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ABSTRACT

In this paper, we investigated a new improved Conjugate Gradient (CG)
algorithm of a Three-Term type (TTCG) based on Dai and Liao procedure to improve
the CG algorithm of (Hamoda, Rivaie, and Mamat / HRM). The new CG-algorithm
satisfies both the conjugacy condition and the sufficient descent condition. The step-size
of this TTCG-algorithm would be computed by accelerating the Wolfe-Powell line
search technique. The proposed new TTCG algorithms have demonstrated their global
affinity in certain specific circumstances given in this paper.

Keywords: Three-Term Conjugate Gradient, Scaling Parameter, Conjugacy Property,
Search Directions, Large Dimensions, Wolfe-Powell Line Search.

Baiall y& Ay sl Jiluall Jad EBEN 3 gand) cild Audal) (38 jiall gz il 37948 daa ) ) 63

b dgana (p yla ) (i gy b
by pll 5 sl o sl S Gloall «_inli ¢ jiali dnals
Gl i o ol ¢ foon pall dnala
2019/03/27 :&ayl) J g g G 2018/12/19 &yl adu gy U
il

(TTCG) <l agaall <y Galiall nll sass daaylod Slaniud (A il 23 (Caad) 138 3
2 4aldll HRMCG 4w))lsa (pwail (Dal & Liao, 2001) Géliadl zonll duwylsa Je alae¥l
-(Hamoda, Rivaie, and Mamat, 2016)
& Shall Behadll aan Clus g SN sy ohEY) Jdayd a3 sl TTCG duay)lss

ekl & Wolfe-Powell I sxlall Gl bad 438 aopes DA e 3322l TTCG e lss
ae Al sda 8 sylell Baaadll Cagplall a8 deldll Ll dsiaal suaal) TTCG bl
xade e gl e Jpeanl
e (i) lalanl AN duald (el Aaee (EDED 3g0al) b Gl zonl dabidal) clalsl)
. Wolfe-Powelluay o 5,08

1. Introduction
To start by giving any issue of unconstrained optimization we need to know this

issue as follows:

min {f(x):x € R} (D
Let us define the function as f from R" to R is continuously differentiable function,

87


mailto:profabbasalbayati@yahoo.com
mailto:mssabreen6@gmail.com

Abbas Y. Al-Bayati & Sabreen M. Abbas

and its gradient is denoted by g(x) = Vf(x), these CG methods are known to be designed
to solve the problem of type (1), specifically when the n dimension is very large due to
the simplicity of repetition of the search, memory requirements are very low. The iterative
formula for standard TTCG methods is given by:
Xk+1 = Xk + akdk ) k= 0,1,2 (2)
The oy amount of the step is always evident as a positive scalar and dy is the
search direction specified by:
do. = {_gk+1 if k=0 (3)
LT = Grerr + Bredy ifk=1
Where By is scalar. The differences highlight CG methods in their speed and
performance by specifying the numerical parameter f,. This is a set of the famous
versions of S, as contained in their sources:

s Ike1( @1 — i) R Jk1Jk+1 pr _ Jke1( i1 — i)
o (G+1 — g di o 9k Ik o Ik Ik

D _ _917;+19k+1 LS _ _g£+1(gk+1 — gk) DY _ 9£+19k+1
o di. gk o di gk T (G — 9T dye

CG methods converge with the FR format worldwide but have poor numerical
performance because of the behavior of the jamming along the repetition process.
The PR and HS methods have good numerical performance but are not always close
[11]. To clarify all of the s = xp41 — x, and yi, = grs1 — gx ; |l || indicates the
Euclidean norm. In the order givento those parameters, we will list their
sources severally, HS (Hestenes Stiefel [17]), FR (Fletcher Reeves [25]), PR (Polak
Ribiere [2, 4]), CD (Conjugate Descent [26]), LS (Liu Storey [28]) and DY (Dai
Yuan [30]) CG ways. Any methodology of gradient has to update the point by the
line search used. The Wolfe-Powell (WWP) customary search terms square
measure usually employed in CG ways. The search terms within the Weak Wolfe-
Powell (WWP) line square measure as follows:

f (k1) = f () < Sagidy (4)
Jir1dk = g dy (5)

By this condition, d, is a descent search direction such that 0<§ <o < 1.
The Strong Wolfe-Powell (SWP) conditions defined in (4) and satisfies:
|gk+1dk| < ogidy (6)

As a generalization of Strong Wolfe conditions, the absolute value opens in (6)
with two disparities of inequality so that:
~0gkdy < Gis1dr < ogrdy

Moreover, from all of these previous conditions we obtain the characteristic of
sufficient descent, namely:
grdr < —cllgill? (7)

where ¢ > 0 is a positive constant.

