17 New Existences linear [$\mathrm{n}, \mathbf{3 , d}]_{19}$ Codes by Geometric Structure Method in PG(2,19)

Nada Yassen Kasm Yahya
drnadaqasim1@gmail.com
Department of Mathematics
College of Education for pure Sciences
University of Mosul, Mosul, Iraq

Mustafa Nadhim Salim
dodo2me66@yahoo.com
Department of Mathematics
College of Computer Science and Mathematics
University of Mosul, Mosul, Iraq

Received on: 18/11/2018
Accepted on: 24/01/2019

Abstract

The purpose of this paper is to prove the existence of 17 new linear [$337,3,318]_{19}$, $[289,3,271]_{19},[266,3,249]_{19},[246,3,230]_{19},[219,3,204]_{19},[206,3,192]_{19},[181,3,168]_{19}$, $[157,3,145]_{19}, \quad[141,3,130]_{19}, \quad[120,3,110]_{19}, \quad[112,3,103]_{19}, \quad[82,3,74]_{19}, \quad[72,3,65]_{19}$, $[54,3,48]_{19},[37,3,32]_{19},[26,3,22]_{19},[13,3,10]_{19}$ codes by geometric structure method in PG $(2,19)$.

Keywords: Linear code, $[\mathrm{n}, \mathrm{k}, \mathrm{d}]_{\mathrm{q}}$ codes, Finite geometry, (k ,r)-arc.

PG(2,19)

مصطفى ناظم سالم
قسم الرياضيات
كلية علوم الحاسوب والرياضيات
جامعة الموصل، الموصل، العر/ق

تاريخ قبول البحث: $2019 \backslash 01 \backslash 24$

تاريخ استلام البحث: 2018/11/18

الملخص

[337,3,318] ${ }_{19}$, [289,3,271] ${ }_{19}$, 17 شهغف من هذا البحث هو إثبات وجود 17 جطية جديدة $[266,3,249]_{19},[246,3,230]_{19},[219,3,204]_{19},[206,3,192]_{19},[181,3,168]_{19},[157,3,145]_{19}$, $[141,3,130]_{19}, \quad[120,3,110]_{19}, \quad[112,3,103]_{19}, \quad[82,3,74]_{19}, \quad[72,3,65]_{19}, \quad[54,3,48]_{19}$,
 .PG $(2,19)$
(الكلمات المفتاحية: الثفرات الخطية، الثفرات n,k ,d]q]، الهندسة المنتهية ،القوس - (k ,r).

1. Introduction [1]

Let $\mathrm{GF}(\mathrm{q})$ denote the Galois field of q elements and $\mathrm{V}(3, \mathrm{q})$ be the vector space of row vectors of length three with entries in $\mathrm{GF}(\mathrm{q})$. Let $\mathrm{PG}(2, \mathrm{q})$ be the corresponding projective plane. The points of $\operatorname{PG}(2, q)$ are the non-zero vectors of $\mathrm{V}(3, \mathrm{q})$ with the rule that $\mathrm{X}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)$ and $\mathrm{Y}=\left(\delta \mathrm{x}_{1}, \delta \mathrm{x}_{2}, \delta \mathrm{x}_{3}\right)$ represent the same point, where $\delta \in$ $\mathrm{GF}(\mathrm{q}) \backslash\{0\}$. The number of points of $\mathrm{PG}(2, \mathrm{q})$ is $\mathrm{q}^{2}+\mathrm{q}+1$.,If the point $\mathrm{P}(X)$ is the equivalence class of the vector X, then we will say that X is a vector representing $P(X)$.

A subspace of dimension one is a set of points all of whose representing vectors form a subspace of dimension two of $\mathrm{V}(3, \mathrm{q})$. Such subspaces are called lines. The number of lines in $\mathrm{PG}(2, \mathrm{q})$ is $\mathrm{q}^{2}+\mathrm{q}+1$. There are $\mathrm{q}+1$ points on every line and $\mathrm{q}+1$ lines through every point.

1.1 Definition " Double Blocking set " [5]

A double blocking set in a projective plane $\operatorname{PG}(2, q)$ is a set S of points with the property that every line contains at least two points of S.

1.2 Definition " A (k,r) -arc " [2]

A $(k, r)-$ arc K in $\operatorname{PG}(2, q)$ is a set of k points with condition no line of the plane contains more then k points and there exists at least one line of the plane which contains k points.A (k, r) -arc is called complete arc if is not contained in a ($k+1, r$)- arc .

1.3 Definition " The Linear [n,k,d]q codes " [4]

The linear codes $[\mathrm{n}, \mathrm{k}, \mathrm{d}] \mathrm{q}$ in $\mathrm{PG}(2, \mathrm{q})$ where n is the length of codes and k is the dimension of codes, and minimum Hamming distance between the codes is called d over the Galois field GF(q).

1.4 Definition " i-secant " [1]

A line L in $P G(2, q)$ is an i-secant of $a(k, r)$-arc if $|L \cap K|=i$

1.5 Theorem 1: [4]

There exists linear $[\mathrm{n}, 3, \mathrm{~d}] \mathrm{q}$ codes if and only if there exists an ($\mathrm{n}, \mathrm{n}-\mathrm{d}$)-arc in PG($2, \mathrm{q}$)

2. The geometrical structure method in $\mathbf{P G}(2,19)$.

Let $\mathrm{A}=(1,2,21,41)$ be the set of reference unit and reference points in $\operatorname{PG}(2,13)$ where $1=(1,0,0), 2=(0,1,0), 21=(0,0,1), 41=(1,1,1)$
A is (4,2)-arc, since no three points of A are collinear,
[1,2]=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]
[1,21]=[1,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39]
$[1,41]=[1,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58]$
$[2,21]=[2,21,40,59,78,97,116,135,154,173,192,211,230,249,268,287,306,325,344,363]$
$[2,41]=[2,22,41,60,79,98,117,136,155,174,193,212,231,250,269,288,307,326,345,364]$
$[21,41]=[3,21,41,61,81,101,121,141,161,181,201,221,241,261,281,301,321,341,361$
,381]
The diagonal points of A are the points $\{3,22,40\}$ where, $\mathrm{L}_{1} \cap \mathrm{~L}_{6}=3 ; \mathrm{L}_{2} \cap \mathrm{~L}_{5}=22 ; \mathrm{L}_{3} \cap$ $\mathrm{L}_{4}=40$.
There are one hundred and one points of index zero for A , which are:
62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,80,82,83,84,85,86,87,88,89,90,91,92,9
3,94,95,96,99,100,102,103,104,105,106,107,108,109,110,111,112,113,114,115,118,119, $120,122,123,124,125,126,127,128,129,130,131,132,133,134,157,138,139,140,142,143,1$ $44,145,146,147,148,149,150,151,152,153,156,157,158,159,160,162,163,164,165,166,16$ 7,168,169,170,171,172,175,176,177,178,179,180,182,183,184,185,186,187,188,189,190 ,191,194,195,196,197,198,199,200,202,203,204,205,206,207,208,209,210,213,214,215, 216,217,218,219,220,222,223,224,225,226,227,228,229,232,233,234,235,236,237,238,2 39,240,242,243,244,245,246,247,248,251,252,253,254,255,256,257,258,259,260,262,26 3,264,265,266,267,270,271,271,273,274,275,276,277,2782,79,280,282,283,284,285,286 ,289,290,291,292,293,294,295,296,297,298,299,300,302,303,304,305,308,309,310,311,

312,313,314,315,316,317,318,319,320,322,323,324,327,328,329,330,331,332,333,334,3 35,336,337,338,339,340,342,343,346,347,348,349,350,351,352,353,354,355,356,357,35 $8,359,360,362,365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,380$
Hence, A is incomplete (4,2)-arc .

3. The Conics in PG(2,19) Through the Reference and Unit Points

The general equation of the conic is:
$a_{1} x^{2}{ }_{1}+a_{2} x^{2}{ }_{2}+a_{3} x^{2}{ }_{3}+a_{4} x_{1} x_{2}+a_{5} x_{1} x_{3}+a_{6} x_{2} x_{3}=0$
By substituting the points of the arc A in (1), then:
$1=(1,0,0)$ implies that $\mathrm{a}_{1}=0,2=(0,1,0)$, then $\mathrm{a}_{2}=0,21=(0,0,1)$, then
$\mathrm{a}_{3}=0,41=(1,1,1)$, then
$a_{1}=a_{2}=a_{3}=0$
$\mathrm{a}_{4}+\mathrm{a}_{5}+\mathrm{a}_{6}=0$.
Hence, from equation (1)
$\mathrm{a}_{4} \mathrm{x}_{1} \mathrm{x}_{2}+\mathrm{a}_{5} \mathrm{x}_{1} \mathrm{x}_{3}+\mathrm{a}_{6} \mathrm{x}_{2} \mathrm{x}_{3}=0$
If $\mathrm{a}_{4}=0$, then the conic is degenerated, therefore for $\mathrm{a}_{4} \neq 0$, similarly $\mathrm{a}_{5} \neq 0$
and $\mathrm{a}_{6} \neq 0$,
Dividing equation (2) by a4, one can get:
$\mathrm{x}_{1} \mathrm{x}_{2}+\alpha \mathrm{x}_{1} \mathrm{x}_{3}+\beta \mathrm{x}_{2} \mathrm{x}_{3}=0$
where $\alpha=a_{5} / a_{4}, \beta=a_{6} / a_{4}$
then $\beta=-(1+\alpha)$, since $1+\alpha+\beta=0(\bmod 13)$.
where $\alpha \neq 0$ and $\alpha \neq 12$, for if $\alpha=0$ or $\alpha=12$, then degenerated conics, thus $\alpha=1,2,3$, $4,5,6,7,8,9,10,11,12,13,14,15,16,17$ and can be written (2) as :
$x_{1} x_{2}+\alpha x_{1} x_{3}-(1+\alpha) x_{2} x_{3}=0$
The equation and the points of the conics of $\operatorname{PG}(2,19)$ through the reference and unit points

