراقتلعفر،  ،جامعة تلعفر      

 27/03/2019البحث: تاريخ قبول                                     19/12/2018تاريخ استلام البحث: 

 الملخص

( TTCGاستحداث خوارزمية جديدة للتدرج المترافق ذات الحدود الثلاث )في هذا البحث، تم التقصي في 
الخاصة بـ  HRMCG( لتحسين خوارزمية Liao, 2001)  &Dai بالاعتماد على خوارزمية التدرج المترافق 

(Hamoda, Rivaie, and Mamat, 2016).  
الجديدة تحقق شرطي الاقتران والانحدار الكافٍ وتم حساب حجم الخطوة المثلى في   TTCGخوارزمية 

. لقد أظهرت Wolfe-Powellالجديدة من خلال تسريع تقنية خط البحث العائدة الى  TTCGخوارزمية 
الجديدة المقترحة تقاربها الشامل في بعض الظروف المحددة الواردة في هذه الورقة مع   TTCGخوارزميات 

 الحصول على نتائج عددية مشجعة.
، أبعاد ، اتجاهات البحثترافق، خاصية العلمة القياسمفق ذات الحدود الثلاث، التدرج المترا الكلمات المفتاحية:

 .Wolfe-Powell ، خط بحثكبيرة
1 . Introduction 

To start by giving any issue of unconstrained optimization we need to know this 

issue as follows: 

min {f(x): x ∈ Rn}                                                                                             (1)   
Let us define the function as f from   Rn  to R is continuously differentiable function, 
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and its gradient is denoted by g(x) = ∇f(x), these CG methods are known to be designed 

to solve the problem of type (1), specifically when the n dimension is very large due to 

the simplicity of repetition of the search, memory requirements are very low. The iterative 

formula for standard TTCG methods is given by: 

xk+1 = xk + αkdk ,                            k = 0,1,2 … (2) 

The αk  amount of the step is always evident as a positive scalar and dk is the 

search direction specified by: 

 

𝑑𝑘+1 = {
−𝑔𝑘+1                               𝑖𝑓 𝑘 = 0
−𝑔𝑘+1 + 𝛽𝑘𝑑𝑘                 𝑖𝑓 𝑘 ≥ 1

 
(3) 

Where βk is scalar. The differences highlight CG methods in their speed and 

performance by specifying the numerical parameter  𝛽𝑘. This is a set of the famous 

versions of 𝛽𝑘 as contained in their sources: 

𝛽𝑘
𝐻𝑆 =

𝑔𝑘+1
𝑇 (𝑔𝑘+1 − 𝑔𝑘)

(𝑔𝑘+1 − 𝑔𝑘)𝑇𝑑𝑘
   𝛽𝑘

𝐹𝑅 =
𝑔𝑘+1

𝑇 𝑔𝑘+1

𝑔𝑘
𝑇𝑔𝑘

   𝛽𝑘
𝑃𝑅 =

𝑔𝑘+1
𝑇 (𝑔𝑘+1 − 𝑔𝑘)

𝑔𝑘
𝑇𝑔𝑘

 

𝛽𝑘
𝐶𝐷 = −

𝑔𝑘+1
𝑇 𝑔𝑘+1

𝑑𝑘
𝑇𝑔𝑘

 𝛽𝑘
𝐿𝑆 = −

𝑔𝑘+1
𝑇 (𝑔𝑘+1 − 𝑔𝑘)

𝑑𝑘
𝑇𝑔𝑘

 𝛽𝑘
𝐷𝑌 =

𝑔𝑘+1
𝑇 𝑔𝑘+1

(𝑔𝑘+1 − 𝑔𝑘)𝑇𝑑𝑘
 

CG methods converge with the FR format worldwide but have poor numerical 

performance because of the behavior of the jamming along the repetition process. 

The PR and HS methods have good numerical performance but are not always close 

[11]. To clarify all of the 𝑠𝑘 = 𝑥𝑘+1 − 𝑥𝑘 and 𝑦𝑘 = 𝑔𝑘+1 − 𝑔𝑘  ;  ‖. ‖ indicates the 

Euclidean norm. In the order given to those parameters, we will list their 

sources severally, HS (Hestenes Stiefel [17]), FR (Fletcher Reeves [25]), PR (Polak 

Ribière [2, 4]), CD (Conjugate Descent [26]), LS (Liu Storey [28]) and DY (Dai 

Yuan [30]) CG ways. Any methodology of gradient has to update the point by the 

line search used. The Wolfe-Powell (WWP) customary search terms square 

measure usually employed in CG ways. The search terms within the Weak Wolfe-

Powell (WWP) line square measure as follows: 

𝑓(𝑥𝑘+1) − 𝑓(𝑥𝑘) ≤ 𝛿𝛼𝑘𝑔𝑘
𝑇𝑑𝑘 (4) 

𝑔𝑘+1
𝑇 𝑑𝑘 ≥ 𝜎𝑔𝑘

𝑇𝑑𝑘 (5) 

By this condition, 𝑑𝑘 is a descent search direction such that  0< 𝛿 < 𝜎 < 1. 

The Strong Wolfe-Powell (SWP) conditions defined in (4) and satisfies: 

|𝑔𝑘+1
𝑇 𝑑𝑘| ≤ 𝜎𝑔𝑘

𝑇𝑑𝑘 (6) 

As a generalization of Strong Wolfe conditions, the absolute value opens in (6) 

with two disparities of inequality so that: 

−𝜎𝑔𝑘
𝑇𝑑𝑘 ≤ 𝑔𝑘+1

𝑇 𝑑𝑘 ≤ 𝜎𝑔𝑘
𝑇𝑑𝑘   

Moreover, from all of these previous conditions we obtain the characteristic of 

sufficient descent, namely: 

(7) 𝑔𝑘
𝑇𝑑𝑘 ≤ −𝑐‖𝑔𝑘‖2 

where c > 0 is a positive constant. 
In the last year, Wei and et. al. [32] introduced an odd plan of its predecessors 

from the formulas of the PR-CG methodology referred to as the WYL-

CG methodology. Zhang recommended through his study a lot of and has improved 

WYL-CG normal methodology victimization the new CG, additionally it well-tried that 

the strategy of NPR-CG met the traditional demand ratios beneath conditions of line 

search SWP [15]. Finally, Zhang et al. planned another changed CG-method referred to 

as the MPR-CG methodology, wherever Dai and Wen [31] planned another changed 

version of NPR-CG methodology referred to as the DPR-CG methodology. 
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Some Important Updates for Recent Different CG-Methods 

Researchers Formulas 

WYL-CG 
𝛽𝑘

𝑊𝑌𝐿 =
𝑔𝑘+1

𝑇 (𝑔𝑘+1 −
‖𝑔𝑘+1‖

‖𝑔𝑘‖
𝑔𝑘)