In the last year, Wei and et. al. [32] introduced an odd plan of its predecessors
from the formulas of the PR-CG methodology referred to as the WYL-
CG methodology. Zhang recommended through his study a lot of and has improved
WYL-CG normal methodology victimization the new CG, additionally it well-tried that
the strategy of NPR-CG met the traditional demand ratios beneath conditions of line
search SWP [15]. Finally, Zhang et al. planned another changed CG-method referred to
as the MPR-CG methodology, wherever Dai and Wen [31] planned another changed
version of NPR-CG methodology referred to as the DPR-CG methodology.
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Some Important Updates for Recent Different CG-Methods

Researchers Formulas
T Ing+1II )
e I g Il
2 | gsall
NPR-CG NPR _ “gk+1” ”gk” ng+1gk|
e Il g Il
MPR-CG ’ICWPR _ 6 “gk+1”2
lgell? + 195 dp|
2 _ lgr+all | 7
DPR-CG DPR _ ”gk+1” ”gk” |gk+1gk|
i gy dil + llgill?

The researchers (Hamoda, Rivaie and Mamat) in [15] have developed another
new CG-type formula for the formulas mentioned in the above table by changing the
compound based on the convex structure method to obtain better results compared to
the previous formulas by suggesting the following formula:

T | Grall )
HRM _ Jiet1 (gk+1 llgell Ir _a (8)
« ullgell* + (X —wllsell* b

Then from the results that obtained by [15], the quantity of the parameter u=0.9
i.e.  ue€(0,1)and from BHEM given in equation (8), the search direction of this
formula was given in the following gradient:

Ay =0 + ﬂkTRM d, ©)

1.1 Spectral CG-Methods.

As a necessary and important type of gradient methods to solve the problem (1) is
the method of spectral gradient (SCG), which was originally developed by Barzilai and
Borwein [9]. In 1988, Raydan [19] added SCG method to the problems of unrestricted
improvement on a large scale. The idea of this method depends mainly on the use of
gradient trends only in each line search in order to ensure the regression strategy by
multiplying the first limit by a parameter derived from one of the known derivation
methods or by the parameter S, as in the first idea of this method, Good global. So this
method is superior to the CG method developed in many problems but when you devise
the exact line of search with both methods you will revert to the traditional method. The
first to give the first idea of this method was Birgin and Martinez [6] proposed three
types of SCG methods. So that the direction d, of this method is defined as follows:

Ay =6 9ia + Bed, (10)
Variable parameter B formulas vary in these ways:
ﬁli _ (¢kyk —TSk)T Oka ﬂkz _ ¢k y; ng+1 ﬁks _ ¢kgl+1gk+l
Sk Yk 9y 9y o 4.9¢ 9, 11
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The gradient formula varies according to the parameter 2 calculated by the
following:
St Si
¢k = T
Sk Yk
Note in the numerical results that these methods give good effectiveness, but they

(12)

may not be able to guarantee the generation of dy descent directions if the use of
inexact-line searches as when using the search Armijo or Wolfe as a type of inexact-line
searches, in the case of general functions is not guaranteed so each algorithm is proven
to be effective in these properties theoretically and practically through numerical results.
To ensure descent property, Dixon [14] and Al-Baali [18] suggested to use the steepest

descent direction ~ 9« instead of dy shown in (3). Recently noted, there are many
modified CG methods studied. Liu et al. [10] make an adjustment to the CD-method so

that the direction that is always generated is the descent direction and dy is determined
by the following:
~ Ok if k=1
dy,=
- ~$ Qi + By, if k=2 (13)
where Px is specified by the following
- if g,.,d, <0
k k+1%k )
B = (14)
0, else,
and
g;<r+ldk
h=1- " (15)
© 7 g,

They demonstrate that this method can ensure that descent directions are
generated and are globally convergent.

This paper is divided as follows: In Section 2, we evaluate the new form of the
CG-three-term method using the spectral gradient method with derivation of 658, i =
1,2,3. In Section 3, we give some proof to prove sufficient properties of global
proportions and convergence using standard derivation 835¢ of Section 2. Finally, in
Section 4, the task of this part is the good numerical results of the new algorithm. The
new CG-algorithms under standard conditions gave new search directions which have
better performance than the two-dimensional algorithms for solving problems of large
scale dimensions, i.e. n = 1000, .., 10000, for total of thirty-eight standard non-linear
test functions.