1. If $\alpha=1$, then the equation of the conic
$\mathrm{C}_{1}=x_{1} x_{2}+x_{1} x_{3}+17 x_{2} x_{3}=0$,
the points of C_{1} :
$\{1,2,21,41,73,89,110,124,153,170,179,209,218,235,264,278,299,315,328,348\}$ which is a complete (20,2)-arc, since there are no points of index zero.
2. If $\alpha=2$, then the equation of the conic $\mathrm{C}_{2}=x_{1} x_{2}+2 x_{1} x_{3}+16 x_{2} x_{3}=0$,
the points of C_{2} :
$\{1,2,21,41,70,95,99,129,142,169,183,210,223,234,257,282,292,312,334,379\}$, which is a complete (20,2)-arc, since there are no points of index zero .
3. If $\alpha=3$, then the equation of the conicC $\mathrm{C}_{3}=x_{1} x_{2}+3 x_{1} x_{3}+15 x_{2} x_{3}=0$, the points of C_{3} :
$\{1,2,21,41,72,80,102,128,144,172,188,195,217,244,256,276,297,322,355,380\}$, which is a complete $(20,2)-\operatorname{arc}$, since there are no points of index zero.
4. If $\alpha=4$, then the equation of the conic $\mathrm{C}_{4}=x_{1} x_{2}+4 x_{1} x_{3}+14 x_{2} x_{3}=0$, the points of C_{4} :
$\{1,2,21,41,67,91,109,123,138,171,189,194,220,240,267,283,293,329,358$,
$374\}$, which is a complete $(20,2)$-arc, since there are no points of index zero.
5. If $\alpha=5$, then the equation of the conic $\mathrm{C}_{5}=x_{1} x_{2}+5 x_{1} x_{3}+13 x_{2} x_{3}=0$, the points of C_{5} :
$\{1,2,21,41,77,85,106,119,140,167,184,204,215,246,251,285,320,335,359,371$ \}, which is a complete $(20,2)$-arc, since there are no points of index zero.
6. If $\alpha=6$, then the equation of the $\operatorname{conic}_{6}=x_{1} x_{2}+6 x_{1} x_{3}+12 x_{2} x_{3}=0$, the points of C_{6} :
$\{1,2,21,41,75,93,115,133,148,168,177,200,213,239,260,290,311,337,350,373$ \}, which is a complete $(20,2)-\mathrm{arc}$, since there are no points of index zero.
7. If $\alpha=7$, then the equation of the conic $\mathrm{C}_{7}=x_{1} x_{2}+7 x_{1} x_{3}+11 x_{2} x_{3}=0$, the points of C_{7} :
$\{1,2,21,41,65,88,112,132,146,158,176,206,228,237,277,305,308,338,356,368$ \}, which is a complete (20,2)-arc, since there are no points of index zero.
8. If $\alpha=8$, then the equation of the conic $\mathrm{C}_{8}=x_{1} x_{2}+8 x_{1} x_{3}+10 x_{2} x_{3}=0$, the points of C_{8} :
$\{1,2,21,41,76,96,100,118,147,162,187,199,216,262,279,291,316,331,360$,
$378\}$, which is a complete $(20,2)$-arc, since there are no points of index zero.
9. If $\alpha=9$, then the equation of the conic $\mathrm{C}_{9}=x_{1} x_{2}+9 x_{1} x_{3}+9 x_{2} x_{3}=0$, the points of C_{9} :
$\{1,2,21,41,66,90,103,125,139,156,190,197,245,252,286,303,317,339,352$, $376\}$, which is a complete (20,2)-arc, since there are no points of index zero.
10. If $\alpha=10$, then the equation of the conic $\mathrm{C}_{10}=x_{1} x_{2}+10 x_{1} x_{3}+8 x_{2} x_{3}=0$, the points of C_{10} :
$\{1,2,21,41,64,82,111,126,151,163,180,226,243,255,280,295,324,342,346$, $366\}$, which is a complete (20,2)-arc, since there are no points of index zero.
11. If $\alpha=11$, then the equation of the conic $\mathrm{C}_{11}=x_{1} x_{2}+11 x_{1} x_{3}+7 x_{2} x_{3}=0$, the points of C_{11} :
$\{1,2,21,41,74,86,104,134,137,165,205,214,236,266,284,296,310,330,354$, $377\}$, which is a complete $(20,2)$-arc, since there are no points of index zero.
12. If $\alpha=12$, then the equation of the conic $\mathrm{C}_{12}=x_{1} x_{2}+12 x_{1} x_{3}+6 x_{2} x_{3}=0$, the points of C_{12} :
$\{1,2,21,41,69,92,105,131,152,182,203,229,242,265,274,294,309,327,349$, 367 \}, which is a complete $(20,2)$-arc, since there are no points of index zero.
13. If $\alpha=13$, then the equation of the conic $\mathrm{C}_{13}=x_{1} x_{2}+13 x_{1} x_{3}+5 x_{2} x_{3}=0$, the points of C_{13} :
$\{1,2,21,41,71,83,107,122,157,191,196,227,238,258,275,302,323,336,357$, $365\}$, which is a complete (20,2)-arc, since there are no points of index zero.
14. If $\alpha=14$, then the equation of the conic $\mathrm{C}_{14}=x_{1} x_{2}+14 x_{1} x_{3}+4 x_{2} x_{3}=0$, the points of C_{14} :
$\{1,2,21,41,68,84,113,149,159,175,202,222,248,253,271,304,319,333,351$, $375\}$, which is a complete (20,2)-arc, since there are no points of index zero.
15. If $\alpha=15$, then the equation of the conic $\mathrm{C}_{15}=x_{1} x_{2}+15 x_{1} x_{3}+3 x_{2} x_{3}=0$, the points of C_{15} :
$\{1,2,21,41,62,87,120,145,166,186,198,225,247,254,270,298,314,340,362$, $370\}$, which is a complete (20,2)-arc, since there are no points of index zero.
16. If $\alpha=16$, then the equation of the conic $\mathrm{C}_{16}=x_{1} x_{2}+16 x_{1} x_{3}+2 x_{2} x_{3}=0$, the points of C_{16} :
$\{1,2,21,41,63,108,130,150,160,185,208,219,232,259,273,300,313,343,347$,
$372\}$, which is a complete (20,2)-arc, since there are no points of index zero.
17. If $\alpha=17$, then the equation of the conic $\mathrm{C}_{17}=x_{1} x_{2}+17 x_{1} x_{3}+x_{2} x_{3}=0$, the points of C_{17} :
$\{1,2,21,41,94,114,127,143,164,178,207,224,233,263,272,289,318,332,353,369\}$, which
is a complete $(20,2)-\mathrm{arc}$, since there are no points of index zero.

4. Existence of $[\mathbf{n}, 3, \mathrm{~d}]_{19}$ codes:

4.1 Existence of $[337,3,318]_{19}$ codes

We take one conic , and take $\pi=\mathrm{PG}(2, \mathrm{q})$ over Galois filed GF(q) contains 381 points and line, every line contains 20 points and every point there are 20 line, say C_{1}, let $\mathrm{K}=\pi-\mathrm{C}_{1}$
$\{3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,3031,32,33,34$, 35,36,37,38,39,40,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63, 64,65,66,67,68,69,70,71,72,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,90,91,92,93,9 4,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,111,112,113,114,115,116,1 $17,118,119,120,121,122,123,125,126,127,128,129,130,131,132,133,134,135,136,137,13$ 8,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159 ,160,161,162,163,164,165,166,167,168,169,171,172,173,174,175,176,177,178,180,181, 182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,2 02,203,204,205,206,207,208,210,211,212,213,214,215,216,217,219,220,221,222,223,22 4,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244 ,245,246,247,248,249,250,251,252,254,255,256,257,258,259,260,261,262,263,265,266, 267,268,269,270,271,272,273,274,275,276,277,279,280,281,282,283,284,285,286,287,2 88,289,290,291,292,293,294,295,296,297,298,300,301,302,303,304,305,306,307,308,30 $9,310,311,312,313,314,316,317,318,319,320,321,322,324,325,326,327,329,330,331,332$,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,349,350,351,352,353, 354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,370,372,373,3 74,375,376,377,378,379,380,381\}.
The geometrical structure method must satisfy the following :
i. K intersects any line of π in at most 19 points .
ii. Every point not in K is on at least one 19 -secant of K .

The point :
M=363,192,135,287,306,78,16,173,154,59,344,249,230,325,97,116,268,211,39,317,321 ,111,181,66,331,376, 177,221Are eliminated from K to satisfy (1) . The points of index zero for $1,73,209$ are added to K to satisfy (2) , then $\mathrm{K}_{19}=\mathrm{KU}[1,73,209] / \mathrm{M}$ $\mathrm{K}_{19}=[1,3,4,5,6,7,8,9,10,11,12,13,14,15,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,3$ 3,34,35,36,37,38,40,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,60,61,62,63,64 ,65,67,68,69,70,71,72,73,74,75,76,77,79,80,81,82,83,84,85,86,87,88,90,91,92,93,94,95, 96,98,99,100,101,102,103,104,105,106,107,108,109,112,113,114,115,117,118,119,120, 121,122,123,125,126,127,128,129,130,131,132,133,134,136,137,138,139,140,141,142,1 43,144,145,146,147,148,149,150,151,152,155,156,157,158,159,160,161,162,163,164,16 5,166,167,168,169,171,172,174,175,176,178,180,182,183,184,185,186,187,188,189,190 ,191,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,212, $213,214,215,216,217,219,220,222,223,224,225,226,227,228,229,231,232,233,234,235,2$ $36,237,238,239,240,241,242,243,244,245,246,247,248,250,251,252,254,255,256,257,25$ 8,259,260,261,262,263,265,266,267,269,270,271,272,273,274,275,276,277,279,280,281 ,282,283,284,285,286,288,289,290,291,292,293,294,295,296,297,298,300,301,302,303, 304,305,307,308,309,310,311,312,313,314,316,318,319,320,322,324,326,327,329,330,3 32,333,334,335,336,337,338,339,340,341,342,343,345,346,347,349,350,351,352,353,35 $4,355,356,357,358,359,360,361,362,364,365,366,367,368,369,370,370,372,373,374,375$, $377,378,379,380,381]$.Is a complete $(155,13)-$ arc as shown in table (1) .Let $\beta_{1}=\pi-$ k_{19}
$=\{2,21,39,41,59,66,78,89,16,97,110,111,116,124,135,153,154,170,173,177,179,181,19$
$2,211,218,221,230,249,253,264,278,287,299,306,317,321,328,331,344,348,363,376,325$,315,268\} is (44,1)-blocking set as shown in table (1) . $\boldsymbol{\beta 1}$ is of Redei -type contains the line $l 1$
$=\{2,21,40,59,78,97,116,135,154,173,192,211,230,249,268,287,306,325,344363\} /\{40\}$ and one point on each line through the point 40 which are non-collinear points $42,60,79,85,112,132,107,152,126,93,145,184,164,172,198,223,233,244,257$ by theorem (1) ,there exists a projective $[337,3,318]_{19}$ code which is equivalent to the complete $(337,19)$-arc k_{19}

Table (1)

I	$\mathrm{K}_{19} \cap \mathrm{Li}$	$\mathrm{B}_{1} \cap \mathrm{Li}$
1	40	$\begin{aligned} & \hline 2,21,40,59,78,97,116,135,154,173,192,211, \\ & 230,249,268,287,306,325,344363 \\ & \hline \end{aligned}$
2	$\begin{array}{\|l\|} \hline 1,22,23,24,25,26,27,28,29,30,31, \\ 32,33,34,35,36,37,38 \\ \hline \end{array}$	21,39
!	\vdots	!
$\begin{array}{\|l\|} \hline 38 \\ 0 \end{array}$	$\begin{aligned} & \text { 11,31,40,68,96,105,133,142,207, } \\ & 216,244,281,290,318,327,355,36 \\ & 4 \end{aligned}$	170,179,253
$\begin{array}{\|l} \hline 38 \\ 1 \end{array}$	$\begin{aligned} & \text { 20,22,40,77,95,113,131,149,167, } \\ & 185,203,239,257,275,293,311,32 \\ & 9,347,365 \end{aligned}$	221

4.2 Existence of $[289,3,271]_{19}$ codes

We take two conic, say $\mathrm{C}_{1}, \mathrm{C}_{2}$, and let $\mathrm{K}=\pi-\mathrm{C}_{1} \cup \mathrm{C}_{2}$
$\{3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34$,35,36,37,38,39,40,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63, 64,65,66,67,68,69,71,72,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,90,91,92,93,94,9 6,97,98,100,101,102,103,104,105,106,107,108,109,111,112,113,114,115,116,117,118,1 $19,120,121,122,123,125,126,127,128,130,131,132,133,134,135,136,137,138,139,140,14$ $1,143,144,145,146,147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,163$,164,165,166,167,168,171,172,173,174,175,176,177,178,180,181,182,184,185,186,187, 188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,2 08,211,212,213,214,215,216,217,219,220,221,222,224,225,226,227,228,229,230,231,23 2,233,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254 ,255,256,258,259,260,261,262,263,265,266,267,268,269,270,271,272,273,274,275,276, 277,279,280,281,283,284,285,286,287,288,289,290,291,293,294,295,296,297,298,300,3 01,302,303,304,305,306,307,308,309,310,311,313,314,316,317,318,319,320,321,322,32 3,324,325,326,327,329,330,331,332,333,335,336,337,338,339,340,341,342,343,344,345 ,346,347,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366, $367,368,369,370,371,372,373,374,375,376,377,378,380,381\}$.The geometrical Structure method must satisfy the following :
i. K intersects any line of π in at most 18 points .
ii. Every point not in K is on at least one 18 -secant of K .