‖𝑔𝑘‖2
 

NPR-CG 
𝛽𝑘

𝑁𝑃𝑅 =

‖𝑔𝑘+1‖2 −
‖𝑔𝑘+1‖

‖𝑔𝑘‖
|𝑔𝑘+1

𝑇 𝑔𝑘|

‖𝑔𝑘‖2
 

MPR-CG 𝛽𝑘
𝑀𝑃𝑅 =

𝛿 ‖𝑔𝑘+1‖2

‖𝑔𝑘‖2 + |𝑔𝑘
𝑇𝑑𝑘|

 

DPR-CG 
𝛽𝑘

𝐷𝑃𝑅 =

‖𝑔𝑘+1‖2 −
‖𝑔𝑘+1‖

‖𝑔𝑘‖
|𝑔𝑘+1

𝑇 𝑔𝑘|

𝜇|𝑔𝑘+1
𝑇 𝑑𝑘| + ‖𝑔𝑘‖2

 

 

The researchers (Hamoda, Rivaie and Mamat) in [15] have developed another 

new CG-type formula for the formulas mentioned in the above table by changing the 

compound based on the convex structure method to obtain better results compared to 

the previous formulas by suggesting the following formula: 

𝛽𝑘
𝐻𝑅𝑀 =

𝑔𝑘+1
𝑇 (𝑔𝑘+1 −

‖𝑔𝑘+1‖
‖𝑔𝑘‖

𝑔𝑘)

𝑢‖𝑔𝑘‖2 + (1 − 𝑢)‖𝑠𝑘‖2
 =

𝑎

𝑏
 

 

                                                  (8) 

 

Then from the results that obtained by [15], the quantity of the parameter u=0.9 

i.e.    𝑢 ∈ (0,1) and from  𝛽𝑘
𝐻𝑅𝑀 given in equation (8), the search direction of this 

formula was given in the following gradient: 

k

HRM

kkk dgd
k

+−= ++ 11  
                                                  (9) 

1.1  Spectral CG-Methods. 

As a necessary and important type of gradient methods to solve the problem (1) is 

the method of spectral gradient (SCG), which was originally developed by Barzilai and 

Borwein [9]. In 1988, Raydan [19] added SCG method to the problems of unrestricted 

improvement on a large scale. The idea of this method depends mainly on the use of 

gradient trends only in each line search in order to ensure the regression strategy by 

multiplying the first limit by a parameter derived from one of the known derivation 

methods or by the parameter 𝛽𝑘 as in the first idea of this method, Good global. So this 

method is superior to the CG method developed in many problems but when you devise 

the exact line of search with both methods you will revert to the traditional method. The 

first to give the first idea of this method was Birgin and Martinez [6] proposed three 

types of SCG methods. So that the direction kd  of this method is defined as follows: 

kkkkk dgd  +−= ++ 11  
                                                    (10) 

Variable parameter k  formulas vary in these ways: 

k

T

k

k

T

kkk
k

ys

gsy 11 )( +−
=




 

k

T

kkk

k

T

kk
k

gg

gy




 12 +=

 k

T

kkk

k

T

kk
k

gg

gg




 113 ++=

 

    (11) 
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The gradient formula varies according to the parameter k  calculated by the 

following: 

k

T

k

k

T

k
k

ys

ss
=

 

                                                   (12) 

Note in the numerical results that these methods give good effectiveness, but they 

may not be able to guarantee the generation of kd
descent directions if the use of 

inexact-line searches as when using the search Armijo or Wolfe as a type of inexact-line 

searches, in the case of general functions is not guaranteed so each algorithm is proven 

to be effective in these properties theoretically and practically through numerical results. 

To ensure descent property, Dixon [14] and Al-Baali [18] suggested to use the steepest 

descent direction kg−
 instead of kd

 shown in  (3). Recently noted, there are many 

modified CG methods studied. Liu et al. [10] make an adjustment to the CD-method so 

that the direction that is always generated is the descent direction and kd
 is determined 

by the following: 








+−

=−
=

+

+

+

2,

1,

1

1

1

kifdg

kifg
d

kkkk

k

k



 

                                                  (13) 

where k  is specified by the following 






 
=

+

,,0

,0, 1

else

dgif k

T

k

CD

k

k




 

                                                 (14) 

and 

k

T

k

k

T

k
k

dg

dg 11 +−=

 

                                                 (15) 

They demonstrate that this method can ensure that descent directions are 

generated and are globally convergent. 

This paper is divided as follows: In Section 2, we evaluate the new form of the 

CG-three-term method using the spectral gradient method with derivation of  𝜃𝑘
𝑆𝐵𝑖  , 𝑖 =

1,2,3. In Section 3, we give some proof to prove sufficient properties of global 

proportions and convergence using standard derivation 𝜃𝑘
𝑆𝐵𝑖 of Section 2. Finally, in 

Section 4, the task of this part is the good numerical results of the new algorithm. The 

new CG-algorithms under standard conditions gave new search directions which have 

better performance than the two-dimensional algorithms for solving problems of large 

scale dimensions, i.e.  n = 1000, .., 10000, for  total of thirty-eight  standard  non-linear 

test functions. 

2. New CG- Algorithm (Modified  HRM).  

Through what researchers (Zhang, Zhou and Li [12, 13]) have prompt in recent 

years, three CG strategies prompt a way that forever satisfies the case of sufficient 

descent condition (7), freelance of the techniques of line search. Here, during this work, 

we've superimposed another extra term for the search direction (9) to become a scaled 

three-term search direction to enhance the number of iterations calculated and therefore 



A Robust Spectral Three-Term Conjugate Gradient Algorithm for Solving … 

 

 91 

the number of conniving the objective functions and their gradients. Will be rewritten 

by a three-term form: 

dk+1
new = − k gk+1 + βk

HRMsk − θk
SBiyk   (16) 

The parameter  k  can be calculated, normally,  from (12) and the new proposed 

search direction defined in (16),  gives more efficiency and more stable CG-algorithm  

to reach the optimal minimum point compared with the original two-term search 

direction defined in (9). Also, the new proposed parameter used in (16) has good 

theoretical background compared to the theories derived from the both PR-CG  and 

HRM –CG methods. 

 

2.1   Derivation of The  New Parameters  𝜽𝒌
𝑺𝑩𝒊. 

To derive a formula  θk
SBi, depending on the classic conjugacy property given in 

the following equation: 

yk
Tdk+1 = 0                                                                                                     (17) 

The first conditional condition, in this approach,  gives a method of approximation 

of the search direction by deleting one term through derivation and as a generalization 

of this formula by placing the inexact line search (ILS) condition of the formula. We 

obtain the conditional condition given by Perry [1] as in the following formula: 

𝑦𝑘
𝑇𝑑𝑘+1 = −𝑠𝑘

𝑇𝑔𝑘+1                                                                                                              (18)  

A. Derivation of  The  New Parameter  𝜽𝒌
𝑺𝑩𝟏  . 

From (16), we use the direction  

𝑑𝑘+1
𝑛𝑒𝑤 = −∅𝑘𝑔𝑘+1 + 𝛽𝑘

𝐻𝑅𝑀𝑠𝑘 − 𝜃𝑘
𝑆𝐵1𝑦𝑘    , ∅𝑘 =

𝑠𝑘
𝑇𝑠𝑘

𝑠𝑘
𝑇𝑦𝑘

 