2. New CG- Algorithm (Modified HRM).

Through what researchers (Zhang, Zhou and Li [12, 13]) have prompt in recent
years, three CG strategies prompt a way that forever satisfies the case of sufficient
descent condition (7), freelance of the techniques of line search. Here, during this work,
we've superimposed another extra term for the search direction (9) to become a scaled
three-term search direction to enhance the number of iterations calculated and therefore
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the number of conniving the objective functions and their gradients. Will be rewritten
by a three-term form:

dRsY = — 4, B + B Vs — B3y (16)
The parameter ¢, can be calculated, normally, from (12) and the new proposed

search direction defined in (16), gives more efficiency and more stable CG-algorithm
to reach the optimal minimum point compared with the original two-term search
direction defined in (9). Also, the new proposed parameter used in (16) has good
theoretical background compared to the theories derived from the both PR-CG and
HRM —CG methods.

2.1 Derivation of The New Parameters 635"

To derive a formula 832!, depending on the classic conjugacy property given in

the following equation:
Vidirq =0 (17)
The first conditional condition, in this approach, gives a method of approximation
of the search direction by deleting one term through derivation and as a generalization
of this formula by placing the inexact line search (ILS) condition of the formula. We
obtain the conditional condition given by Perry [1] as in the following formula:
Vi Ars1 = —SkJr+1 (18)
A. Derivation of The New Parameter ;21 .

From (16), we use the direction

T
disy = —OuGrr1 + B M sk — 07y By = jf;’;
I I
Jie+1 (9k+1 - ﬁg;h gk) 51

drey = —g + s — 6 (19)

e ORI TP+ A wllsd? e
Multiplying (19) by yy:

| I
. . I+t (9k+1 - ﬁg:h gk) .
Apsy = —0 + s
k“%k+1 kYk k+1 u”gk”2+(1_u)”5k”2 Yk Sk
— 0" Vi vk (20)

Using (17) and substituting g% from the formula:

HRM _ 2 (21)

ko Tp
Then we get:

a
0=—0xYi i+ + 5 Viesi = 0" lyell?
Hence,
a

sB1 _ b YkSk — BYkBst

) llyll®
els(Bl
_ aYkSk — bBiyigi 22)

bllyll?

B. Derivation of The New Parameter ;2% .
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From (18), (21) and (16) we use the direction:

dist = —OrGr+1 + BEM sk — 0572y
1 Gkeal
91Z+1 (gk+1 - ﬁ;;ﬁ gk)
dneW — _@ + S,
fet1 K T g2+ (= w)lsell? *
— 652y, (23)

Multiplying (23) by yy:

| I
91€+1 (gk+1 - ﬁ;IlI gk)
£ Vi sk — 052 yE i
1él||gk||2 + (1 — wllsgll?
—Skgr+1 = —OrVi G+ + b Vs — 02 lyill?

FAReY = —0ryE grsr +

a
13 Vi Sk + SEGr+1 — OkVi Grev1

9}?32
lyll?

Then

91}932

_a YieSk + bSg gker — bOiYi st
bllyll?

C. Derivation of The New Parameter 6373 .
SB3

Now, Use the conjugacy condition defined in [29] to derive 6;,

T ynew __ T
YiOgs1 = —USkGr+1

Rewrite the search direction as:
diey = =0 Grs1 + BEEM s, — 053y,

T N grall )
ow Ik+1 <9k+1 N9kl Ik <53
Sk — Ok Yk (25)

Yt = O * U P A -l ¢
From (21) and multiplying (25) by y; to get:
Yidist = =0V Gr+r + %yl’gsk — 0;:%%yk i
~tSk Gre+1=— B Vk Jr+1 +% Viesie = 072 lyrll?
B % Vit Sk + tSk Giev1 — OVi I+

llyiell?

(24)

SB3
Hk

Therefore,
9533

_ aYgSi+ btsg g — bOrYi Grea

bllyll*
Now the new proposed three new CG-formulas have been derived.
Below we can write the outlines of the proposed TTCG-algorithm in general using the
most comprehensive formula, namely, the third version, defined in (26). To compare its
numerical results, we compute the percentage performance of our new TTCG-
algorithm against the numerical results of (PR and HRM) CG-algorithms.

(26)

2.2 Different (Two and Three) Terms CG-Algorithms.
2.2.1 Algorithm PR-CG [4].
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Step 1: Let the initial value variable x, € R", €> 0 and initial direction dy = —g;
if ||goll <€ then stop.
Step 2: Evaluate step size oy by Wolfe line search technique from (4) and (5).
Step 3: Update the variable xy,=xy+aydy ; if (stop criteria) ||gx+1]| <€ then stop.
9Z+1(gk+1_gk)

9k 9k

and generate the new search direction dy,; = —gy + BrRdy

Step 5: Set k=k+1 and go to step 2.