The point :
$\mathrm{M}=3,9,10,11,13,15,17,363,77,112,144,192,30,177,54,184,135,300,84,47,61,100,111,19$

9,66,86,306,225,131,78,173,161,380,154,59,322,108,333,201,18,344,52,249,350,370,23 $0,377,325,177,97,320,311,116,268,211,40,180,106$ Are eliminated from K to satisfy (1)
. The points of index zero for 70,209 are added to K to satisfy (2) , then $\mathrm{K}_{18}=\mathrm{KU}$ [70,209] / M
$\mathrm{K}_{18}=[4,5,6,7,8,12,14,16,19,20,22,23,24,25,26,27,28,29,31,32,33,34,35,36,37,38,39,42,4$ 3,44,45,46,48,49,50,51,53,55,56,57,58,60,62,63,64,65,67,68,69,71,72,74,75,76,79,80,81 ,82,83,85,87,88,90,91,92,93,94,96,98,101,102,103,104,105,107,109,113,114,115,118,11 $9,120,121,122,123,125,126,127,128,130,132,133,134,136,137,138,139,140,141,143,145$,146,147,148,149,150,151,152,155,156,157,158,159,160,162,163,164,165,166,167,168, 171,172,174,175,176,178,181,182,185,186,187,188,189,190,191,193,194,195,196,197,1 98,200,202,203,204,205,206,207,208,212,213,214,215,216,217,219,220,221,222,224,22 6,227,228,229,231,232,233,235,236,237,238,239,240,241,242,243,244,245,246,247,248 ,250,251,252,254,255,256,258,259,260,261,262,263,265,266,267,269,270,271,272,273, 274,275,276,277,279,280,281,283,284,285,286,287,288,289,290,291,293,294,295,296,2 97,298,301,302,303,304,305,307,308,309,310,313,314,316,317,318,319,321,323,324,32 6,327,329,330,331,332,335,336,337,338,339,340,341,342,343,345,346,347,349,351,352 ,353,354,355,356,357,358,359,360,361,362,364,365,366,367,368,369,371,372,373,374, $375,376,378,381]$.Is a complete $(289,18)-$ arc as shown in table (2) .Let $\beta_{2}=\pi-k_{18}$ $=\{1,2,3,8,9,10,11,13,15,17,18,21,30,40,41,47,52,54,59,61,66,73,77,78,84,86,89,95,97,9$ $9,100,106,108,110,111,112,116,117,124,129,131,135,142,144,153,154,161,169,170,173$,177,179,180,183,184,192,199,210,211,218,223,225,230,234,249,253,257,264,268,278, $282,292,299,300,306,311,312,315,320,322,325,328,333,334,344,348,350,363,370,377,3$ $79,380\}$ is $(92,2)$-blocking set as shown in table (2) .by theorem (1) ,there exists a projective $[289,3,271]_{19}$ code which is equivalent to the complete $(289,18)$-arc k_{18}

Table (2)

I	$\mathrm{K}_{18} \cap \mathrm{Li}$	$\mathrm{B}_{2} \cap \mathrm{Li}$
1	287	$2,21,40,59,78,97,116,135,154,173,192,211$, $230,249,268,306,325,344,363$
2	$22,23,24,25,26,27,28,29,31,32,33$,	$1,21,30$
	$34,35,36,37,38,39$	\vdots
\vdots	\vdots	
38	$31,68,96,105,133,207,216,244,28$	
0	$1,290,318$	
$327,355,364$	$11,40,142,170,179,253$	
38	$20,22,113,149,167,185,203,221,2$	
1	$39,275,293,329,347,365$	$40,77,95,131,257,311$

4.3 Existence of $[266,3,249]_{19}$ codes

We take 3 conic, say $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$ and let
$\mathrm{K}=\pi-\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \mathrm{C}_{3}$
$\{3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34$,35,36,37,38,39,40,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63, 64,65,66,67,68,69,71,74,75,76,77,78,79,81,82,83,84,85,86,87,88,90,91,92,93,94,96,97,9 $8,100,101,103,104,105,106,107,108,109,111,112,113,114,115,116,117,118,119,120,121$,122,123,125,126,127,130,131,132,133,134,135,136,137,138,139,140,141,143,145,146, $147,148,149,150,151,152,154,155,156,157,158,159,160,161,162,163,164,165,166,167,1$
$68,171,173,174,175,176,177,178,180,181,182,184,185,186,187,189,190,191,192,193,19$ $4,196,197,198,199,200,201,202,203,204,205,206,207,208,211,212,213,214,215,216,219$,220,221,222,224,225,226,227,228,229,230,231,232,233,236,237,238,239,240,241,242, $243,245,246,247,248,249,250,251,252,253,254,255,258,259,260,261,262,263,265,266,2$ $67,268,269,270,271,272,273,274,275,277,279,280,281,283,284,285,286,287,288,289,29$ $0,291,293,294,295,296,298,300,301,302,303,304,305,306,307,308,309,310,311,313,314$, $316,317,318,319,320,321,323,324,325,326,327,329,330,331,332,333,335,336,337,338$, $339,340,341,342,343,344,345,346,347,349,350,351,352,353,354,356,357,358,359,360,3$ $61,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378,381\}$.
The geometrical Structure method must satisfy the following :
i. K intersects any line of π in at most 17 points .
ii. Every point not in K is on at least one 17 -secant of K .

The point :
$\mathrm{M}=40,22,61,10,79,363,225,100,192,320,135,350,77,177,287,30,66,306,112,54,184,131$, $15,84,377,199,3,333,78,130,9,13,173,161,106,154,92,180,59,8,344,11,39,111,249,370,2$ $30,20,325,171,117,50,47,97,247,373,250,113,5,186,268,181,211,222,190$ Are
eliminated from K to satisfy (1) . The points of index zero for 80,244 are added to K to satisfy (2) , then $\mathrm{K}_{17}=\mathrm{K} \cup$ [80,244] / M
$\mathrm{K}_{17}=[4,6,7,12,14,16,17,18,19,23,24,25,26,27,28,29,31,32,33,34,35,36,37,38,42,43,44,4$ $5,46,48,49,51,52,53,55,56,57,58,60,62,63,64,65,67,68,69,71,74,75,76,80,81,82,83,84,85$, $87,88,90,91,93,94,96,98,101,103,104,105,107,108,109,114,115,116,118,119,120,121,1$ $22,123,125,126,127,132,133,134,136,137,138,139,140,141,143,145,146,147,148,149,15$ $0,151,152,155,156,157,158,159,160,162,163,164,165,166,167,168,174,175,176,178,182$,185,187,189,191,193,194,196,197,198,200,201,202,203,204,205,206,207,208,212,213, $214,215,216,219,220,221,224,226,227,228,229,231,232,233,236,237,238,239,240,241,2$ $42,243,244,245,246,248,251,252,253,254,255,258,259,260,261,262,263,265,266,267,26$ $9,270,271,272,273,274,275,277,279,280,281,283,284,285,286,288,289,290,291,293,294$,295,296,298,300,301,302,303,304,305,307,308,309,310,311,313,314,316,317,318,319, $321,323,324,326,327,329,330,331,332,335,336,337,338,339,340,341,342,343,345,346,3$ $47,349,351,352,353,354,356,357,358,359,360,361,362,364,365,366,367,368,369,371,37$ $2,374,375,376,378,381]$.Is a complete $(266,17)-$ arc as shown in table (3) .Let $\beta_{3}=\pi-$ k_{17}
$=\{1,2,3,5,8,9,10,11,13,15,20,21,22,30,39,40,41,47,50,54,59,61,66,70,72,73,77,78,79,86$, $89,92,95,97,99,100,102,106,110,111,112,113,117,124,128,129,130,131,135,142,144,15$ $3,154,161,169,170,171,172,173,177,179,180,181,183,184,186,188,190,192,195,199,209$,210,211,217,218,222,223,225,230,234,235,247,249,250,256,257,264,268,276,278,282, $287,292,297,299,306,312,315,320,322,325,328,333,334,344,348,350,355,363,370,373,3$ $77,379,380\}$ is $(115,3)$-blocking set as shown in table (3) .
by theorem (1), there exists a projective $[266,3,249]_{19}$ code which is equivalent to the complete $(266,17)$-arc k_{17}

Table (3)

I	$\mathrm{K}_{17} \cap \mathrm{Li}$	$\mathrm{B}_{3} \cap \mathrm{Li}$
1	116	$2,21,40,59,78,97,135,154,173,192,211,230,249,287,268,3$
2	$23,24,25,26,27,2$ $8,29,31,32,33,34$,	$1,21,22,30,39$
	$35,36,37,38$	
\vdots	\vdots	\vdots

380	$31,68,96,105,133$	$11,40,142,170,179,355$
	$, 207,216,281,290$	
	$, 318,327,364,244$	
	, 253	
381	$149,167,185,203$,	$20,22,40,77,95,113,131,257$
	$221,239,275,293$,	
	$311,329,347,365$	

4.4 Existence of $[246,3,230]_{19}$ codes

We take 4 conic, say $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}$ and let
$\mathrm{K}=\pi-\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \mathrm{C}_{3} \cup \mathrm{C}_{4}$
$\{3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34$,35,36,37,38,39,40,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63, 64,65,66,68,69,71,74,75,76,77,78,79,81,82,83,84,85,86,87,88,90,92,93,94,96,97,98,100, $101,103,104,105,106,107,108,111,112,113,114,115,116,117,118,119,120,121,122,125,1$ $26,127,130,131,132,133,134,135,136,137,139,140,141,143,145,146,147,148,149,150,15$ $1,152,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,173,174,175,176$,177,178,180,181,182,184,185,186,187,190,191,192,193,196,197,198,199,200,201,202, 203,204,205,206,207,208,211,212,213,214,215,216,219,221,222,224,225,226,227,228,2 29,230,231,232,233,236,237,238,239,241,242,243,245,246,247,248,249,250,251,252,25 3,254,255,258,259,260,261,262,263,265,266,268,269,270,271,272,273,274,275,277,279 ,280,281,284,285,286,287,288,289,290,291,294,295,296,298,300,301,302,303,304,305, 306,307,308,309,310,311,313,314,316,317,318,319,320,321,323,324,325,326,327,330,3 31,332,333,335,336,337,338,339,340,341,342,343,344,345,346,347,349,350,351,352,35 3,354,356,357,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,375,376 ,377,378,381\}.
The geometrical Structure method must satisfy the following :
i. K intersects any line of π in at most 16 points.
ii. Every point not in K is on at least one 16 -secant of K .

The point :
M=40,59,22,30,61,161,3,5,140,79,363,66,112,181,186,100,177,47,192,39,320,10,184,6 $0,135,350,131,106,130,225,86,287,15,306,326,333,78,117,222,173,54,199,154,7,9,180$, $147,344,11,113,377,249,160,230,77,115,8,325,111,50,81,247,378,116,250,373,268,211$, 20,Are eliminated from K to satisfy (1) . The points of index zero for 171,293 are added to K to satisfy (2) , then $\mathrm{K}_{16}=\mathrm{KU}$ [171,293] / M
$\mathrm{K}_{16}=[4,6,12,13,14,16,17,18,19,23,24,25,26,27,28,29,31,32,33,34,35,36,37,38,42,43,44$, 45,46,48,49,51,52,53,55,56,57,58,62,63,64,65,68,69,71,74,75,76,82,83,84,85,87,88,90,9 2,93,94,96,97,98,101,103,104,105,107,108,114,118,119,120,121,122,125,126,127,132,1 33,134,136,137,139,141,143,145,146,148,149,150,151,152,155,156,157,158,159,162,16 3,164,165,166,167,168,171,174,175,176,178,182,185,186,187,190,191,193,196,197,198 ,200,201,202,203,204,205,206,207,208,212,213,214,215,216,219,221,224,226,227,228, 229,231,232,233,236,237,238,239,241,242,243,245,246,248,251,252,253,254,255,258,2 59,260,261,262,263,265,266,269,270,271,272,273,274,275,277,279,280,281,284,285,28 6,288,289,290,291,293,294,295,296,298,300,301,302,303,304,305,307,308,309,310,311 ,313,314,316,317,318,319,321,323,324,327,330,331,332,335,336,337,338,339,340,341, 342,343,345,346,347,349,351,352,353,354,356,357,359,360,361,362,364,365,366,367,3
$68,369,370,371,372,375,376,381]$.Is a complete $(246,16)$-arc as shown in table (4) .
Let $\beta_{4}=\pi-k_{16}$
$=\{1,2,3,5,7,8,9,10,11,13,15,20,21,22,30,39,40,41,47,50,54,59,60,61,66,67,70,72,73,77$, $78,79,80,81,86,89,91,95,99,100,102,106,109,110,111,112,113,115,116,117,123,124,128$,129,130,131,135,138,140,142,144,147,153,154,160,161,169,170,172,173,177,179,180, 181,183,184,186,188,189,192,194,195,199,209,210,211,217,218,220,222,223,225,230,2 34,235,240,244,247,249,250,256,257,264,267,268,276,278,282,283,287,292,297,299,30 6,312,315,320,322,325,326,328,329,333,334,344,348,350,355,358,363,373,374,377,378 $, 379,380\}$ is (135,4)-blocking set as shown in table (4) .by theorem (1) ,there exists a projective $[246,3,230]_{19}$ code which is equivalent to the complete $(246,16)$-arc k_{16}

Table (4)

I	$\mathrm{K}_{16} \cap \mathrm{Li}$	$\mathrm{B}_{4} \cap \mathrm{Li}$
1	97	$2,21,40,59,78,116,135,154,173,192,211$, $230,249,268,287,306,325,344,363$
2	$23,24,25,26,27,28,29,31,32,33,34,35$ $, 36,37,38$	$1,22,30,39,21$
\vdots	\vdots	\vdots
380	$31,68,96,105,133,207,216,281,290$, $318,327,364,253$	$11,40,142,170,179,244,355$
381	$149,167,185,203,293,22,239,275,31$ $1,347,365$	$20,22,40,77,95,113,131,257,329$