𝑑𝑘+1
𝑛𝑒𝑤 = −∅𝑘𝑔𝑘+1 +

𝑔𝑘+1
𝑇 (𝑔𝑘+1 −

‖𝑔𝑘+1‖
‖𝑔𝑘‖

𝑔𝑘)

𝑢‖𝑔𝑘‖2 + (1 − 𝑢)‖𝑠𝑘‖2
𝑠𝑘 − 𝜃𝑘

𝑆𝐵1𝑦𝑘                                     (19) 

Multiplying (19)  𝑏𝑦 𝑦𝑘: 

𝑦𝑘
𝑇𝑑𝑘+1

𝑛𝑒𝑤 = −∅𝑘𝑦𝑘
𝑇𝑔𝑘+1 +

𝑔𝑘+1
𝑇 (𝑔𝑘+1 −

‖𝑔𝑘+1‖
‖𝑔𝑘‖

𝑔𝑘)

𝑢‖𝑔𝑘‖2 + (1 − 𝑢)‖𝑠𝑘‖2
𝑦𝑘

𝑇𝑠𝑘

− 𝜃𝑘
𝑆𝐵1𝑦𝑘

𝑇𝑦𝑘                                                                                                 (20) 

Using (17) and substituting 𝛽𝑘
𝐻𝑅𝑀 from the formula: 

𝛽𝑘
𝐻𝑅𝑀 =

𝑎

𝑏
                                                                                                                  (21) 

Then we get: 

0 = −∅𝑘𝑦𝑘
𝑇𝑔𝑘+1 +

𝑎

𝑏
 𝑦𝑘

𝑇𝑠𝑘 − 𝜃𝑘
𝑆𝐵1‖𝑦𝑘‖2 

Hence, 

θk
SB1 =

a
b

yk
Tsk − ∅kyk

Tgk+1

‖yk‖2
 

θk
SB1

=
ayk

Tsk − b∅kyk
Tgk+1

b‖yk‖2
                                                                                                         (22) 

 

B. Derivation of  The New Parameter  𝜽𝒌
𝑺𝑩𝟐  . 
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From (18),  (21) and (16) we use the direction: 

𝑑𝑘+1
𝑛𝑒𝑤 = −∅𝑘𝑔𝑘+1 + 𝛽𝑘

𝐻𝑅𝑀𝑠𝑘 − 𝜃𝑘
𝑆𝐵2𝑦𝑘 

𝑑𝑘+1
𝑛𝑒𝑤 = −∅𝑘𝑔𝑘+1 +

𝑔𝑘+1
𝑇 (𝑔𝑘+1 −

‖𝑔𝑘+1‖
‖𝑔𝑘‖

𝑔𝑘)

𝑢‖𝑔𝑘‖2 + (1 − 𝑢)‖𝑠𝑘‖2
𝑠𝑘

− 𝜃𝑘
𝑆𝐵2𝑦𝑘                                                                                                     (23) 

Multiplying (23) by  𝑦𝑘: 

𝑦𝑘
𝑇𝑑𝑘+1

𝑛𝑒𝑤 = −∅𝑘𝑦𝑘
𝑇𝑔𝑘+1 +

𝑔𝑘+1
𝑇 (𝑔𝑘+1 −

‖𝑔𝑘+1‖
‖𝑔𝑘‖

𝑔𝑘)

𝑢‖𝑔𝑘‖2 + (1 − 𝑢)‖𝑠𝑘‖2
𝑦𝑘

𝑇𝑠𝑘 − 𝜃𝑘
𝑆𝐵2𝑦𝑘

𝑇 𝑦𝑘 

−𝑠𝑘
𝑇𝑔𝑘+1 = −∅𝑘𝑦𝑘

𝑇𝑔𝑘+1 +
𝑎

𝑏
 𝑦𝑘

𝑇𝑠𝑘 − 𝜃𝑘
𝑆𝐵2‖𝑦𝑘‖2 

𝜃𝑘
𝑆𝐵2 =

𝑎
𝑏

 𝑦𝑘
𝑇𝑠𝑘 + 𝑠𝑘

𝑇𝑔𝑘+1 − ∅𝑘𝑦𝑘
𝑇𝑔𝑘+1

‖𝑦𝑘‖2
 

Then 

𝜃𝑘
𝑆𝐵2

=
𝑎 𝑦𝑘

𝑇𝑠𝑘 + 𝑏𝑠𝑘
𝑇𝑔𝑘+1 − 𝑏∅𝑘𝑦𝑘

𝑇𝑔𝑘+1

𝑏‖𝑦𝑘‖2
                                                                               (24) 

C. Derivation of  The New  Parameter  𝜽𝒌
𝑺𝑩𝟑  . 

Now, Use  the conjugacy condition defined in  [29] to derive 𝜃𝑘
𝑆𝐵3  

𝑦𝑘
𝑇𝑑𝑘+1

𝑛𝑒𝑤 = −𝑡𝑠𝑘
𝑇𝑔𝑘+1  

Rewrite the search direction as: 

𝑑𝑘+1
𝑛𝑒𝑤 = −∅𝑘𝑔𝑘+1 + 𝛽𝑘

𝐻𝑅𝑀𝑠𝑘 − 𝜃𝑘
𝑆𝐵3𝑦𝑘 

𝑑𝑘+1
𝑛𝑒𝑤 = −∅𝑘𝑔𝑘+1 +

𝑔𝑘+1
𝑇 (𝑔𝑘+1 −

‖𝑔𝑘+1‖
‖𝑔𝑘‖

𝑔𝑘)

𝑢‖𝑔𝑘‖2 + (1 − 𝑢)‖𝑠𝑘‖2
𝑠𝑘 − 𝜃𝑘

𝑆𝐵3𝑦𝑘                                     (25) 

From (21) and multiplying (25) by 𝑦𝑘 to get: 

𝑦𝑘
𝑇𝑑𝑘+1

𝑛𝑒𝑤 = −∅𝑘𝑦𝑘
𝑇𝑔𝑘+1 +

𝑎

𝑏
𝑦𝑘

𝑇𝑠𝑘 − 𝜃𝑘
𝑆𝐵3𝑦𝑘

𝑇 𝑦𝑘 

−𝑡𝑠𝑘
𝑇𝑔𝑘+1=−∅𝑘𝑦𝑘

𝑇𝑔𝑘+1 +
𝑎

𝑏
 𝑦𝑘

𝑇𝑠𝑘 − 𝜃𝑘
𝑆𝐵3‖𝑦𝑘‖2 

𝜃𝑘
𝑆𝐵3 =

𝑎
𝑏

 𝑦𝑘
𝑇𝑠𝑘 + 𝑡𝑠𝑘

𝑇𝑔𝑘+1 − ∅𝑘𝑦𝑘
𝑇𝑔𝑘+1

‖𝑦𝑘‖2
  

Therefore, 

𝜃𝑘
𝑆𝐵3

=
𝑎 𝑦𝑘

𝑇𝑠𝑘 + 𝑏𝑡𝑠𝑘
𝑇𝑔𝑘+1 − 𝑏∅𝑘𝑦𝑘

𝑇𝑔𝑘+1

𝑏‖𝑦𝑘‖2
                                                                            (26) 

Now the  new proposed three new CG-formulas have been derived.  