Step 4: Compute the parameter pFR =

2.2.2 Algorithm HRM-CG [15].

Step 1: Initial input x, € R", €> 0 and first direction is dy = —gj ; if ||go|| <€
then stop.

Step 2: Evaluate oy by Wolfe line search technique from (4) and (5).

Step 3: Let Xy q=xxtoydy , if ||gks1 ]| <E then stop.

Step 4: Set u=0.9 and compute B, from (8) to generate dy, from (9).

Step 5: Set k=k+1 go to step 2.

2.3 An Accelerated Scheme of Wolfe Line Search Parameter.

In the first a part of this paper, we tend to mention the concept of standard CG
strategies, showing us that analysis trends might not be gradated. To boost the
performance of those strategies, search trends supported second order data square
measure based mostly. Jorge Nocedal [3] gave some observations indicating that the
lengths of steps within the CG strategies of one may be larger or smaller than one
looking on however the matter is measured. Calculations show that the latter is a lot of
victorious [7].

Here, we tend to talk to the acceleration theme in Andrei's [22]; primarily, this
step length is changed during a multiplying way to improve the reduction of function
values on the frequencies [20, 24].

2.4 Outlines of the New Spectral TTCG-Algorithm (NEW).

Step 1: Initial input point x, € R™,€> 0; first search direction d, = —g, ; if ||gol| <
€ then stop.

Step 2: Determine oy by using the Strong Wolfe-Powell technique (4) and (6).

Step 3: Evaluate new point by z,=xy + o dy, g, = Vf(z) and yy = gx — g,

Step 4: Compute ay = aygrdy and by = —ayyp dy

Step 5: Acceleration scheme. If b, > 0 and the evaluate g, = — z:t

and update the points as xy,; = Xx + €0 dy,
else update the points as xy,q = Xy + oy dy
Step 6: Evaluate 855! where i=1,2,3 , such that (SB1) is defined in (16); (SB2) is
defined in (18) and (SB3) is defined in (20).

.
S
Step 7: Attend parameter S5EM from (8) and compute ¢ = ——
k Jk

Step 8: Update search direction d¢% = — @, gis1 + B sy — B3Blyy

Step 9: Use Powell restarting criterion [16];

If |gE+1gk| > 0.2|lgk41 1%, then set dyq = —gpe1
Step 10: Update the iteration k=k+1 go to Step 2.
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3. Full Study of the Sufficient Descent and Global Convergence Properties.

Let us consider the foremost vital assumptions accustomed demonstrate the potency of
algorithms employed in previous studies of the related to gradient ways, see [20] for
example:

3.1 Assumption A.
Let f(x) is delimited from below on the extent set S ={x € R™,f(x) < f(x0)},
where x, is that the place to begin.

3.2 Assumption B.

In some neighborhood N of S, the objective function is unceasingly differentiated,
and its gradient Lipchitz continuous, that is, there exists a continuing 0 < L < oo such
that

lg(x) =gl < Lllx —yll Vx,y € N. _ (27)
Now we derive the sufficient condition of three term from 6z %", such that i=1,2,3.

3.3 New Theoreml.
In the TTCG- Algorithm we generate a sequence of duplicates {x;} from (2) and
{dy} in (16), assuming that «, is determined by the strong Wolfe-Powell line search

(4)-(6) and 0<t<1. If 0 <6, <1 from (22)-(28), then the new proposed three term
search direction given by (16) is a sufficient descent direction where:

T 0.8 1282
€1 = SkVk [(0.463+0.68||sk||2) (Ilyk||2 1)] (28)
0.86 1.26 2 1.2t

C2 =S£yk l( 3 2)( 2_1>+ 2 ] (29)
0.46° + 0.68|Isgl1*/ \ Iyl lyell

Proof:

Case I: Use 03B! defined in (22) in (16) and multiply this equation by gy, to get:
dis19ie1 = =il GraalI? + BEEY K Giewr — HlfBlylzgk+1

Use an inexact line searches, in (4) and (6) ,to get :
) SkGk+1 = Sigk;l - iggk +TSng )
= S (8k+1 — 8Kk) + SKkBk=Sk Yk T Sk8k < Sk Yk