4.5 Existence of [219,3,204] ${ }_{19}$ codes

We take 5 conic, say $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}$ and let
$\mathrm{K}=\pi-\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \mathrm{C}_{3} \cup \mathrm{C}_{4} \cup \mathrm{C}_{5}$
$\{3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34$,35,36,37,38,39,40,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63, $64,65,66,68,69,71,74,75,76,78,79,81,82,83,84,86,87,88,90,92,93,94,96,97,98,100,101,1$ $03,104,105,107,108,111,112,113,114,115,116,117,118,120,121,122,125,126,127,130,13$ $1,132,133,134,135,136,137,139,141,143,145,146,147,148,149,150,151,152,154,155,156$,157,158,159,160,161,162,163,164,165,166,168,173,174,175,176,177,178,180,181,182, 185,186,187,190,191,192,193,196,197,198,199,200,201,202,203,205,206,207,208,211,2 12,213,214,216,219,221,222,224,225,226,227,228,229,230,231,232,233,236,237,238,23 $9,241,242,243,245,247,248,249,250,252,253,254,255,258,259,260,261,262,263,265,266$,268,269,270,271,272,273,274,275,277,279,280,281,284,286,287,288,289,290,291,294, 295,296,298,300,301,302,303,304,305,306,307,308,309,310,311,313,314,316,317,318,3 $19,321,323,324,325,326,327,330,331,332,333,336,337,338,339,340,341,342,343,344,34$ $5,346,347,349,350,351,352,353,354,356,357,360,361,362,363,364,365,366,367,368,369$,370,372,373,375,376,377,378,381\}.
The geometrical Structure method must satisfy the following :

1. K intersects any line of π in at most 15 points .
2. Every point not in K is on at least one 15 -secant of K .

The point :
M=59,78,22,30,39,61,81,161,3,5,10,197,60,79,363,20,111,112,66,181,247,57,86,131,10 0,186,166,177,180,47,192,347,225,377,135,130,271,115,287,54,15,190,306,199,333,22 $2,9,173,11,381,154,7,356,101,147,121,90,344,8,249,120,230,113,174,325,69,97,18,116$,

370,13,250,373,321,268,211,259,155,139,378
Are eliminated from K to satisfy (1) . The points of index zero for 251,359 are added to K to satisfy (2) , then $\mathrm{K}_{15}=\mathrm{KU}[251,359]$ / M
$\mathrm{K}_{15}=[4,6,12,14,16,17,19,23,24,25,26,27,28,29,31,32,33,34,35,36,37,38,40,42,43,44,45$, 46,48,49,50,51,52,53,55,56,58,62,63,64,65,68,71,74,75,76,82,83,84,87,88,92,93,94,96,9 8,103,104,105,107,108,114,117,118,,122,125,126,127,132,133,134,136,137,141,143,14 5,146,148,149,150,151,152,156,157,158,159,160,162,163,164,165,168,175,176,178,182 ,185,187,191,193,196,198,200,201,202,203,205,206,207,208,212,213,214,216,219,221, 224,226,227,228,229,231,232,233,236,237,238,239,241,242,243,245,248,252,253,254,2 55,258,260,261,262,263,265,266,269,270,272,273,274,275,277,279,280,281,284,286,28 8,289,290,291,294,295,296,298,300,301,302,303,304,305,307,308,309,310,311,313,314 ,316,317,318,319,323,324,326,327,330,331,332,336,337,338,339,340,341,342,343,345, 346,349,350,351,352,353,354,357,360,361,362,364,365,366,367,368,369,372,375,376]. Is a complete $(219,15)-$ arc as shown in table (5) .
Let $\beta_{5}=\pi-k_{15}$
$=\{1,2,3,5,7,8,9,10,11,13,15,18,20,21,22,30,39,41,47,57,54,59,60,61,66,67,69,70,72,73$, $77,78,79,80,81,85,86,89,90,91,95,97,99,100,101,102,106,109,110,111,112,113,115,116$, $119,120,121,123,124,128,129,130,131,135,138,139,140,142,144,147,153,154,155,161,1$ 66,167,169,170,171,172,173,174,177,179,180,181,183,184,186,188,189,190,192,194,19 5,197,199,204,209,210,211,215,217,218,220,222,223,225,230,234,235,240,244,246,247 ,249,250,256,257,259,264,267,268,271,276,278,282,283,285,287,292,293,297,299,306, 312,315,320,322,321,325,328,329,333,334,335,344,347,348,355,356,358,363,370,371,3 $73,374,377,378,379,380,381\}$ is (162,15)-blocking set as shown in table (5)
by theorem (1) ,there exists a projective [219,3,204] ${ }_{19}$ code which is equivalent to the complete $(219,15)$-arc k_{15}

Table (5)

I	$\mathrm{K}_{15} \cap \mathrm{Li}$	$\mathrm{B}_{5} \cap \mathrm{Li}$
1	40	$2,21,59,78,97,116,135,154,173,192,211,230,249,268,2$ $87,306,325,344,363$
2	$23,24,25,26,27,28,29,3$	$1,21,22,30,39$
	$1,32,33,34,35,36,37,38$	
\vdots	\vdots	\vdots
38	$31,68,96,105,133,207$,	$11,40,142,170,179,244,355$
0	216,281,290,318,327,3 64,253	
38	$149,185,203,221,239,2$	$20,22,40,77,95,113,131,167,257,293,347,329$
1	$75,311,365$	

4.6 Existence of $[206,3,192] 19$ codes

We take 6 conic, say $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}$ and let
$\mathrm{K}=\pi-\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \mathrm{C}_{3} \cup \mathrm{C}_{4} \cup \mathrm{C}_{5} \cup \mathrm{C}_{6}$
$\{3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34$,35,36,37,38,39,40,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63, 64,65,66,68,69,71,74,76,78,79,81,82,83,84,86,87,88,90,92,94,96,97,98,100,101,103,104 ,105,107,108,111,112,113,114,116,117,118,120,121,122,125,126,127,130,131,132,134, 135,136,137,139,141,143,145,146,147,149,150,151,152,154,155,156,157,158,159,160,1 61,162,163,164,165,166,173,174,175,176,178,180,181,182,185,186,187,190,191,192,19

3,196,197,198,199,201,202,203,205,206,207,208,211,212,214,216,219,221,222,224,225 ,226,227,228,229,230,231,232,233,236,237,238,241,242,243,245,247,248,249,250,252, $253,254,255,258,259,261,262,263,265,266,268,269,270,271,272,273,274,275,277,279,2$ $80,281,284,286,287,288,289,291,294,295,296,298,300,301,302,303,304,305,306,307,30$ $8,309,310,313,314,316,317,318,319,321,323,324,325,326,327,330,331,332,333,336,338$,339,340,341,342,343,344,345,346,347,349,351,352,353,354,356,357,360,361,362,363, $364,365,366,367,368,369,370,372,375,376,377,378,381\}$.
The geometrical Structure method must satisfy the following :

1. K intersects any line of π in at most 14 points .
2. Every point not in K is on at least one 14 -secant of K .

The point :
$\mathrm{M}=40,59,78,97,22,25,30,39,3,61,81,101,5,8,9,197,60,79,117,363,11,90,112,181,225,86$, $191,131,100,186,155,13,180,47,192,347,139,15,10,159,135,247,287,300,161,190,377,8$ $7,29,306,54,199,178,333,66,174,147,173,222,113,154,69,255,344,31,249,120,230,325,1$ $41,50,116,321,250,268,52,378$ Are eliminated from K to satisfy (1) . The points of index zero for 188,373 are added to K to satisfy (2) , then
$\mathrm{K}_{14}=\mathrm{K} \cup[188,373] / \mathrm{M}$
$\mathrm{K}_{14}=[4,6,7,12,14,16,17,18,19,20,23,24,26,27,28,32,33,34,35,36,37,38,42,43,44,45,46,4$ $8,49,51,53,55,56,57,58,62,63,64,65,68,71,74,76,82,83,84,88,92,94,96,98,103,104,105,1$ $07,108,111,114,118,121,122,125,126,127,130,132,134,136,137,143,145,146,149,150,15$ $1,152,156,157,158,160,162,163,164,165,166,175,176,182,185,187,188,193,196,198,201$,202,203,205,206,207,208,211,212,214,216,219,221,224,226,227,228,229,231,232,233, $236,237,238,241,242,243,245,248,252,253,254,258,259,261,262,263,265,266,269,270,2$ $71,272,273,274,275,277,279,280,281,284,286,288,289,291,294,295,296,298,301,302,30$ $3,304,305,307,308,309,310,313,314,316,317,318,319,323,324,326,327,330,331,332,336$,338,339,340,341,342,343,345,346,349,351,352,353,354,356,357,360,361,362,364,365, $366,367,368,369,370,372,373,375,376,381]$.Is a complete $(206,14)-\operatorname{arc}$ as shown in table (6) .Let $\beta_{6}=\pi-k_{14}$
$=\{1,2,3,5,8,9,10,11,13,15,21,22,25,29,30,31,39,40,41,47,50,52,54,59,60,61,66,67,69,70$,72,73,75,77,78,79,80,81,85,86,87,89,90,91,93,95,97,99,100,101,102,106,109,110,112,1 $13,115,116,117,119,120,123,124,128,129,131,133,135,138,139,140,141,142,144,147,14$ $8,153,154,155,159,161,167,168,169,170,171,172,173,174,177,178,179,180,181,183,184$,186,189,190,191,192,194,195,197,199,200,204,209,210,213,215,217,218,220,222,223, $225,230,234,235239,240,244,246,247,249,250,251,255,256,257,260,264,267,268,276,2$ $78,282,283,285,287,290,292,293,297,299,300,306,311,312,315,320,321,322,325,328,32$ $9,333,334,335,337,344,347,348,350,355,358,359,363,371,374,377,378,379,380\}$ is $(175,14)$-blocking set as shown in table (5) .by theorem (1) ,there exists a projective $[206,3,192]_{19}$ code which is equivalent to the complete $(204,14)-\operatorname{arc} \mathrm{k}_{14}$

Table (6)

I	$\mathrm{K} \mathrm{K}_{14} \cap \mathrm{Li}$	$\mathrm{B}_{6} \cap \mathrm{Li}$
1	211	$2,21,40,59,78,97,116,135,173,192,230,249,268$, $287,306,154,325,344,363$
2	$23,24,26,27,28,32,33,34,35,36$	$1,22,25,29,30,21,31,39$
$, 37,38$	\vdots	
\vdots	\vdots	
38	$68,96,105,207,216,281,318,32$	$11,31,40,133,142,170,179,244,290,355$

0	$7,364,253$	
38	$20,95,149,185,203,221,275,36$	$40,22,77,113,131,167,239,257,293,311,329,347$
1	5	

4.7 Existence of $[181,3,168]_{19}$ codes

We take 7 conic, say $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{7}$ and let
$\mathrm{K}=\pi-\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \mathrm{C}_{3} \cup \mathrm{C}_{4} \cup \mathrm{C}_{5} \cup \mathrm{C}_{6} \cup \mathrm{C}_{7}$
$\{3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34$,35,36,37,38,39,40,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63, 64,66,68,69,71,74,76,78,79,81,82,83,84,86,87,90,92,94,96,97,98,100,101,103,104,105,1 07,108,111,113,114,116,117,118,120,121,122,125,126,127,130,131,134,135,136,137,13 9,141,143,145,147,149,150,151,152,154,155,156,157,159,160,161,162,163,164,165,166 ,173,174,175,178,180,181,182,185,186,187,190,191,192,193,196,197,198,199,201,202, 203,205,207,208,211,212,214,216,219,221,222,224,225,226,227,229,230,231,232,233,2 36,238,241,242,243,245,247,248,249,250,252,253,254,255,258,259,261,262,263,265,26 6,268,269,270,271,272,273,274,275,279,280,281,284,286,287,288,289,291,294,295,296 ,298,300,301,302,303,304,306,307,309,310,313,314,316,317,318,319,321,323,324,325, 326,327,330,331,332,333,336,339,340,341,342,343,344,345,346,347,349,351,352,353,3 54,357,360,361,362,363,364,365,366,367,369,370,372,375,376,377,378,381\}.
The geometrical Structure method must satisfy the following :