Below we can write the outlines of the proposed TTCG-algorithm in general using the 

most comprehensive formula, namely,  the third version, defined in (26). To compare its 

numerical results, we compute the  percentage performance of our new TTCG-

algorithm against the numerical results of (PR and HRM)  CG-algorithms. 

2.2   Different (Two and Three) Terms CG-Algorithms. 

2.2.1  Algorithm PR-CG [4]. 
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Step 1: Let the initial value variable x0 ∈ Rn, ∈≥ 0  and initial direction d0 = −g0; 

if ‖g0‖ ≤∈  then stop.  
Step 2: Evaluate step size αk by Wolfe line search technique from (4) and (5).                     

Step 3: Update the variable xk+1=xk+αkdk ;  if (stop criteria) ‖gk+1‖ <∈  then stop. 

Step 4: Compute the parameter  𝛽𝑘
𝑃𝑅 =

𝑔𝑘+1
𝑇 (𝑔𝑘+1−𝑔𝑘)

𝑔𝑘
𝑇𝑔𝑘

    

               and  generate the new search direction   dk+1 = −gk + 𝛽𝑘
𝑃𝑅dk       

Step 5: Set k=k+1 and go to step 2. 

 

2.2.2   Algorithm HRM-CG [15]. 

Step 1: Initial input x0 ∈ Rn, ∈≥ 0 and first direction is d0 = −g0 ; if ‖g0‖ ≤∈
 then stop.  
Step 2: Evaluate αk by Wolfe line search technique from (4) and (5).                      

Step 3: Let  xk+1=xk+αkdk , if ‖gk+1‖ <∈  then stop. 
Step 4: Set u=0.9 and compute  β

k
 from (8)  to generate dk+1 from (9). 

Step 5: Set k=k+1 go to step 2. 

2.3  An Accelerated Scheme of Wolfe Line Search Parameter. 

In the first a part of this paper, we tend to mention the concept of standard CG 

strategies, showing us that analysis trends might not be gradated. To boost the 

performance of those strategies, search trends supported second order data square 

measure based mostly. Jorge Nocedal [3] gave some observations indicating that the 

lengths of steps within the CG strategies of one may be larger or smaller than one 

looking on however the matter is measured. Calculations show that the latter is a lot of 

victorious [7].  

Here, we tend to talk to the acceleration theme in Andrei's [22]; primarily, this 

step length is changed during a multiplying way to improve the reduction of function 

values on the frequencies [20, 24]. 

2.4  Outlines of the New  Spectral  TTCG-Algorithm  (NEW).  

Step 1: Initial input point  𝑥0 ∈ 𝑅𝑛, ∈≥ 0 ;  first search direction 𝑑0 = −𝑔0 ; if ‖𝑔0‖ ≤
∈ then stop.  
Step 2: Determine  αk by using the Strong Wolfe-Powell technique (4) and (6). 

Step 3: Evaluate new point by  zk=xk + αkdk,  gz = ∇f(z) and yk = gk − gz 

Step 4: Compute  ak̅̅ ̅ = αkgk
Tdk and  bk

̅̅ ̅ = −αkyk
Tdk 

Step 5: Acceleration scheme. If  bk
̅̅ ̅ > 0 and the evaluate εk = −

ak̅̅̅̅

bk
̅̅̅̅  

             and update the points as  xk+1 = xk + εkαkdk, 

             else update the points as   xk+1 = xk + αkdk 

Step 6: Evaluate θk
SBi where i=1,2,3 , such that (SB1) is defined in (16); (SB2) is 

           defined in (18) and (SB3) is defined in (20).  

Step 7: Attend parameter  𝛽𝑘
𝐻𝑅𝑀  from (8) and  compute 

k

T

k

k

T

k
k

ys

ss
=  

Step 8: Update search direction  𝑑𝑘+1  
𝑛𝑒𝑤 = k− gk+1 + 𝛽𝑘

𝐻𝑅𝑀sk − θk
SBiyk 

Step 9: Use Powell restarting criterion [16];  

              If |gk+1
T gk| > 0.2‖gk+1‖2, then set  dk+1 = −gk+1 

Step 10: Update the iteration k=k+1 go to Step 2. 
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3. Full Study of the Sufficient Descent and Global Convergence Properties. 

Let us consider the foremost vital assumptions accustomed demonstrate the potency of 

algorithms employed in previous studies of the related to gradient ways, see [20] for 

example: 

3.1 Assumption A. 

Let f(x) is delimited from below on the extent set 𝑆 = {𝑥 ∈ 𝑅𝑛 , 𝑓(𝑥) ≤ 𝑓(𝑥0)} , 
where 𝑥0 is that the place to begin. 

3.2 Assumption B. 

In some neighborhood  N of S, the objective function is unceasingly differentiated, 

and its gradient Lipchitz continuous, that is, there exists a continuing 0 < 𝐿 < ∞ such 

that 
‖𝑔(𝑥) − 𝑔(𝑦)‖ ≤ 𝐿‖𝑥 − 𝑦‖ ∀𝑥, 𝑦 ∈ 𝑁.                                                                  (27) 

Now we derive the sufficient condition of three term from 𝜃𝑘
𝑆𝐵𝑖, such that i=1,2,3. 

3.3  New Theorem1.  

In the TTCG- Algorithm we generate a sequence of duplicates {𝑥𝑘}  from (2) and 

{𝑑𝑘}   in (16), assuming that k  is determined by the strong Wolfe-Powell line search 

(4)-(6) and 10  t .  If 0 < k < 1 from (22)-(28), then the new proposed three term 

search direction given by (16) is a sufficient descent direction where: 

𝑐1 = 𝑠𝑘
𝑇𝑦𝑘 [(

0.8𝛿 ̅

0.4𝛿3+0.6𝛿‖𝑠𝑘‖2) (
1.2𝛿 ̅2

‖𝑦𝑘‖2 − 1)]                                                              (28)  

𝑐2 = 𝑠𝑘
𝑇𝑦𝑘 [(

0.8𝛿 ̅

0.4𝛿3 + 0.6𝛿‖𝑠𝑘‖2
) (

1.2𝛿 ̅2

‖𝑦𝑘‖2
− 1) +

1.2 𝑡

‖𝑦𝑘‖2
  ]                                    (29) 

Proof: 

Case I:  Use  𝛉𝐤
𝐒𝐁𝟏 defined  in (22) in (16)  and multiply this equation by gk+1 to get: 

𝑑𝑘+1
𝑇 𝑔𝑘+1 = −∅𝑘‖𝑔𝑘+1‖2 + 𝛽𝑘

𝐻𝑅𝑀𝑠𝑘
𝑇𝑔𝑘+1 − 𝜃𝑘

𝑆𝐵1𝑦𝑘
𝑇𝑔𝑘+1 

Use an inexact line searches,  in (4) and (6) ,to get : 