Hence,

HRM T T

SkYk — DYk Bk+1

d£+1gk+1 < _Qk”gk+1”2 + B]];IRMSI'EYR - < £ ”yk”2 )yggk+1
furthermore,
dr < —0ll |2 + BHRMgTy, MYk 81 Drcllyill® g 11
k+1gk+1 — kl18k+1 Bk SkYk ”yk”2 ”ykllz
T 2 HRM T Yggkﬂ 2
di+18ks1 = —Orllgreall® + B skyi| 1 — TAE + D llgsall

From Powell restarting condition |gi;gx| > 0.2llgi+1 1> we have

_0-2”gk+1”2 > g£+1gk > 0-2”gk+1”2
Which implies that

yggk+1 = (8k+1 — gk)Tgk+1 > “gk+1”2 + 0-2”gk+1”2 = 1-2”gk+1”2

Yi8k+1
HRM
dE+1gk+1 =< Bk SI'EYI( (1 - ”yk”2 >
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|| g1+l
g, < 2 (2 o) 1~ 21
ullgill* + (”1 - u|)|||Sk||2 llyill?
dE+1gk+1__ ”gk+1”2 ﬁg+ﬁ gk+1gk T <1 _jL2”gk+1”2>
ullgkll® + (1 — w[skll? llyill?
dT, gy < gkl lIgk+1 11 = 0.2[lgxk+1 11 STy, <1 B 1-2”gk+1”2>
ullgkll® + (1 — wIskll*|lgxll llyill?

lgill = 02llgicsall ) (L2llgicsa®
dy < — g1 llsp ( -1
reraBiers = RSk I\ ullgllP + (1= wllsilPligll) \ ™ Tyl
Where 6 <|lgkll <6 and u=0.9

i < ”2< 0.85 )(1.252 1) T
= - —1])s
kt1Bk+1 RS N ATAE Yk
Then

_ 0.85 1.252 )T > 0
=\ 0457 + 0.66015 2 ) Tyl ~ ) Sk

, 2 -
Since s{y, > 0 and small and [s, | > O for these reason we can get the sufficient
eSBl

condition of three term from 0 < < 1, then
iy 18kt < —ColIgiaall? (30)

Case Il: Again we use the same procedure to proof that the new search direction
generated by O3B3 (we can consider a general form of 6322 when use t=0.8) is
sufficient descent direction too.
dl€+1gk+1 = =0l grs1ll* + .BHRMSkng - 9§B3y;fgk+1
Considering (sk Jre+1 < SLyy) then we get:

dir18ke1 < —Oellgir 12 + BERM sy

PRM ST Yk + tSE8ke1 — DkYRBke1) 1
- ”ykllz Yk 8k+1

digs 181 < —Orllgrsall? + BFRMsiyy

2
B Sy B + tSk 81V kBl — Bie(YicBir1)
llyll? . .
Yidrk+1\ ESkYrViIr+1
dk+1gk+1 —Brllgr+1 I + ﬁHRMSkyk (1 — > ) - -
vl el
+ Ol g+ 112

From Powell restart condition we conclude (y7 gx+1 > 1.2|lgk+111%) and then:
1.2l g1 7 tslz}’kyggkﬂ
div19k+1 < BEM sk v (1 - -

|y ll? lyll?
. ol
P (9001 =it g ( 12llgeal )S ,
it = e T+ (= wllse 2 Iyl )
12t5k}’k 2
— 2 gl

95



Abbas Y. Al-Bayati & Sabreen M. Abbas

lgrlllgr+1ll? = 021l g4 11 120l g+ 17\
Ar+19k+1 < - kYk

ullgiell® + (1 = Wllse >l gl l1yiell?

1.2 tsly, 5
———5 G+l
lyl

Il gicll = 0211 gse+4l )(1-2llgk+1ll2 3 1)

dr < —|lgr+1ll?st l(
er18iens = WG lPseye |\ g e T @ = lselPlgall )\ Tkl

1.2tl

|yl
where § <|lgill <6 andu=0.9,implies:

P 0 2 I( 6 —0.26 ) <1.26 2 1) 1.2t l
g s
k+19k+1 S kralIskyi 0.963 + 0.66||skll? ) \ v ll? Iy ll?

. B [( 0.86 )(1.25 2 1) L L2t l
— - S B

k+19k+1 Irk+111"Sk Vi 0.483 + 0.66[sx 1% ) \lyill? Iy 12

Then

. K 0.86 ) (1.252 1) N 1.2t
Cr =S - M 12
2= 5Kk 0,463 + 0.6515. 112 ) \I[vell? Iy II2

Since sfy, > 0 and small and ||Sk||2 >0 this implies that we can get the sufficient

condition of three term from 0 < 6582 < 1.