1. K intersects any line of π in at most 13 points .
2. Every point not in K is on at least one 13 -secant of K .

The point :
M=40,59,78,97,116,22,79,90,103,25,30,31,39,31,6,81,161,181,5,7,9,10,197,60,250,174, $363,333,247,86,131,100,186,166,13,192,347,180,225,139,135,130,287,69,47,377,15,19$ $0,242,306,199,178,111,66,117,54,121,173,222,259,154,378,52,101,20,191,381,11,150,1$ $87,159,74,8,249,120,352,147,230,325,137,141,370,268,211,50,87$ Are eliminated from K to satisfy (1) . The points of index zero for 209,210 are added to K to satisfy (2) , then $\mathrm{K}_{13}=\mathrm{KU}[209,210] / \mathrm{M}$
$\mathrm{K}_{13}=[4,6,12,14,16,17,18,19,23,24,26,27,28,29,32,33,34,35,36,37,38,42,43,44,45,46,48$, 49,51,53,55,56,57,58,62,63,64,68,71,76,82,83,84,92,94,96,98,104,105,107,108,113,114, $118,122,125,126,127,134,136,143,145,149,151,152,155,156,157,160,162,163,164,165,1$ 75,182,185,193,196,198,201,202,203,205,207,208,209,210,212,214,216,219,221,224,22 6,227,229,231,232,233,236,238,241,243,245,248,252,253,254,255,258,261,262,263,265 ,266,269,270,271,272,273,274,275,279,280,281,284,286,288,289,291,294,295,296,298, 300,301,302,303,304,307,309,310,313,314,316,317,318,319,321,323,324,326,327,330,3 31,332,336,339,340,341,342,343,344,345,346,349,351,353,354,357,360,361,362,364,36 5,366,367,369,372,375,376].
Is a complete $(181,13)-\operatorname{arc}$ as shown in table (7) .Let $\beta_{7}=\pi-k_{13}$ $=\{1,2,3,5,7,8,9,10,11,13,15,20,21,22,25,30,31,39,40,41,47,50,52,54,59,60,61,65,66,67$, 69,70,72,73,74,75,77,78,79,80,81,85,86,87,88,89,90,91,93,95,97,99,100,101,102,103,10 6,109,110,111,112,115,116,117,119,120,121,123,124,128,129,130,131,132,133,135,137 ,138,139,140,141,142,144,146,147,148,150,153,154,158,159,161,166,167,168,170,171, $172,173,174,176,177,178,179,180,181,183,184,186,187,188,189,190,191,192,194,195,1$ 97,199,200,204,206,211,213,215,217,218,220,222,223,225,228,230,234,235,237,239,24 0,242,244,246,247,249,250,251,253,256,257,259,260,264,267,268,276,277,278,282,283 ,285,287,290,292,293,297,299,305,306,308,311,312,315,320,322,325,328,329,333,334, 335,337,338,347,348,350,352,355,356,358,359,363,368,370,371,373,374,377,378,379,3

80,381\} is (200,13)-blocking set as shown in table (7) .by theorem (1) ,there exists a projective $[181,3,168]_{19}$ code which is equivalent to the complete $(181,13)$-arc k_{13}

Table (7)

I	$\mathrm{K}_{13} \cap \mathrm{Li}$	$\mathrm{B}_{7} \cap \mathrm{Li}$
1	344	$\begin{aligned} & \text { 2,21,40,59,78,97,116,145,173,192,211,230,24 } \\ & 9,268,287,135,306,325,363 \end{aligned}$
2	$\begin{aligned} & \hline 23,24,26,27,28,29,32,33,34,35, \\ & 36,37,38 \\ & \hline \end{aligned}$	1,21,22,25,30,31,39
!	!	!
380	$\begin{array}{\|l\|} \hline 68,96,105,207,216,281,318,32 \\ 7,364,253 \\ \hline \end{array}$	11,31,40,133,142,170,179,244,290,355
381	113,149,185,203,221,275,365	$\begin{aligned} & 20,22,40,77,167,95,131,293,239,257,311,329, \\ & 347 \end{aligned}$

4.8 Existence of $[157,3,145]_{19}$ codes

We take 8 conic, say $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8}$ and let $\mathrm{K}=\pi-\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \mathrm{C}_{3} \cup \mathrm{C}_{4} \cup \mathrm{C}_{5} \cup \mathrm{C}_{6} \cup \mathrm{C}_{7} \cup \mathrm{C}_{8}$ $\{3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34$,35,36,37,38,39,40,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63, 64,66,68,69,71,74,78,79,81,82,83,84,86,87,90,92,94,97,98,101,103,104,105,107,108,11 $1,113,114,116,117,120,121,122,125,126,127,130,131,134,135,136,137,139,141,143,145$,149,150,151,152,154,155,156,157,159,160,161,163,164,165,166,173,174,175,178,180, 181,182,185,186,190,191,192,193,196,197,198,201,202,203,205,207,208,211,212,214,2 19,221,222,224,225,226,227,229,230,231,232,233,236,238,241,242,243,245,247,248,24 9,250,252,253,254,255,258,259,261,263,265,266,268,269,270,271,272,273,274,275,280 ,281,284,286,287,288,289,294,295,296,298,300,301,302,303,304,306,307,309,310,313, 314,317,318,319,321,323,324,325,326,327,330,332,333,336,339,340,341,342,343,344,3 45,346,347,349,351,352,353,354,357,361,362,363,364,365,366,367,369,370,372,375,37 $6,377,381\}$.
The geometrical Structure method must satisfy the following :
i. K intersects any line of π in at most 12 points .
ii. Every point not in K is on at least one 12 -secant of K .

The point :
M=40,59,78,97,116,135,22,25,30,31,29,39,16,3,5,7,9,10,61,81,101,161,181,8,6,15,178, 197,60,79,117,174,250,20,363,66,130,86,186,131,13,166,192,180,191,14,300,333,225,1 $21,54,287,69,47,19,190,87,306,377,111,18,139,381,259,173,90,11,201,222,114,154,52$, $247,347,370,301,344,159,303,343,249,120,339,152,230,310,311,325,107,50,141,271,12$,56,231Are eliminated from K to satisfy (1) . The points of index zero for 311,312 are added to K to satisfy (2) , then $\mathrm{K}_{12}=\mathrm{KU}[311,312] / \mathrm{M}$
$\mathrm{K}_{12}=[4,17,23,24,26,27,28,32,33,34,35,36,37,38,42,43,44,45,46,48,49,51,53,55,57,58,62$,63,64,68,71,74,82,83,84,92,94,98,103,104,105,108,113,122,125,126,127,134,136,137,1 43,145,149,150,151,155,156,157,160,163,164,165,175,182,185,193,196,198,202,203,20 5,207,208,211,212,214,219,221,224,226,227,229,232,233,236,238,241,242,243,245,248 ,252,253,254,255,258,261,263,265,266,268,269,270,272,273,274,275,280,281,284,286, 288,289,294,295,296,298,302,304,307,309,311,312,313,314,317,318,319,321,323,324,3 $26,327,330,332,336,340,341,342,345,346,349,351,352,353,354,357,361,362,364,365,36$
$6,367,369,372,375,376]$.Is a complete $(157,12)-$ arc as shown in table (8) .Let $\beta_{8}=\pi-$ k_{12}
$=\{1,2,3,5,6,7,8,9,10,11,12,13,14,15,16,18,19,20,21,22,25,29,30,31,39,40,41,47,50,52,5$
4,56,59,60,61,65,66,67,69,70,72,73,75,76,77,78,79,80,81,85,86,87,88,89,90,91,93,95,96 ,97,99,100,101,102,106,107,109,110,111,112,114,115,116,117,118,119,120,121,123,12 4,128,129,130,131,132,133,135,138,139,140,141,142,144,146,147,148,152,153,154,158 ,159,161,162,166,167,168,169,170,171,172,173,174,176,177,178,179,180,181,183,184, 186,187,188,189,190,191,192,194,195,197,199,200,201,204,206,209,210,211,213,215,2 16,217,218,220,222,223,225,228,230,231,234,235,237,239,240,244,246,247,249,250,25 1,256,257,259,260,262,264,267,271,276,277,278,279,282,283,285,287,290,291,292,293 ,297,299,300,301,303,305,306,308,310,315,316,320,322,325,328,329,331,333,334,335, 337,338,339,343,344,347,348,350,355,356,358,359,360,363,368,370,371,373,374,377,3 $78,379,380,381\}$ is $(200,12)$-blocking set as shown in table (8) .
by theorem (1) ,there exists a projective [157,3,145] ${ }_{19}$ code which is equivalent to the complete (157,12)-arc k_{12}

Table (8)

I	$\mathrm{K}_{12} \cap \mathrm{Li}$	$\mathrm{B}_{8} \cap \mathrm{Li}$
1	268	$2,21,40,59,78,97,116,135,154,173,192,211,249,28$ $7,306,325,344,363,230$
2	$23,24,26,27,28,32,33,34,3$ $5,36,37,38$	$1,21,22,25,30,31,29,39$
\vdots	\vdots	\vdots
380	$68,105,207,281,318,327,3$ 64,253	$11,31,40,96,133,142,170,179,216,244,290,355$
381	$113,149,185,311,203,221$, 275,365	$20,22,40,77,95,131,167,239,257,293,347,329$

4.9 Existence of $[141,3,130]_{19}$ codes

We take 9 conic, say $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9}$ and let $\mathrm{K}=\pi-\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \mathrm{C}_{3} \cup \mathrm{C}_{4} \cup \mathrm{C}_{5} \cup \mathrm{C}_{6} \cup \mathrm{C}_{7} \cup \mathrm{C}_{8} \cup \mathrm{C}_{9}$
$\{3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34$,35,36,37,38,39,40,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63, 64,68,69,71,74,78,79,81,82,83,84,86,87,92,94,97,98,101,104,105,107,108,111,113,114, 116,117,120,121,122,126,127,130,131,134,135,136,137,141,143,145,149,150,151,152,1 54,155,157,159,160,161,163,164,165,166,173,174,175,178,180,181,182,185,186,191,19 2,193,196,198,201,202,203,205,207,208,211,212,214,219,221,222,224,225,226,227,229 ,230,231,232,233,236,238,241,242,243,247,248,249,250,253,254,255,258,259,261,263, 265,266,268,269,270,271,272,273,274,275,280,281,284,287,288,289,294,295,296,298,3 00,301,302,304,306,307,309,310,313,314,318,319,321,323,324,325,326,327,330,332,33 3,336,340,341,342,343,344,345,346,347,349,351,353,354,357,361,362,363,364,365,366 ,367,369,370,372,375,377,381\}.
The geometrical Structure method must satisfy the following :
i. K intersects any line of π in at most 11 points .
ii. Every point not in K is on at least one 11 -secant of K .

The point :
$\mathrm{M}=40,59,78,97,116,135,20,154,22,25,30,31,39,35,3,61,81,101,141,161,181,5,7,9,10,12$, $14,159,178,121,60,79,117,174,250,155,363,333,160,225,191,86,107,186,166,300,192,1$ 80,130,52,15,16,54,13,38,287,69,47,19,151,87,306,377,347,50,111,18,222,255,104,173,

247,131,259,11,4,344,150,159,344,343,8,120,152,370,230,301,114,325,17,207,268,211 Are eliminated from K to satisfy (1) . The points of index zero for 251,252 are added to K to satisfy (2) , then $\mathrm{K}_{11}=\mathrm{KU}[251,252] / \mathrm{M}$ $\mathrm{K}_{11}=[6,23,24,26,27,28,32,33,34,36,37,38,42,43,44,45,46,48,49,51,53,55,57,62,63,64,68$,71,74,82,83,84,92,94,98,105,108,113,122,126,127,134,136,137,143,145,149,157,163,1 64,165,175,182,185,193,196,198,201,202,203,205,208,212,214,219,221,224,226,227,22 9,231,232,233,236,238,241,242,243,248,249,251,252,253,254,258,261,263,265,266,269 ,270,271,272,273,274,275,280,281,284,288,289,294,295,296,298,302,304,307,309,310, 313,314,318,319,321,323,324,326,327,330,332,336,340,341,342,345,346,349,351,353,3 $54,357,361,362,364,365,366,367,369,372,375]$.Is a complete $(141,11)$-arc as shown in table (9) .Let $\beta_{9}=\pi-k_{11}$
$=\{1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,25,29,30,31,35,39,40,41,47,5$ 0,52,54,56,58,59,60,61,65,66,67,69,70,72,73,75,76,77,78,79,80,81,85,86,87,88,89,90,91 ,93,95,96,97,99,100,101,102,103,104,106,107,109,110,111,112,114,115,116,117,118,11 $9,120,121,123,124,125,128,129,130,130,132,133,135,138,139,140,141,142,144,146,147$,148,150,151,152,153,154,155,156,158,159,160,161,162,166,167,168,169,170,171,172, $173,174,176,177,178,179,180,181,183,184,186,187,188,189,190,191,192,194,195,197,1$ 99,200,204,206,207,209,210,211,213,215,216,217,218,220,222,223,225,228,230,234,23 5,237,239,240,244,245,246,247,250,255,256,257,259,260,262,264,267,268,276,277,278 ,279,282,283,285,286,287,290,291,292,293,297,299,300,301,303,305,306,308,311,312, 315,316,317,320,322,325,328,329,331,333,334,335,337,338,339,343,344,347,348,350,3 $52,355,356,358,359,360,363,368,370,371,373,374,376,377,378,379,380,381\}$ is (240,11)-blocking set as shown in table (9) .
by theorem (1) ,there exists a projective [141,3,130] ${ }_{19}$ code which is equivalent to the complete (141,11)-arc k_{11}