𝑠𝑘
𝑇𝑔𝑘+1 = 𝑠𝑘

𝑇𝑔𝑘+1 − 𝑠𝑘
𝑇𝑔𝑘 + 𝑠𝑘

𝑇𝑔𝑘 

= sk
T(gk+1 − gk) + sk

Tgk=sk
Tyk + sk

Tgk < sk
Tyk 

 

Hence, 

dk+1
T gk+1 ≤ −∅𝑘‖gk+1‖2 + β

k
HRMsk

Tyk − (
β

k
HRMsk

Tyk − ∅𝑘yk
Tgk+1

‖yk‖2
) yk

Tgk+1 

furthermore, 

dk+1
T gk+1 ≤ −∅𝑘‖gk+1‖2 + βk

HRMsk
Tyk −

βk
HRMsk

Tykyk
Tgk+1

‖yk‖2
+

∅𝑘‖yk‖2‖gk+1‖2

‖yk‖2
 

dk+1
T gk+1 ≤ −∅𝑘‖gk+1‖2 + βk

HRMsk
Tyk (1 −

yk
Tgk+1

‖yk‖2
) + ∅𝑘‖gk+1‖2 

From Powell restarting condition |gk+1
T gk| > 0.2‖gk+1‖2  we have 

−0.2‖gk+1‖2 > gk+1
T gk > 0.2‖gk+1‖2 

Which implies that 

yk
Tgk+1 = (gk+1 − gk)Tgk+1 > ‖gk+1‖2 + 0.2‖gk+1‖2 = 1.2‖gk+1‖2 

dk+1
T gk+1 ≤ β

k
HRMsk

Tyk (1 −
yk

Tgk+1

‖yk‖2
) 
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dk+1
T gk+1 ≤

gk+1
T (gk+1 −

‖gk+1‖
‖gk‖

gk)

u‖gk‖2 + (1 − u)‖sk‖2
sk

Tyk (1 −
1.2‖gk+1‖2

‖yk‖2
) 

dk+1
T gk+1 ≤

‖gk+1‖2 −
‖gk+1‖

‖gk‖
gk+1

T gk

u‖gk‖2 + (1 − u)‖sk‖2
sk

Tyk (1 −
1.2‖gk+1‖2

‖yk‖2
) 

dk+1
T gk+1 ≤

‖gk‖‖gk+1‖2 − 0.2‖gk+1‖3

u‖gk‖3 + (1 − u)‖sk‖2‖gk‖
sk

Tyk (1 −
1.2‖gk+1‖2

‖yk‖2
) 

dk+1
T gk+1 ≤ −‖gk+1‖2sk

Tyk (
‖gk‖ − 0.2‖gk+1‖

u‖gk‖3 + (1 − u)‖sk‖2‖gk‖
) (

1.2‖gk+1‖2

‖yk‖2
− 1) 

Where   δ ≤ ‖gk‖ ≤ δ ̅      and    u = 0.9 

dk+1
T gk+1 ≤ −‖gk+1‖2 (

0.8δ ̅

0.4δ
3 + 0.6δ‖sk‖2

) (
1.2δ ̅2

‖yk‖2
− 1) sk

Tyk 

Then 

c1 = (
0.8δ ̅

0.4δ3 + 0.6δ‖sk‖2
) (

1.2δ ̅2

‖yk‖2
− 1) sk

Tyk > 0 

Since sk
Tyk > 0 and small and 0

2
ks  for these reason we can get the sufficient 

condition of three term from  0 < θk
SB1 < 1, then 

dk+1
T gk+1 ≤ −c1‖gk+1‖2                                                                                          (30) 

 
Case II:  Again we use the same procedure to proof that the new search direction 

generated by  θk
SB3 (we can consider a general form of  θk

SB2 when use t=0.8) is 

sufficient descent direction too. 

𝑑𝑘+1
𝑇 𝑔𝑘+1 = −∅𝑘‖𝑔𝑘+1‖2 + 𝛽𝑘

𝐻𝑅𝑀𝑠𝑘
𝑇𝑔𝑘+1 − 𝜃𝑘

𝑆𝐵3𝑦𝑘
𝑇𝑔𝑘+1 

Considering ( 𝑠𝑘
𝑇𝑔𝑘+1 < 𝑠𝑘

𝑡 𝑦𝑘) then we get: 

dk+1
T gk+1 ≤ −∅𝑘‖gk+1‖2 + 𝛽𝑘

𝐻𝑅𝑀sk
Tyk

− (
𝛽𝑘

𝐻𝑅𝑀sk
Tyk + tsk

Tgk+1 − ∅𝑘yk
Tgk+1

‖yk‖2
) yk

Tgk+1 

dk+1
T gk+1 ≤ −∅𝑘‖gk+1‖2 + 𝛽𝑘

𝐻𝑅𝑀sk
Tyk

−
𝛽𝑘

𝐻𝑅𝑀sk
Tykyk

Tgk+1 + tsk
Tgk+1yk

Tgk+1 − ∅𝑘(yk
Tgk+1)

2

‖yk‖2
 

𝑑𝑘+1
𝑇 𝑔𝑘+1 ≤ −∅𝑘‖𝑔𝑘+1‖2 + 𝛽𝑘

𝐻𝑅𝑀𝑠𝑘
𝑇𝑦𝑘 (1 −

𝑦𝑘
𝑇𝑔𝑘+1

‖𝑦𝑘‖2
) −

𝑡𝑠𝑘
𝑇𝑦𝑘𝑦𝑘

𝑇𝑔𝑘+1

‖𝑦𝑘‖2

+ ∅𝑘‖𝑔𝑘+1‖2 

From Powell restart condition we conclude (𝑦𝑘
𝑇𝑔𝑘+1 > 1.2‖𝑔𝑘+1‖2) and then: 

𝑑𝑘+1
𝑇 𝑔𝑘+1 ≤ 𝛽𝑘

𝐻𝑅𝑀𝑠𝑘
𝑇𝑦𝑘 (1 −

1.2‖𝑔𝑘+1‖2

‖𝑦𝑘‖2
) −

𝑡𝑠𝑘
𝑇𝑦𝑘𝑦𝑘

𝑇𝑔𝑘+1

‖𝑦𝑘‖2
  

𝑑𝑘+1
𝑇 𝑔𝑘+1 ≤

𝑔𝑘+1
𝑇 (𝑔𝑘+1 −

‖𝑔𝑘+1‖
‖𝑔𝑘‖

𝑔𝑘)

𝑢‖𝑔𝑘‖2 + (1 − 𝑢)‖𝑠𝑘‖2
(1 −

1.2‖𝑔𝑘+1‖2

‖𝑦𝑘‖2
) 𝑠𝑘

𝑇𝑦𝑘

−
1.2 𝑡𝑠𝑘

𝑇𝑦𝑘

‖𝑦𝑘‖2
‖𝑔𝑘+1‖2 
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𝑑𝑘+1
𝑇 𝑔𝑘+1 ≤