Then

dis19k1 < —C2llGra lI? (31)
Looking at revealed analysis papers during this field, has to mention some vital lemma
and a crucial theorem for any CG methodology uses robust Wolfe line search. The
subsequent general results hold.

>0

3.4 Lemma [8, 13].
Consider a general CG-method, and suppose that 0< & <|g,||< 5 holds. We call a

method has Lemma 3.2 if there exist two constants b>1 and p>0 such that for all k,
1B|<b and

1
[sl< P =A< (32)

3.5 Lemma [7] (Zoutendijk Condition).
Suppose that assumptions A and B hold. Consider any CG-type method in the form of
X = X+, d, where d, is a descent direction and «, satisfies the Wolfe-Powell line

search conditions in (4)-(6) . Then we have that:

(g, d )
e 9

3.6 Lemma [8].
Let Assumptions A and B hold and think about any CG technique outlined by (2) and
(3), wherever d, may be a descent direction and ¢, is obtained by the strong Wolfe

line search. If
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>

—2 =
= [

Now we have to prove the convergence of our proposed three-term CG-
Algorithm after they have shown helpful and good properties as in the following
theorem:

o = liminf |g,|=0 (34)
k—o0

3.7 New Theorem?2.

Suppose that the Assumptions A and B hold. Think about the TTCG-Algorithm
outlined by (2) and (16), wherever dy., is a sufficient descent direction if for k >
0, |Isill tend to zero and also there exists § and & such that (0 < & < ||gkll < &) and the
function f is a general function with Lipchitz condition, then:

liminfllg,[l = 0.
Proof:

Let us now take the more general form of 8;23 defined in (26) and use them

within the formula in the equation (16) as in:

dir1 = —DrGrr1 + Bie sk — 0%y
i1l = Bicllgrerall + 1BERM Isiell + |63yl
Where,
gl ~ el g g,
HRM — Ik
ullgill? + (1 —wllsi||?
|BHRM | < I gillll grsall? N g+l gl
T T ullgelP + @ = WlIselPllgiell T ullgiel? + @ = wWllsillgeell
Let ||sk|| = D and then we get:
<3 6_‘3
1BFRM] < +
ud3+ (1 —u)éD? ud3+ (1 —u)dD?
263
|BFFM| < E

ud3+ (1 —u)dD? -
Doing the same procedure for 6373 yields

93B3 — FEM v sk + tSEGrer — DkVi G+t
. |yl
|6553| < 1B " | 1yl sl 4 [tllIskllll gr+al 4 1Dkl yic Il gres
|yl Iy 1% e ll?
, Where
O, = Il I _ D? D? 1

sivie Ulsisell D2 1
From Lipchitz condition ||y, || < l||§k|| implieg that:
1B M UIsill? - elllsillS UlsellS i} (1)

Clisell2 " Plisell? " 2llsell?”

67| <

1
SB3 - R
|62 |sl<E+lD+lD

Then added the above result to get the following :

g+l
ldisall = = + 1B isicll + 652 11yl
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1 t§ &

l ID ID
té6 &
ldk+1ll < ”g"l“” + ED + ED + T+
5 t6 &
ldg+1ll < T+ 2ED +T+7

t§
ldisill < 2ED + — +

28
l l

Therefore,

%) Td 2
O<Z (g di) < o

k=0 lldll?

%) 4 %) 1 td 2
z ||gk||2 < Z _2(gk kz <o
k=0 ”dk” k=0C “dk”

Then l1{iminf||gk|| = 0.

Therefore, when 0 < @, < 1, so we are able to prove that the new TTCG algorithm is
global convergence, we are able to additionally say g, =0 for a few k or (34) holds. It
will be discovered, it's from the info of the new Theoreml theory, the direction d,.,
satisfied the sufficient descent condition severally of the line search.

3.8 Theorem [8].

Assume that Assumptions A and B hold. Contemplate the strategy (2)-(3) with the
subsequent 3 :
(i) B, =0 forall k;

(if) The line search satisfies the Zoutendijk condition, and the sufficient descent
conditions (30) and (31);

(iii) Lemma 3.4 holds.

All these conditions provide us with a transparent and comprehensive convergence of

the quality CG-algorithm, then Liminf la.]|=0

After all this proof, the projected new TTCG formula with three versions features
a convergent global characteristic by satisfying the wants of the Zoutendijk theorem and
therefore the line search satisfy the robust Wolfe—Powell condition then from Gilbert
and Nocedal in [8] these methodology has the global convergence property.