Table (9)

I	$\mathrm{K}_{11} \cap \mathrm{Li}$	$\mathrm{B}_{9} \cap \mathrm{Li}$
1	249	$2,21,40,59,78,97,116,135,154,173,192,211,230,268$, $287,306,344,325,363$
2	$23,24,26,27,28,32,33,34,3$ $6,37,38$	$1,21,25,29,30,31,35,39,22$
\vdots	\vdots	\vdots
38	$68,105,281,318,327,364,2$	$11,31,40,96,133,142,170,179,207,216,244,290,355$
0	53	$20,22,40,77,131,167,239,257,95,239,311,329,347$
38	$113,149,185,203,221,275$,	
1	365	

4.10 Existence of $[120,3,110]_{19}$ codes

We take 10 conic , say $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9}, \mathrm{C}_{10}$ and let $\mathrm{K}=\pi-\mathrm{C}_{1} \cup \mathrm{C}_{2}$ $\cup \mathrm{C}_{3} \cup \mathrm{C}_{4} \cup \mathrm{C}_{5} \cup \mathrm{C}_{6} \cup \mathrm{C}_{7} \cup \mathrm{C}_{8} \cup \mathrm{C}_{9} \cup \mathrm{C}_{10}$ $\{3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34$,35,36,37,38,39,40,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63, 68,69,71,74,78,79,81,83,84,86,87,92,94,97,98,101,104,105,107,108,113,114,116,117,12 0,121,122,127,130,131,134,135,136,137,141,143,145,149,150,152,154,155,157,159,160 ,161,164,165,166,173,174,175,178,181,182,185,186,191,192,193,196,198,201,202,203, 205,207,208,211,212,214,219,221,222,224,225,227,229,230,231,232,233,236,238,241,2 $42,247,248,249,250,253,254,258,259,261,263,265,266,268,269,270,271,272,273,274,27$

5,281,284,287,288,289,294,296,298,300,301,302,304,306,307,309,310,313,314,318,319 ,321,323,325,326,327,330,332,333,336,340,341,343,344,345,347,349,351,353,354,357, $361,362,363,364,365,367,369,370,372,375,377,381\}$.The geometrical Structure method must satisfy the following :
i. K intersects any line of π in at most 10 points .
ii. Every point not in K is on at least one 10 -secant of K .

The point :
M=40,59,78,97,116,135,154,173,22,25,29,30,31,33,35,39,3,61,81,101,121,141,161,181, 5,9,10,12,14,16,20,60,79,117,155,174,250,231,363,160,130,247,225,87,191,86,107,4,18 6,300,259,166,13,192,69,15,54,178,47,19,134,104,58,375,330,232,377,74,306,50,222,3 $47,150,11,136,201,52,301,381,344,159,307,249,120,152,108,370,230,18,114,340,325,2$ $07,17,270,268,211,40,310$ Are eliminated from K to satisfy (1) . The points of index zero for 65,66 are added to K to satisfy (2) , then $\mathrm{K}_{10}=\mathrm{KU}[65,66]$ / M
$\mathrm{K}_{10}=[6,7,8,23,24,26,27,28,32,34,36,37,38,42,43,45,46,48,49,51,53,55,56,57,62,63,65,6$ 6,68,71,83,84,92,94,98,105,113,122,127,131,137,143,145,149,157,164,165,175,182,185 ,193,196,198,202,203,205,208,212,214,219,221,224,227,229,233,236,238,241,242,248, 253,254,258,261,263,265,266,269,271,272,273,274,275,281,284,287,288,289,294,296,2 98,302,304,309,313,314,318,319,321,323,326,327,332,333,336,341,343,345,349,351,35 $3,354,357,361,362,364,365,367,369,372]$.Is a complete $(120,10)$-arc as shown in table (10) .Let $\beta_{10}=\pi-k_{10}$ $=\{1,2,3,4,5,9,10,11,12,13,14,15,16,17,18,19,20,21,22,25,29,30,31,33,35,39,40,41,44,47$,50,52,54,58,59,60,61,64,67,69,70,72,73,74,75,76,77,78,79,80,81,82,85,86,87,88,89,90, 91,93,95,96,97,99,100,101,102,103,104,106,107,108,109,110,111,112,114,115,116,117, $118,119,120,121,123,124,125,126,128,129,130,132,133,134,135,136,138,139,140,141,1$ 42,144,146,147,148,150,151,152,153,154,155,156,158,159,160,161,162,163,166,167,16 8,169,170,171,172,173,174,176,177,178,179,180,181,183,184,186,187,188,189,190,191 ,192,194,195,197,199,200,201,204,206,207,209,210,211,213,215,216,217,218,220,222, 223,225,226,228,230,231,232,234,235,237,239,240,243,244,245,246,247,249,250,251,2 $52,255,256,257,259,260,262,264,267,268,270,276,277,278,279,280,282,283,285,286,29$ 0,291,292,293,295,297,299,300,301,303,305,306,307,308,310,311,312,315,316,317,320 ,322,324,325,328,329,330,331,334,335,337,338,339,340,342,344,346,347,348,350,352, $355,356,358,359,360,363,366,368,370,371,373,374,375,376,377,378,379,380,381\}$ is (261,11)-blocking set as shown in table (10) .by theorem (1) ,there exists a projective $[120,3,110]_{19}$ code which is equivalent to the complete $(120,10)$-arc k_{10}

Table (10)

I	$\mathrm{K}_{10} \cap \mathrm{Li}$	$\mathrm{B}_{10} \cap \mathrm{Li}$
1	287	$2,21,40,59,78,97,116,135,154,173,192,211,230,249$, $268,306,325,344,363$
2	$23,24,26,27,28,32,34,36$, 37,38	$1,21,22,25,29,30,31,33,35,39$
\vdots	\vdots	\vdots
380	$68,105,281,318,327,364$, 253	$11,31,40,96,133,142,170,179,207,216,244,290,355$
381	$113,149,185,203,221,27$ 5,365	$20,22,40,77,95,131,167,239,257,293,311,329,347$

4.11 Existence of $[112,3,103]_{19}$ codes

We take 11 conic , say $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{11}$ and let $\mathrm{K}=\pi-\mathrm{C}_{1}$ $\cup \mathrm{C}_{2} \cup \mathrm{C}_{3} \cup \mathrm{C}_{4} \cup \mathrm{C}_{5} \cup \mathrm{C}_{6} \cup \mathrm{C}_{7} \cup \mathrm{C}_{8} \cup \mathrm{C}_{9} \cup \mathrm{C}_{10} \cup \mathrm{C}_{11}$
$\{3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34$,35,36,37,38,39,40,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63, $68,69,71,78,79,81,83,84,87,92,94,97,98,101,105,107,108,113,114,116,117,120,121,122$, 127,130,131,135,136,141,143,145,149,150,152,154,155,157,159,160,161,164,166,173,1 74,175,178,181,182,185,186,191,192,193,196,198,201,202,203,207,208,211,212,219,22 1,222,224,225,227,229,230,231,232,233,238,241,242,247,248,249,250,253,254,258,259 ,261,263,265,268,269,270,271,272,273,274,275,281,287,288,289,294,298,300,301,302, 304,306,307,309,313,314,318,319,321,323,325,326,327,332,333,336,340,341,343,344,3 45,347,349,351,353,357,361,362,363,364,365,367,369,370,372,375,381\}.
The geometrical Structure method must satisfy the following :

1. K intersects any line of π in at most 9 points .
2. Every point not in K is on at least one 9 -secant of K .

The point :
$\mathrm{M}=40,59,78,97,116,135,154,173,192,22,25,29,30,31,33,35,39,36,3,61,81,101,121,5,6,7$, $10,9,12,14,16,41,161,181,381,60,79,117,155,174,250,307,363,333,160,130,20,191,107$, 44,4,300,207,166,136,47,186,178,52,114,341,87,6,15,247,113,287,69,54,58,306,18,159, 347,222,150,259,271,50,11,201,225,344,343,249,289,108,19,370,230,268,211Are eliminated from K to satisfy (1) . The points of index zero for 216,217 are added to K to satisfy (2) , then $\mathrm{K}_{9}=\mathrm{KU}[216,217] / \mathrm{M}$
$\mathrm{K}_{9}=[8,13,17,23,24,26,27,28,32,34,37,38,42,43,45,46,48,49,51,53,55,56,57,62,63,68,71$, 83,84,92,94,98,105,120,122,127,131,143,145,149,152,157,164,175,182,185,193,196,19 8,202,203,208,212,216,217,219,221,224,227,229,231,232,233,238,241,242,248,253,254 ,258,261,263,265,269,270,272,273,274,275,281,288,294,298,301,302,304,309,313,314, 318,319,321,323,325,326,327,332,336,340,345,349,351,353,357,361,362,364,365,367,3 $69,372,375]$.Is a complete $(112,9)-$ arc as shown in table (11) .Let $\beta_{11}=\pi-k_{9}$ $=\{1,2,3,4,5,6,7,9,10,11,12,14,15,16,18,19,20,21,22,25,29,30,31,33,35,36,39,40,41,44,4$ 7,49,50,52,54,56,58,59,60,61,64,65,66,67,69,70,72,73,74,75,76,77,78,79,80,81,82,85,86 ,87,88,89,90,91,93,95,96,97,99,100,101,102,103,104,106,107,108,109,110,111,112,113, $114,115,116,117,118,119,121,123,124,125,126,128,129,130,132,133,134,135,136,137,1$ 38,139,140,141,142,144,146,147,148,150,151,153,154,155,156,158,159,160,161,162,16 3,165,166,167,168,169,170,171,172,173,174,176,177,178,179,180,181,183,184,186,187 ,188,189,190,191,192,194,195,197,199,200,201,204,205,206,207,209,210,211,213,214, $215,218,220,222,223,225,226,228,230,234,235,236,237,239,240,243,244,245,246,247$, $249,250,251,252,254,255,256,257,259,260,262,264,266,267,268,271,276,277,278,279,2$ 80,282,283,284,285,286,287,289,290,291,292,293,295,296,297,299,300,303,305,306,30 7,308,310,311,312,315,316,317,320,322,324,328,329,330,331,333,334,335,337,338,339 ,341,342,343,344,346,347,348,350,352,354,355,356,358,359,360,363,366,368,370,371, $373,374,376,377,378,379,380,381\}$ is (269,9)-blocking set as shown in table (11) .by theorem (1) ,there exists a projective $[112,3,103]_{19}$ code which is equivalent to the complete (112,9)-arc k9

Table (11)

I	$\mathrm{K} 9 \cap \mathrm{Li}$	
1	325	$\mathrm{~B}_{11} \cap \mathrm{Li}$
		$2,21,40,59,78,97,116,135,154,173,192,211,230,249,2$
2	$23,24,26,27,28,32,34,37$	$1,21,22,25,29,39,30,363$

	, 38	
\vdots	\vdots	\vdots
38	$68,105,281,318,327,364$	$11,31,40,96,133,142,170,179,207,244,290,355$
0	$, 216,253$	
38	$149,185,131,203,221,27$	$20,22,40,77,95,113,167,239,257,293,311,329$,
1	5	347,365

4.12 Existence of $[82,3,74]_{19}$ codes

We take 12 conic , say $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{11}, \mathrm{C}_{12}$ and let $\mathrm{K}=\pi$ $-\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \mathrm{C}_{3} \cup \mathrm{C}_{4} \cup \mathrm{C}_{5} \cup \mathrm{C}_{6} \cup \mathrm{C}_{7} \cup \mathrm{C}_{8} \cup \mathrm{C}_{9} \cup \mathrm{C}_{10} \cup \mathrm{C}_{11} \cup \mathrm{C}_{12}$ $\{3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34$,35,36,37,38,39,40,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63, $68,71,78,79,81,83,84,87,94,97,98,101,107,108,113,114,116,117,120,121,122,127,130,1$ 35,136,141,143,145,149,150,154,155,157,159,160,161,164,166,173,174,175,178,181,18 5,186,191,192,193,196,198,201,202,207,208,211,212,219,221,222,224,225,227,230,231 ,232,233,238,241,247,248,249,250,253,254,258,259,261,263,268,269,270,271,272,273, 275,281,287,288,289,298,300,301,302,304,306,307,313,314,318,319,321,323,325,326,3 32,333,336,340,341,343,344,345,347,351,353,357,361,362,363,364,365,369,370,372,37 5,381\}.
The geometrical Structure method must satisfy the following :

- K intersects any line of π in at most 8 points .
- Every point not in K is on at least one 8 -secant of K .