‖𝑔𝑘‖‖𝑔𝑘+1‖2 − 0.2‖𝑔𝑘+1‖3

𝑢‖𝑔𝑘‖3 + (1 − 𝑢)‖𝑠𝑘‖2‖𝑔𝑘‖
(1 −

1.2‖𝑔𝑘+1‖2

‖𝑦𝑘‖2
) 𝑠𝑘

𝑇𝑦𝑘

−
1.2 𝑡𝑠𝑘

𝑇𝑦𝑘

‖𝑦𝑘‖2
‖𝑔𝑘+1‖2 

𝑑𝑘+1
𝑇 𝑔𝑘+1 ≤ −‖𝑔𝑘+1‖2𝑠𝑘

𝑇𝑦𝑘 [(
‖𝑔𝑘‖ − 0.2‖𝑔𝑘+1‖

𝑢‖𝑔𝑘‖3 + (1 − 𝑢)‖𝑠𝑘‖2‖𝑔𝑘‖
) (

1.2‖𝑔𝑘+1‖2

‖𝑦𝑘‖2
− 1)

+
1.2 𝑡

‖𝑦𝑘‖2
] 

where   𝛿 ≤ ‖𝑔𝑘‖ ≤ 𝛿 ̅      and 𝑢 = 0.9 , implies : 

𝑑𝑘+1
𝑇 𝑔𝑘+1 ≤ −‖𝑔𝑘+1‖2𝑠𝑘

𝑇𝑦𝑘 [(
𝛿 ̅ − 0.2𝛿 ̅

0.9𝛿3 + 0.6𝛿‖𝑠𝑘‖2
) (

1.2𝛿 ̅2

‖𝑦𝑘‖2
− 1) +

1.2 𝑡

‖𝑦𝑘‖2
] 

𝑑𝑘+1
𝑇 𝑔𝑘+1 ≤ −‖𝑔𝑘+1‖2𝑠𝑘

𝑇𝑦𝑘 [(
0.8𝛿 ̅

0.4𝛿3 + 0.6𝛿‖𝑠𝑘‖2
) (

1.2𝛿 ̅2

‖𝑦𝑘‖2
− 1) +

1.2 𝑡

‖𝑦𝑘‖2
] 

Then 

𝑐2 = 𝑠𝑘
𝑇𝑦𝑘 [(

0.8𝛿 ̅

0.4𝛿3 + 0.6𝛿‖𝑠𝑘‖2
) (

1.2𝛿 ̅2

‖𝑦𝑘‖2
− 1) +

1.2 𝑡

‖𝑦𝑘‖2
] > 0 

Since 𝑠𝑘
𝑇𝑦𝑘 > 0 and small and 0

2
ks  this implies that we can get the sufficient 

condition of three term from  0 < 𝜃𝑘
𝑆𝐵2 < 1. 

Then 

𝑑𝑘+1
𝑇 𝑔𝑘+1 ≤ −𝑐2‖𝑔𝑘+1‖2                                                                                        (31) 

Looking at revealed analysis papers during this field, has to mention some vital lemma 

and a crucial theorem for any CG methodology uses robust Wolfe line search. The 

subsequent general results hold. 

3.4 Lemma [8, 13]. 

Consider a general CG-method, and suppose that   kg0  holds. We call a 

method has Lemma 3.2 if there exist two constants b>1 and p>0 such that for all k, 

bk    and        

b
ps kk

2

1
                                                                                                  (32) 

3.5  Lemma [7] (Zoutendijk Condition). 

Suppose that assumptions A and B hold. Consider any CG-type method in the form of 

kkkk dxx +=+1  where kd  is a descent direction and k  satisfies the Wolfe-Powell line 

search conditions in (4)-(6) . Then we have that: 

+
0

2

2)(

k k

k

T

k

d

dg
                                                                                                    (33) 

3.6 Lemma [8]. 

Let Assumptions A and B hold and think about any CG technique outlined by (2) and 

(3), wherever kd  may be a descent direction and k  is obtained by the strong Wolfe 

line search. If 
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 →

==
1

2
0inflim

1

k

k
k

k

g
d

                                                                            (34) 

Now we have to prove the convergence of our proposed  three-term CG-

Algorithm after they have shown helpful and good properties as in the following 

theorem: 

3.7  New Theorem2.  

Suppose that the Assumptions A and B  hold. Think about the TTCG-Algorithm 

outlined by (2) and (16), wherever dk+1 is a sufficient descent direction if for k ≥
0,  ‖sk‖ tend to zero and also there exists δ and δ̅ such that (0 < δ ≤ ‖gk‖ ≤ δ̅) and the 

function f is a general function with Lipchitz condition, then: 

  lim
k→∞

inf‖gk‖ = 0. 

Proof:  

Let us now take the more general form of 𝜃𝑘
𝑆𝐵3 defined in (26) and use them 

within the formula in the equation (16) as in: 

𝑑𝑘+1 = −∅𝑘𝑔𝑘+1 + 𝛽𝑘
𝐻𝑅𝑀𝑠𝑘 − 𝜃𝑘

𝑆𝐵3𝑦𝑘 

‖𝑑𝑘+1‖ = ∅𝑘‖𝑔𝑘+1‖ + |𝛽𝑘
𝐻𝑅𝑀|‖𝑠𝑘‖ + |𝜃𝑘

𝑆𝐵3|‖𝑦𝑘‖ 

Where,  

𝛽𝑘
𝐻𝑅𝑀 =

‖𝑔𝑘+1‖2 −
‖𝑔𝑘+1‖

‖𝑔𝑘‖
𝑔𝑘+1

𝑇 𝑔𝑘

𝑢‖𝑔𝑘‖2 + (1 − 𝑢)‖𝑠𝑘‖2
 

|𝛽𝑘
𝐻𝑅𝑀| ≤

‖𝑔𝑘‖‖𝑔𝑘+1‖2

𝑢‖𝑔𝑘‖3 + (1 − 𝑢)‖𝑠𝑘‖2‖𝑔𝑘‖
+

‖𝑔𝑘+1‖2‖𝑔𝑘‖

𝑢‖𝑔𝑘‖2 + (1 − 𝑢)‖𝑠𝑘‖2‖𝑔𝑘‖
 

Let ‖𝑠𝑘‖ = 𝐷 and then we get: 