4. Numerical Experiments.

In this section, we glance at the tables and graphs of some computations to check
the relative performance of the mathematical implementation of packaging, human
resource management and projected new standards (TTCG Algorithm) (NEW) to a
collection of thirty eight any old nonlinear issues. Its details will be found in [21, 24,
27]. We have chosen completely different test functions for each free and tiny scale
optimization problem. Every one tested with completely different variables between one
and 10,000. We have a tendency to test these issues mistreatment the Wolfe Powell
technique.

These CG-Algorithm were enforced by mistreatment Visual FORTRAN version
2002, we've applied the Wolfe-Powell line search technique. All of the numerical
experiments were run on identical laptop with associate Intel(R), Core TM, i7-3612QM
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(2.10GHZ) CPU, 6GB of RAM , associated mistreatment Windows seven as an
operating system.

In order to assess the responsible-ness of the new projected scaled three-term CG-
Algorithm, we tend to test this algorithmic rule against the well-known classical and
changed ways of the PR and HRM CG-Algorithms mistreatment constant issues, and
assumed that the most effective algorithmic rule ought to need fewer range of iterations,
NOI; number of function and gradient evaluations NOFG; less time needed to induce
the answer purpose processor and also the total work outlined by, TOTAL WORK =
NOI + NOFG + TIME. All of those CG-Algorithms terminated once:

lgwll < 107°.

Numerical results were comparatively compared with the processor time, NOFG
and number of iterations (NOI). The performance results square measure shown in
Figures (1) and (2) severally, employing a performance profile introduced by Dolan and
More [5].

Table(1). Comparison between NEW against (PR & HRM) CG-Algorithms
For the Total of (38) different test functions with dimensions n= 1000, 2000, ... 10000

PR (1969) HRM (2016) New (2018)
Test Problems NOI/NOFG/TIME | NOI/NOFG/TIME | NOI/NOEG/TIME

1-Freudenstien &
Roth (CUTE) 1803/3356/0.43 | 5518/7177/0.27 | 103/434/0.09
2-Trigonometric 362/695/0.31 372/741/0.14 475/1365/2.29
ﬁs)s‘ze”ded White & | 001577441025 | 9227/10886/0.30 | 348/1151/0.20
4-Extended Beale | 498/1217/0.04 487/1202/0.03 | 125/365/0.07
5-Penalty 2741690/0.01 271/685/0.02 142/565/0 11
6-Raydan 2 106/319/0.03 106/319/0.03 30/100/0.07
-Generalized  Tri- | oa0c06/0 02 291/604/0.02 250/875/0.20
diagonal 1
8- Extended Three | ;o500 06 205/440/0.07 60/170/0.21
Expo Terms
9- Generalized Tri- | 00,0 0169/096 | 4500/5752/0.29 | 633/1688/0.45
diagonal 2
10- Diagonal 4 345/918/0.02 269/750/0.02 20/60/0.02
11- Diagonal 5 78/284/0.06 78/284/0.05 20/70/0.10
12- Extended | ,40/503/0.01 208/512/0.02 60/190/0.03
Himmelblau
13- Extended PSC1 | 194/453/0.06 218/478/0.06 70/230/0.26
%é'LJTEg)te”ded Wood | ¢149/10914/0.29 | 10010/11636/0.41 | 1770/5136/0.98
15- Extended EP1 | 54/294/0.01 54/29410.02 19/58/0.02
(1SUATREV)V HEAD 1336/1946/0.08 | 2400/3138/0.18 | 40/176/0.02
17-NONDIA (CUTE) | 5623/6604/0.28 | 9454/10602/0.44 | 42/127/0.01
18- DIXMAANA
CuTE) 132/354/0.01 132/354/0.02 53/159/0.08
19-  DIXMAANB
CuTE) 144/351/0.02 144/351/0.02 70/201/0.14
20-  DIXMAANC | 140/373/0.01 140/373/0.02 70/220/0.12
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(CUTE)