The point : $\mathrm{M}=40,59,78,97,116,135,154,173,192,211,22,24,25,29,30,31,33,35,36,39$, 3,61,81,101,121,161,181,201,301,381,4,5,6,7,8,10,12,14,20,60,79,117,136,155,174,250, $307,269,363,17,130,160,9,54,44,107,191,300,259,207,166,178,225,16,15,50,108,87,52$, $114,289,186,58,56,287,19,47,340,122,150,347,120,222,113,159,18,247,333,271,302,34$ $4,343,249,141,370,26,49,230,325,34,270,268,336,45,37$. Are eliminated from K to satisfy (1) .The points of index zero for 200,300 are added to K to satisfy (2), then K_{8} $=K \cup[200,300] / \mathrm{M}$
$\mathrm{K}_{8}=[11,13,23,27,28,32,38,42,43,46,48,51,53,55,57,62,63,68,71,83,84,94,98,127,143,14$ 5,149,157,164,175,185,193,196,198,200,202,208,212,219,221,224,227,231,232,233,238 ,241,248,253,254,258,261,263,272,273,275,281,288,298,300,304,306,313,314,318,319, 321,323,326,332,341,345,351,353,357,361,362,364,365,369,372,375].Is a complete $(82,8)-$ arc as shown in table (12) .Let $\beta_{12}=\pi-k_{8}$ $=\{1,2,3,4,5,6,7,8,9,10,12,14,15,16,17,18,19,20,21,22,24,25,26,29,30,31,33,34,35,36,37$, 39,40,41,44,45,47,49,50,52,54,56,58,59,60,61,64,65,66,67,69,70,72,73,74,75,76,77,78,7 $9,80,81,82,85,86,87,88,89,90,91,92,93,95,96,97,99,100,101,102,103,104,105,106,107,1$ $08,109,110,111,112,113,114,115,116,117,118,119,121,122,123,124,125,126,128,129,13$ $0,131,132,133,134,135,136,137,138,139,140,141,142,144,146,147,148,150,151,152,153$,154,155,156,158,159,160,161,162,163,165,166,167,168,169,170,171,172,173,174,176, 177,178,179,180,181,183,184,186,187,188,189,190,191,192,194,195,197,199,201,203,2 04,205,206,207,209,210,211,213,214,215,216,217,218,220,222,223,225,226,228,229,23 0,234,235,236,237,239,240,242,243,244,245,246,247,249,250,251,252,255,256,257,259 ,260,262,264,265,266,267,268,269,270,271,274,276,277,278,279,280,282,283,284,285, 286,287,289,290,291,292,293,294,295,296,297,299,301,302,303,305,306,307,308,309,3 $10,311,312,315,316,317,320,322,324,325,327,328,329,330,331,333,334,335,336,337,33$ 8,339,340,342,343,344,346,347,348,349,350,352,354,355,356,358,359,360,363,366,367
,368,370,371,373,374,376,377,378,379,380,381\} is (299,8)-blocking set as shown in table (12) .by theorem (1) ,there exists a projective [82,3,74] $]_{19}$ code which is equivalent to the complete $(82,8)$-arc k_{8}

Table (12)

I	$\mathrm{K}_{8} \cap \mathrm{Li}$	$\mathrm{B}_{12} \cap \mathrm{Li}$
1	306	$2,21,40,59,78,97,116,135,154,173,192,211,230,249,268,2$ $87,325,344,363$
2	$23,27,28,32,38$	$1,21,22,24,25,26,29,30,31,33,34,35,36,37,39$
\vdots	\vdots	\vdots
38 0	$11,68,281,318,364$, 253	$31,40,96,105,133,142,170,179,207,216,244,290,327,355$
38 1	$149,185,221,275,36$ 5	$20,22,40,77,95,113,131,347,329,167,203,239,257,293,311$

4.13 Existence of $[72,3,65]_{19}$ codes

We take 13 conic , say $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{11}, \mathrm{C}_{12}, \mathrm{C}_{13}$ and let $\mathrm{K}=\pi-\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \mathrm{C}_{3} \cup \mathrm{C}_{4} \cup \mathrm{C}_{5} \cup \mathrm{C}_{6} \cup \mathrm{C}_{7} \cup \mathrm{C}_{8} \cup \mathrm{C}_{9} \cup \mathrm{C}_{10} \cup \mathrm{C}_{11} \cup \mathrm{C}_{12} \cup \mathrm{C}_{13}$ $\{3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34$,35,36,37,38,39,40,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63, 68,78,79,81,84,87,94,97,98,101,108,113,114,116,117,120,121,127,130,135,136,141,143 ,145,149,150,154,155,159,160,161,164,166,173,174,175,178,181,185,186,192,193,198, 201,202,207,208,211,212,219,221,222,224,225,230,231,232,233,241,247,248,249,250,2 53,254,259,261,263,268,269,270,271,272,273,281,287,288,289,298,300,301,304,306,30 7,313,314,318,319,321,325,326,332,333,340,341,343,344,345,347,351,353,361,362,363 ,364,369,370,372,375,381\}.The geometrical Structure method must satisfy the following :

1. K intersects any line of π in at most 7 points .
2. Every point not in K is on at least one 7 -secant of K.

The point :
M=40,59,78,97,116,135,154,173,211,230,22,24,25,26,27,29,30,31,33,35,39,249,61,3,81 ,101,121,141,161,181,201,301,381,4,5,6,7,8,10,12,60,79,117,136,155,174,14,16,20,250, $269,307,345,363,178,17,36,130,136,333,247,225,9,54,44,340,186,13,166,207,259,300,3$ $47,222,150,164,15,50,108,52,87,114,289,287,306,120,18,58,271,11,344,325,343,268,45$,47,49,175,46.Are eliminated from K to satisfy (1) . The points of index zero for 112,312 are added to K to satisfy (2) , then $\mathrm{K}_{7}=\mathrm{K} \cup[112,312] / \mathrm{M}$ $\mathrm{K}_{7}=[19,23,28,32,34,37,38,42,43,48,51,53,55,56,57,62,63,68,84,94,98,112,113,127,143$, $145,149,159,185,192,193,198,202,208,212,219,221,224,231,232,233,241,248,253,254,2$ 61,263,270,272,273,281,288,298,304,312,313,314,318,319,321,326,332,341,351,353,36 $1,362,364,369,370,372,375]$.Is a complete (72,7) - arc as shown in table (13) .Let $\beta_{13}=$ $\pi-k_{7}$
$=\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,20,21,22,24,25,26,27,29,30,31,33,35,36$, 39,40,41,44,45,46,47,49,50,52,54,58,59,60,61,64,65,66,67,69,70,71,72,73,74,75,76,77,7 $8,79,80,81,82,83,85,86,87,88,89,90,91,92,93,95,96,97,99,100,101,102,103,104,105,106$, $107,108,109,110,111,114,115,116,117,118,119,121,122,123,124,125,126,128,129,130,1$ 31,132,133,134,135,136,137,138,139,140,141,142,144,146,147,148,150,151,152,153,15 4,155,156,157,158,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175 ,176,177,178,179,180,181,182,183,184,186,187,188,189,190,191,192,194,195,196,197,
$199,200,201,203,204,205,206,207,209,210,211,213,214,215,216,217,218,220,222,223,2$ $25,226,227,228,229,230,234,235,236,237,238,239,240,242,243,244,245,246,247,249,25$ $0,251,252,255,256,257,258,259,260,262,264,265,266,267,268,269,271,274,275,276,277$,278,279,280,282,283,284,285,286,287,289,290,291,292,293,294,295,296,297,299,301, $302,303,305,306,307,308,309,310,311,315,316,317,320,322,323,324,325,327,328,329,3$ $30,331,333,334,335,336,337,338,339,340,342,343,344,345,346,347,348,349,350,352,35$ $4,355,356,357,358,359,360,363,365,366,367,368,371,373,374,376,377,378,379,380,381$ \} is $(309,7)$-blocking set as shown in table (13).by theorem (1) ,there exists a projective $[72,3,65]_{19}$ code which is equivalent to the complete $(72,7)$-arc k_{7}

Table (13)

I	$\mathrm{K}_{7} \cap \mathrm{Li}$	$\mathrm{B}_{13} \cap \mathrm{Li}$
1	192	2,21,40,59,78,97,116,135,154,173,211,230,249,268,287,306,32 $5,344,363$
2	$23,28,32,34,37$	$1,21,22,24,25,26,27,29,30,31,33,35,36,38,39$
\vdots	\vdots	\vdots
38	$68,281,318,36$	$11,31,40,96,105,133,142,170,179,207,216,244,290,327,355$
0	4,253	
38	$113,149,185,2$	$20,22,40,77,95,131,167,203,239,347,365,257,275,293,311,329$
1	21	

4.14 Existence of $[54,3,48]_{19}$ codes

We take 14 conic, say $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{11}, \mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{14}$ and let $K=\pi-C_{1} \cup C_{2} \cup C_{3} \cup C_{4} \cup C_{5} \cup C_{6} \cup C_{7} \cup C_{8} \cup C_{9} \cup C_{10} \cup C_{11} \cup C_{12} \cup C_{13} \cup C_{14}$ $\{3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34$,35,36,37,38,39,40,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63, $78,79,81,87,94,97,98,101,108,114,116,117,120,121,127,130,135,136,141,143,145,150,1$ $54,155,160,161,164,166,173,174,178,181,185,186,192,193,198,201,207,208,211,212,21$ $9,221,224,225,230,231,232,233,241,247,249,250,254,259,261,263,268,269,270,272,273$, 281,287,288,289,298,300,301,306,307,313,314,318,321,325,326,332,340,341,343,344, $345,347,353,361,362,363,364,369,370,372,381\}$. The geometrical Structure method must satisfy the following :
i. K intersects any line of π in at most 6 points .
ii. Every point not in K is on at least one 6 -secant of K .

The point :
$\mathrm{M}=40,59,78,97,116,154,173,192,211,230,249,268,22,24,25,26,27,28,29,30,31,33,35,39$, $3,61,81,101,121,141,161,181,201,301,381,341,4,5,6,7,8,9,10,12,14,16,20,60,79,117,136$,155,174,250,269,307,345,231,363,160,130,36,247,186,340,300,259,207,166,47,225,17 $8,164,150,108,343,289,114,87,127,370,58,49,56,287,306,19,344,120,13,11,325,270,48$, $44,45,45,50,52,54,37$ Are eliminated from K to satisfy (1). The points of index zero for 171,271 are added to K to satisfy (2) , then $\mathrm{K}_{6}=\mathrm{KU}[171,271] / \mathrm{M}$
$\mathrm{K}_{6}=[15,17,18,23,32,34,38,42,43,51,53,55,57,62,63,94,98,135,143,145,171,185,193,198$, $208,212,219,221,224,232,233,241,254,261,263,271,272,273,281,288,298,313,314,318,3$ $21,326,332,347,353,361,362,364,369,372]$.Is a complete $(54,6)-\operatorname{arc}$ as shown in table (14) .Let $\beta_{14}=\pi-k_{6}$ $=\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,16,19,20,21,22,24,25,26,27,28,29,30,31,33,35,36,37$, $39,40,41,44,45,46,47,48,49,50,52,54,56,58,59,60,61,64,65,66,67,68,69,70,71,72,73,74,7$

5,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,95,96,97,99,100,101,102,103, 104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,1 $24,125,126,127,128,129,130,131,132,133,134,136,137,138,139,140,141,142,144,146,14$ $7,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167$,168,169,170,172,173,174,175,176,177,178,179,180,181,182,183,184,186,187,188,189, 190,191,192,194,195,196,197,199,200,201,202,203,204,205,206,207,209,210,211,213,2 $14,215,216,217,218,220,222,223,225,226,227,228,229,230,231,234,235,236,237,238,23$ $9,240,242,243,244,245,246,247,248,249,250,251,252,253,255,256,257,258,259,260,262$,264,265,266,267,268,269,270,274,275,276,277,278,279,280,282,283,284,285,286,287, 289,290,291,292,293,294,295,296,297,299,301,302,303,304,305,306,307,308,309,310,3 $11,312,315,316,317,319,320,322,323,324,325,327,328,329,330,331,333,334,335,336,33$ $7,338,339,340,341,342,343,344,345,346,348,349,350,351,352,354,355,356,357,358,359$,360,363,365,366,367,368,370,371,373,374,376,377,378,379,380,381\} is $(327,6)-$ blocking set as shown in table (14) .
by theorem (1) ,there exists a projective $[54,3,48]_{19}$ code which is equivalent to the complete (54,6)-arc k6

Table (14)