|𝛽𝑘
𝐻𝑅𝑀| ≤

𝛿 ̅3

𝑢𝛿3 + (1 − 𝑢)𝛿𝐷2
+

𝛿 ̅3

𝑢𝛿3 + (1 − 𝑢)𝛿𝐷2
 

|𝛽𝑘
𝐻𝑅𝑀| ≤

2𝛿 ̅3

𝑢𝛿3 + (1 − 𝑢)𝛿𝐷2
= E 

Doing the same procedure for 𝜃𝑘
𝑆𝐵3 yields 

𝜃𝑘
𝑆𝐵3 =

𝛽𝑘
𝐻𝑅𝑀 𝑦𝑘

𝑇𝑠𝑘 + 𝑡𝑠𝑘
𝑇𝑔𝑘+1 − ∅𝑘𝑦𝑘

𝑇𝑔𝑘+1

‖𝑦𝑘‖2
  

|𝜃𝑘
𝑆𝐵3| ≤

|𝛽𝑘
𝐻𝑅𝑀| ‖𝑦𝑘‖‖𝑠𝑘‖

‖𝑦𝑘‖2
+

|𝑡|‖𝑠𝑘‖‖𝑔𝑘+1‖

‖𝑦𝑘‖2
+

|∅𝑘|‖𝑦𝑘‖‖𝑔𝑘+1‖

‖𝑦𝑘‖2
 

, where  

∅𝑘 =
‖𝑠𝑘‖2

𝑠𝑘
𝑇𝑦𝑘

=
𝐷2

𝑙‖𝑠𝑘
𝑇𝑠𝑘‖

=
𝐷2

𝑙𝐷2
=

1

𝑙
 

From Lipchitz condition ‖𝑦𝑘‖ ≤ 𝑙‖𝑠𝑘‖ implies that: 

|𝜃𝑘
𝑆𝐵3| ≤

|𝛽𝑘
𝐻𝑅𝑀|𝑙‖𝑠𝑘‖2 

𝑙2‖𝑠𝑘‖2
+

|𝑡|‖𝑠𝑘‖𝛿̅

𝑙2‖𝑠𝑘‖2
+

𝑙‖𝑠𝑘‖𝛿̅

𝑙2‖𝑠𝑘‖2
∗ (

1

𝑙
) 

|𝜃𝑘
𝑆𝐵3| ≤

1

𝑙
(𝐸 +

𝑡𝛿̅

𝑙𝐷
+

𝛿̅

𝑙𝐷
) 

Then added the above result to get the following : 

‖𝑑𝑘+1‖ ≤
‖𝑔𝑘+1‖

𝑙
+ |𝛽𝑘

𝐻𝑅𝑀|‖𝑠𝑘‖ + |𝜃𝑘
𝑆𝐵3|‖𝑦𝑘‖ 
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‖𝑑𝑘+1‖ ≤
‖𝑔𝑘+1‖

𝑙
+ 𝐸𝐷 +

1

𝑙
(𝐸 +

𝑡𝛿̅

𝑙𝐷
+

𝛿̅

𝑙𝐷
) 𝑙𝐷 

‖𝑑𝑘+1‖ ≤
‖𝑔𝑘+1‖

𝑙
+ 𝐸𝐷 + 𝐸𝐷 +

𝑡𝛿̅

𝑙
+

𝛿̅

𝑙
 

‖𝑑𝑘+1‖ ≤
𝛿̅

𝑙
+ 2𝐸𝐷 +

𝑡𝛿̅

𝑙
+

𝛿̅

𝑙
 

‖𝑑𝑘+1‖ ≤ 2𝐸𝐷 +
𝑡𝛿̅

𝑙
+

2𝛿̅

𝑙
 

Therefore, 

0 < ∑
(𝑔𝑘

𝑇𝑑𝑘)2

‖𝑑𝑘‖2
< ∞

∞

𝑘=0
 

∑
‖𝑔𝑘‖4

‖𝑑𝑘‖2

∞

𝑘=0
≤ ∑

1

𝑐2

(𝑔𝑘
𝑡 𝑑𝑘)2

‖𝑑𝑘‖2

∞

𝑘=0
< ∞ 

Then lim
k→∞

inf‖gk‖ = 0. 

 

Therefore, when 0 < ∅k < 1, so we are able to prove that the new TTCG algorithm is 

global convergence, we are able to additionally say 0=kg  for a few k or (34) holds. It 

will be discovered, it's from the info of the new Theorem1 theory, the direction 1+kd  

satisfied the sufficient descent condition severally of the line  search. 

3.8 Theorem [8]. 

Assume that Assumptions A and B hold. Contemplate the strategy (2)-(3) with the 

subsequent 3 : 

(i) 0k  for all k; 

 (ii) The line search satisfies the Zoutendijk condition, and the sufficient descent 

conditions (30) and (31); 

 (iii) Lemma 3.4 holds. 

All these conditions provide us with a transparent and comprehensive convergence of 

the quality CG-algorithm, then 0inf =
→

k
k

gLim
.
 

After all this proof, the projected new TTCG formula with three versions features 

a convergent global characteristic by satisfying the wants of the Zoutendijk theorem and 

therefore the line search satisfy the robust Wolfe–Powell condition then from Gilbert 

and Nocedal in [8] these methodology has the global convergence property. 

4. Numerical Experiments. 
In this section, we glance at the tables and graphs of some computations to check 

the relative performance of the mathematical implementation of packaging, human 

resource management and projected new standards (TTCG Algorithm) (NEW) to a 

collection of thirty eight any old nonlinear issues. Its details will be found in [21, 24, 

27]. We have chosen completely different test functions for each free and tiny scale 

optimization problem. Every one tested with completely different variables between one 

and 10,000. We have a tendency to test these issues mistreatment the Wolfe Powell 

technique. 

These CG-Algorithm were enforced by mistreatment Visual FORTRAN version 

2002, we've applied the Wolfe-Powell line search technique. All of the numerical 

experiments were run on identical laptop with associate Intel(R), Core TM, i7-3612QM 
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(2.10GHZ) CPU, 6GB of RAM , associated mistreatment Windows seven as an 

operating system. 

In order to assess the responsible-ness of the new projected scaled three-term CG-

Algorithm, we tend to test this algorithmic rule against the well-known classical and 

changed ways of the PR and HRM CG-Algorithms mistreatment constant issues, and 

assumed that the most effective algorithmic rule ought to need fewer range of iterations, 

NOI; number of function and gradient evaluations NOFG; less time needed to induce 

the answer purpose processor and also the total work outlined by, TOTAL WORK = 

NOI + NOFG + TIME. All of those CG-Algorithms terminated once: 

 ‖gk‖ < 10−6 . 

Numerical results were comparatively compared with the processor time, NOFG 

and number of iterations (NOI). The performance results square measure shown in 

Figures (1) and (2) severally, employing a performance profile introduced by Dolan and 

More [5]. 