21-EDENSCH

cuTE) 321/686/0.02 1206/1674/0.07 | 260/962/0.28

?é‘t'J—T'é)RWHD 1397/2816/0.07 | 3759/5577/0.23 | 195/648/0.13

23-DIAGONAL 6 | 106/319/0.02 106/319/0.02 30/100/0.07

24-ENGVALL

CUTE) 304/672/0.02 328/701/0.02 261/1228/0.22

25-DENSCHNA

CUTE) 257/495/0.04 256/500/0.04 80/240/0.14

26-DENSCHNC

CuTE) 1399/1887/0.14 | 1434/1935/0.18 | 130/390/0.33

27-DENSCHNB

CuTE) 143/394/0.00 143/394/0.01 60/190/0.03

28- Extended Block- | yoc/1041/0 09 1428/1936/0.19 | 80/240/0.14

Diagonal BD2

29-Generalized 144/399/0.03 142/395/0.01 71/266/0.06

quartic GQ1

30-DIAGONAL 7 | 108/329/0.10 108/329/0.02 40/140/0.09

31-DIAGONAL 8 | 100/305/0.10 100/305/0.03 30/100/0.10

32-Full Hessian 109/408/0.02 109/408/0.04 20/70/0.06

33-SINCOS 104/453/0.08 218/478/0.05 70/230/0.26

34-Generalized 496/1011/0.02 2424/2926/0.13 | 369/981/0.23

quartic GQ2

35-ARGLINB

CUTE, 10/30/0.00 10/30/0.00 23/164/0.08

36-FLETCHCR

CUTE) 626/1247/0.03 1436/1985/0.05 | 228/702/0.14

37-HIMMELBG

CuTE) 80/100/0.01 80/100/0.01 60/140/0.07

38-HIMMELBH

CuTE) 180/420/0.01 170/420/0.01 60/190/0.03
Total | 34021/56212/3.06 | 57640/76990/3.63 | 6467/20321/7.93

Total Work= NOI +

kb iy 90236.06 134633.63 26795.93

In the beginning we used the three new versions of the new proposed scaled
TTCG- algorithms in our implementation to obtain numerical results but later we
noticed that the last version is the best one among these three version formulas and
therefore within the numerical result Tables, we will list the CG-Algorithm of the third
version only which is more important to highlight the numerical results and efficiency
of the three CG-Algorithms.

Table(2). Percentage Performance of (PR) against (NEW)

TOOLS PR NEW
NOI 100% | 19.0%
NOFG 100% | 36.2%
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Total Work | 100% | 29.7%

Table(3). Percentage Performance of (HRM) against (NEW)

TOOLS HRM | NEW
NOI 100% | 11.2%
NOFG 100% | 26.4%
Total 100% | 19.9%
Work

In Tables (2 & 3), the efficiency of the (NEW) TTCG-Algorithm was compared. The
new algorithm gave the best numerical results according to our used 38-test problems.

Table(4). No. of best test problems
(NEW) against (PR)

No. of No. of PR | NEW PR
T New best best 100% 100%
ools . :
functions | functions
NOI 36 2 94.7% 5.3%
NOFG 32 6 84.2% | 15.8%
TIME 5 31 13.2% | 81.6%
Table (5). No. of best test problems
(NEW) against (HRM)
No. of No. of NEW HRM
New best HRM 100% 100%
Tools functions best
functions
NOI 36 2 94.7% 5.3%
NOFG 33 5 86.8% 13.2%
TIME 6 30 15.8% | 78.9%

If we tend to calculate the number of the best take a look at functions once PR is
compared with NEW in step with NOI, NOFG and C.P.U. in Table(4), we tend to see
that the NEW rule is actually higher than PR, and if we tend to calculate the amount of
best take a look at functions once HRM is compared with NEW in NOI, NOFG and
C.P.U. in Table(5) , show that the NEW rule is that the higher than HRM, that the NEW
rule is that the most strong rule in step with the number of iteration , NOFG and TIME
underneath the accelerated Wolfe-Powell line search:

Figure(1) shows the performance file for all measures in CG-Algorithms with the
required NOI.

Figure(2) shows the performance file for all measures in CG-Algorithms with the
required NOFG.

Accurate examination of all shapes indicates that the bottom curve represents the
PR CG-Algorithm. Therefore, this CG-Algorithm has less performance. Also, HRM
incorporates a slightly higher performance than PR. Finally, the exact check shows that
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the, NEW technique has the best performance by exploitation each tools; NOI and
NOFG.

NOI (RED FOR PR,BLUE FOR HRM,YELLOW FOR NEW)
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Figure(1): Performance profile relative to the NOI

NOFG ( RED FOR PR, BLUE FOR HRM, YELLOW FOR NEW )
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Figure(2): Performance profile relative to the NOFG

5. Conclusions.

In this paper, we've investigated a replacement scaled TTCG-Algorithm within
three completely different new versions for resolving a collection of unconstrained non-
linear minimization issues each on paper and by experimentation. The last version of
this TTCG-Algorithm, namely SB3, is that the sturdy one. This is often compared
numerically against the 2 accepted CG-Algorithms (PR and HRM). The numerical and
theoretical studies during this paper show that the state of decent condition will be
derived and converged globally if the Wolfe-Powell line search was used. Numerical
results for 38 check issues, in general, and for this hand-picked kind of numerical
examples, show that the NEW-Algorithm is the sturdy and effective one.
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