Table(1). Comparison between NEW against (PR & HRM) CG-Algorithms 

For the Total of (38) different test functions with dimensions n= 1000, 2000, … 10000 
New (2018) 

NOI/NOFG/TIME 

HRM (2016)       

NOI/NOFG/TIME 

PR (1969) 

NOI/NOFG/TIME 
Test Problems 

103/434/0.09 5518/7177/0.27 1803/3356/0.43 
1-Freudenstien & 

Roth- (CUTE) 

475/1365/2.29 372/741/0.14 362/695/0.31 2-Trigonometric 

348/1151/0.20 9227/10886/0.39 5715/7744/0.25 
3-Extended White & 

Holst 

125/365/0.07 487/1202/0.03 498/1217/0.04 4-Extended Beale 

142/565/0.11 271/685/0.02 274/690/0.01 5-Penalty 

30/100/0.07 106/319/0.03 106/319/0.03 6-Raydan 2 

250/875/0.20 291/604/0.02 286/596/0.02 
7-Generalized Tri-

diagonal 1 

60/170/0.21 205/440/0.07 193/426/0.06 
8- Extended Three 

Expo Terms 

633/1688/0.45 4500/5752/0.29 3920/5163/0.26 
9- Generalized Tri-

diagonal 2 

20/60/0.02 269/750/0.02 345/918/0.02 10- Diagonal 4 

20/70/0.10 78/284/0.05 78/284/0.06 11- Diagonal 5 

60/190/0.03 208/512/0.02 200/503/0.01 
12- Extended 

Himmelblau 

70/230/0.26 218/478/0.06 194/453/0.06 13- Extended PSC1 

1770/5136/0.98 10010/11636/0.41 6149/10914/0.29 
14-  Extended Wood   

(CUTE) 

19/58/0.02 54/294/0.02 54/294/0.01 15- Extended EP1 

40/176/0.02 2409/3138/0.18 1336/1946/0.08 
16-ARWHEAD 

(CUTE) 

42/127/0.01 9454/10602/0.44 5623/6604/0.28 17-NONDIA (CUTE) 

53/159/0.08 132/354/0.02 132/354/0.01 
18- DIXMAANA 

(CUTE) 

70/201/0.14 144/351/0.02 144/351/0.02 
19- DIXMAANB 

(CUTE) 

70/220/0.12 140/373/0.02 140/373/0.01 20- DIXMAANC 
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In the beginning we used the three new versions of the new proposed scaled 

TTCG- algorithms in our implementation to obtain numerical results but later we 

noticed that the last version is the best one among these three  version formulas and 

therefore within the numerical result Tables, we will list the CG-Algorithm of the third 

version only which is more important to highlight the numerical results and efficiency 

of the three CG-Algorithms. 

Table(2). Percentage Performance of (PR) against (NEW) 

NEW   PR TOOLS 

19.0% 100% NOI 

36.2% 100% NOFG 

(CUTE) 

260/962/0.28 1296/1674/0.07 321/686/0.02 
21-EDENSCH 

(CUTE) 

195/648/0.13 3759/5577/0.23 1397/2816/0.07 
22-LIARWHD 

(CUTE) 

30/100/0.07 106/319/0.02 106/319/0.02 23-DIAGONAL 6 

261/1228/0.22 328/701/0.02 304/672/0.02 
24-ENGVAL1 

(CUTE) 

80/240/0.14 256/500/0.04 257/495/0.04 
25-DENSCHNA 

(CUTE) 

130/390/0.33 1434/1935/0.18 1399/1887/0.14 
26-DENSCHNC  

(CUTE) 

60/190/0.03 143/394/0.01 143/394/0.00 
27-DENSCHNB 

(CUTE) 

80/240/0.14 1428/1936/0.19 495/1041/0.09 
28- Extended Block-

Diagonal BD2 

71/266/0.06 142/395/0.01 144/399/0.03 
29-Generalized 

quartic GQ1 

40/140/0.09 108/329/0.02 108/329/0.10 30-DIAGONAL 7 

30/100/0.10 100/305/0.03 100/305/0.10 31-DIAGONAL 8 

20/70/0.06 109/408/0.04 109/408/0.02 32-Full Hessian 

70/230/0.26 218/478/0.05 194/453/0.08 33-SINCOS 

369/981/0.23 2424/2926/0.13 496/1011/0.02 
34-Generalized 

quartic GQ2 

23/164/0.08 10/30/0.00 10/30/0.00 
35-ARGLINB 

(CUTE) 

228/702/0.14 1436/1985/0.05 626/1247/0.03 
36-FLETCHCR 

(CUTE) 

60/140/0.07 80/100/0.01 80/100/0.01 
37-HIMMELBG 

(CUTE) 

60/190/0.03 170/420/0.01 180/420/0.01 
38-HIMMELBH 

(CUTE) 

6467/20321/7.93 57640/76990/3.63 34021/56212/3.06                      Total 

26795.93 134633.63 90236.06 
Total Work= NOI + 

NOFG + Time 
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29.7% 100%                   Total Work         

Table(3). Percentage Performance of (HRM) against (NEW) 

NEW  HRM TOOLS 

11.2% 100% NOI 

26.4% 100% NOFG 

19.9% 100%                   Total 

Work                  

 

In Tables ( 2 & 3 ), the efficiency of the (NEW) TTCG-Algorithm was compared. The 

new algorithm gave the best numerical results according to our used 38-test problems.  

Table(4). No. of best test problems  

 (NEW) against (PR)   
PR 

100% 

NEW  
100% 

No. of PR 

best 

functions  

 

No. of 

New best 

functions  

 

Tools 

5.3% 94.7% 2 36 NOI 

15.8% 84.2% 6 32 NOFG 

81.6% 13.2% 31 5 TIME 

Table (5). No. of best test problems  

 (NEW) against (HRM)   
HRM 

100% 

NEW  
100% 

No. of 

HRM 

best 

functions  

 

No. of 

New best 

functions  

 

Tools 

5.3% 94.7% 2 36 NOI 

13.2% 86.8% 5 33 NOFG 

78.9% 15.8% 30 6 TIME 

If we tend to calculate the number of the best take a look at functions once PR is 

compared with NEW in step with NOI, NOFG and C.P.U. in Table(4), we tend to see 

that the NEW rule is actually higher than PR, and if we tend to calculate the amount of 

best take a look at functions once HRM is compared with NEW in NOI, NOFG and 

C.P.U. in Table(5) , show that the NEW rule is that the higher than HRM, that the NEW 

rule is that the most strong rule in step with the number of iteration , NOFG and TIME 

underneath the accelerated Wolfe-Powell line search:  

Figure(1) shows the performance file for all measures in CG-Algorithms with  the 

required NOI. 

Figure(2) shows the performance file for all measures in CG-Algorithms with  the 

required NOFG. 

Accurate examination of all shapes indicates that the bottom curve represents the 

PR CG-Algorithm. Therefore, this CG-Algorithm has less performance. Also, HRM 

incorporates a slightly higher performance than PR. Finally, the exact check shows that 
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the, NEW technique has the best performance by exploitation each tools; NOI and 

NOFG. 

.  

Figure(1): Performance profile relative to the NOI 

 

 

Figure(2): Performance profile relative to the NOFG 

5. Conclusions. 

In this paper, we've investigated a replacement scaled TTCG-Algorithm within 

three completely different new versions for resolving a collection of unconstrained non-

linear minimization issues each on paper and by experimentation. The last version of 

this TTCG-Algorithm, namely SB3, is that the sturdy one. This is often compared 

numerically against the 2 accepted CG-Algorithms (PR and HRM). The numerical and 

theoretical studies during this paper show that the state of decent condition will be 

derived and converged globally if the Wolfe-Powell line search was used. Numerical 

results for 38 check issues, in general, and for this hand-picked kind of numerical 

examples, show that the NEW-Algorithm is the sturdy and effective one. 
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