I	$\mathrm{K}_{6} \cap \mathrm{Li}$	$\mathrm{B}_{14} \cap \mathrm{Li}$
1	135	$2,21,40,59,78,97,116,154,173,192,211,230,249,268,287,306,325,34$ 4,363
2	$23,34,38$	$1,21,22,24,25,26,27,28,29,30,31,32,33,35,36,37,39$
\vdots	\vdots	\vdots
38	$281,318,3$	$11,31,40,68,96,105,133,142,170,179,207,216,244,253,290,327,355$
0	64	
38	185,221	$20,22,40,77,95,113,131,149,167,95,347,329,203,239,257,275,293,3$
1		11

4.15 Existence of $[\mathbf{3 7 , 3 , 3 2}]_{19}$ codes

We take 15 conic, say $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{11}, \mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{14}, \mathrm{C}_{15}$ and let
$\mathrm{K}=\pi-\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \mathrm{C}_{3} \cup \mathrm{C}_{4} \cup \mathrm{C}_{5} \cup \mathrm{C}_{6} \cup \mathrm{C}_{7} \cup \mathrm{C}_{8} \cup \mathrm{C}_{9} \cup \mathrm{C}_{10} \cup \mathrm{C}_{11} \cup \mathrm{C}_{12} \cup \mathrm{C}_{13} \cup \mathrm{C}_{14} \cup$ C_{15}
$\{3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34$,35,36,37,38,39,40,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,63,78, 79,81,94,97,98,101,108,114,116,117,121,127,130,135,136,141,143,150,154,155,160,16 1,164,173,174,178,181,185,192,193,201,207,208,211,212,219,221,224,230,231,232,233 ,241,249,250,259,261,263,268,269,272,273,281,287,288,289,300,301,306,307,313,318, 321,325,326,332,341,343,344,345,347,353,361,363,364,369,372,381\}.
The geometrical Structure method must satisfy the following :

1. K intersects any line of π in at most 5 points .
2. Every point not in K is on at least one 5 -secant of K .

The point :
$\mathrm{M}=40,59,78,97,116,135,154,192,211,230,249,268,306,22,24,25,27,28,29,30,31,33,35,3$ 6,38,39,18,3,61,81,101,121,141,161,181,201,301,341,361,381,4,5,6,7,8,10,12,14,16,20, $9,11,60,79,117,136,155,174,250,269,307,345,231,193,363,130,300,259,207,347,50,150$, $164,108,114,26,212,48,160,343,47,54,17,127,232,49,37,58,45,173,289,32,344,43,325,1$ 5,34,42,46,52,56,241 Are eliminated from K to satisfy (1) . The points of index zero for 102,240 are added to K to satisfy (2) , then $\mathrm{K}_{5}=\mathrm{KU}[102,240]$ / M
$\mathrm{K}_{5}=[13,19,23,44,51,53,55,57,63,94,98,102,143,178,185,208,219,221,224,233,240,261,2$ $63,272,273,281,287,288,313,318,321,326,332,353,364,369,372$]Is a complete $(37,5)-$ arc as shown in table (15). Let $\beta_{15}=\pi-k_{5}$
$=\{1,2,3,4,5,6,7,8,9,10,11,12,14,16,20,21,22,24,25,26,27,28,29,30,31,32,33,34,35,36,37$, 39,40,41,42,43,45,46,47,48,49,50,52,54,56,58,59,60,61,62,64,65,66,67,68,69,70,71,72,7 $3,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,95,96,97,99,100,101,10$ 3,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123 ,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,144, 145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,1 65,166,167,168,169,170,171,172,173,174,175,176,177,179,180,181,182,183,184,186,18 7,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207 ,209,210,211,212,213,214,215,216,217,218,220,222,223,225,226,227,228,229,230,231, $232,234,235,236,237,238,239,241,242,243,244,245,246,247,248,249,250,251,252,253,2$ 54,255,256,257,258,259,260,262,264,265,266,267,268,269,270,271,274,275,276,277,27 8,279,280,282,283,284,285,286,289,290,291,292,293,294,295,296,297,298,299,300,301 ,302,303,304,305,306,307,308,309,310,311,312,314,315,316,317,319,320,322,323,324, 325,327,328,329,330,331,333,334,335,336,337,338,339,340,341,342,343,344,345,346,3 47,348,349,350,351,352,354,355,356,357,358,359,360,361,362,363,365,366,367,368,37 $0,371,373,374,376,377,378,379,380,381\}$ is (344,5)-blocking set as shown in table (15) .by theorem (1) ,there exists a projective $[37,3,32]_{19}$ code which is equivalent to the complete $(37,5)$-arc k_{5}

Table (15)

I	$\mathrm{K}_{5} \cap \mathrm{Li}$	$\mathrm{B}_{15} \cap \mathrm{Li}$
1	287	$2,21,40,59,78,97,116,135,173,192,211,230,249,268,306,154,325,3$ 44,363
2	23	$1,21,22,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39$
\vdots	\vdots	\vdots
38	$281,318,36$	$11,31,40,68,96,105,133,142,170,179,207,216,244,253,290,327,355$
0	4	$20,22,40,77,95,113,131,149,167,203,239,293,257,275,311,329,347$ 38
185,221	, 365	
1		

4.14 Existence of $[37,3,32]_{19}$ codes

We take 16 conic, say $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{11}, \mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{14}, \mathrm{C}_{15}$, C_{16} and let
$\mathrm{K}=\pi-\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \mathrm{C}_{3} \cup \mathrm{C}_{4} \cup \mathrm{C}_{5} \cup \mathrm{C}_{6} \cup \mathrm{C}_{7} \cup \mathrm{C}_{8} \cup \mathrm{C}_{9} \cup \mathrm{C}_{10} \cup \mathrm{C}_{11} \cup \mathrm{C}_{12} \cup \mathrm{C}_{13} \cup \mathrm{C}_{14} \cup$ $\mathrm{C}_{15} \cup \mathrm{C}_{16}$
$\{3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34$,35,36,37,38,39,40,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,78,79, $81,94,97,98,101,114,116,117,121,127,135,136,141,143,154,155,161,164,173,174,178,1$ 81,192,193,201,207,211,212,221,224,230,231,233,241,249,250,261,263,268,269,272,28 $1,287,288,289,301,306,307,318,321,325,326,332,341,344,345,353,361,363,364,369,381$ \}.The geometrical Structure method must satisfy the following :
i. K intersects any line of π in at most 4 points .
ii. Every point not in K is on at least one 4 -secant of K .

The point:
$\mathrm{M}=40,59,78,97,116,135,154,325,192,211,230,249,268,287,22,24,25,26,27,28,29,30,31$, $33,35,36,38,39,3,61,81,101,121,141,161,181,201,301,341,381,321,221,4,5,6,7,8,9,10,12$
,14,16,18,20,11,60,79,117,136,155,174,193,212,250,269,307,345,231,363,289,19,45,13, 37,50,47,51,127,207,48,306,56,32,369,344,178,44,46,49,52,54,56,58,42,43,34,144,164. Are eliminated from K to satisfy (1) . The points of index zero for 195,265 are added to K to satisfy (2) , then $\mathrm{K}_{4}=\mathrm{K} \cup[195,265] / \mathrm{M}$ $\mathrm{K}_{4}=[15,17,23,53,55,57,94,98,143,173,195,224,233,241,261,263,265,272,281,288,318,3$ $26,332,353,361,364]$.Is a complete $(26,4)-$ arc as shown in table (16) .Let $\beta_{16}=\pi-k_{4}$ $=\{1,2,3,4,5,6,7,8,9,10,11,12,14,16,18,19,20,21,22,24,25,26,27,28,29,30,31,32,33,34,35$, 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,54,56,58,59,60,61,62,63,64,65,66,6 7,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,95,96 ,97,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,11 8,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138 ,139,140,141,142,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159, $160,161,162,163,164,165,166,167,168,169,170,171,172,174,175,176,177,178,179,180,1$ 81,182,183,184,185,186,187,188,189,190,191,192,193,194,196,197,198,199,200,201,20 2,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,220,221,222,223 ,225,226, 227,228,229,230,231,232,234,235,236,237,238,239,240,242,243,244,245,246, $247,248,249,250,251,252,253,254,255,256,257,258,259,260,262,264,266,267,268,269,2$ 70,271,273,274,275,276,277,278,279,280,282,283,284,285,286,287,289,290,291,292,29 3,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313 ,314,315,316,317,319,320,321,322,323,324,325,327,328,329,330,331,333,334,335,336, 337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,354,355,356,357,3 58,359,360,362,363,365,366,367,368,370,371,372,373,374,375,376,377,378,379,380,38 $1\}$ is (355,4)-blocking set as shown in table (16) .by theorem (1) ,there exists a projective $[26,3,22]_{19}$ code which is equivalent to the complete $(26,4)$-arc k_{4}

Table (16)

I	$\mathrm{K}_{4} \cap \mathrm{Li}$	$\mathrm{B}_{16} \cap \mathrm{Li}$
1	173	$2,21,40,59,78,97,116,135,154,192,211,230,249,268,287,306,325,34$ 4,363
2	23	$1,21,22,24,25,26,27,28,29,30,31,32,33,35,36,38,39,34,37$
\vdots	\vdots	\vdots
38	281,318	$11,31,40,68,96,105,133,142,170,179,207,216,244,253,290,327,355$, 0
38	\emptyset	$20,22,40,77,95,113,131,149,167,185,203,221,239,257,295,275,311$, 1

4.17 Existence of $[13,3,10]_{19}$ codes

We take 17 conic, say $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{11}, \mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{14}, \mathrm{C}_{15}$, C_{16} and C_{17} let
$\mathrm{K}=\pi-\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \mathrm{C}_{3} \cup \mathrm{C}_{4} \cup \mathrm{C}_{5} \cup \mathrm{C}_{6} \cup \mathrm{C}_{7} \cup \mathrm{C}_{8} \cup \mathrm{C}_{9} \cup \mathrm{C}_{10} \cup \mathrm{C}_{11} \cup \mathrm{C}_{12} \cup \mathrm{C}_{13} \cup \mathrm{C}_{14} \cup$ $\mathrm{C}_{15} \cup \mathrm{C}_{16} \cup \mathrm{C}_{17}$
\{3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34 ,35,36,37,38,39,40,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,78,79, $81,97,98,101,116,117,121,135,136,141,154,155,161,173,174,181,192,193,201,211,212$, $221,230,231,241,249,250,261,268,269,281,287,288,301,306,307,321,325,326,341,344,3$ $45,361,363,364,381\}$.The geometrical Structure method must satisfy the following :
i. K intersects any line of π in at most 3 points .
ii. Every point not in K is on at least one 3 -secant of K .

The point :
$\mathrm{M}=40,59,78,97,116,135,154,173,192,230,249,268,287,306,325,22,24,25,26,27,28,29,30$,31,33,35,36,38,39,3,61,81,101,121,141,161,181,201,301,341,361,381,261,241,4,5,6,7,8 ,9,10,11,12,13,14,15,16,20,60,79,98,117,136,155,174,212,193,231,250,269,307,345,363 ,47,17,19,18,173,37,344,32,321,43,44,45,46,48,49,50,23,52,54,56,58,51Are eliminated from K to satisfy (1) . The points of index zero for 162,202 are added to K to satisfy (2) , then $\mathrm{K}_{3}=\mathrm{KU}[162,202] / \mathrm{M}$
$\mathrm{K}_{3}=[34,42,53,55,57,162,202,211,221,281,288,326,364]$.Is a complete $(13,3)-$ arc as shown in table (17) .Let $\beta_{17}=\pi-k_{3}$ $=\{1,2,3,4,5,6,7,8,9,10,11,12,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32$, $33,35,36,37,38,39,40,41,43,44,45,46,47,48,49,50,51,52,54,56,58,59,60,61,62,63,64,65,6$ 6,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94 ,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,11 6,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136 ,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156, 157,158,159,160,161,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,1 78,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,196,197,198,19 9,200,201,203,204,205,206,207,208,209,210,212,213,214,215,216,217,218,220,222,223 ,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243, 244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,2 64,265,266,267,268,269,270,271,273,274,275,276,277,278,279,280,282,283,284,285,28 6,287,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307 ,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,327,328, 329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,3 49,350,351,352,353,354,355,356,357,358,359,360,361,362,363,365,366,367,368,370,37 $1,372,373,374,375,376,377,378,379,380,381\}$ is $(368,3)$-blocking set as shown in table (17) .by theorem (1) ,there exists a projective $[13,3,10]_{19}$ code which is equivalent to the complete (13,3)-arc k_{3}

Table (17)

I	$\mathrm{K}_{3} \cap \mathrm{Li}$	$\mathrm{B}_{17} \cap \mathrm{Li}$
1	211	$2,21,40,59,78,97,116,135,154,173,193,230,249,268,287,306,325,344$, 363
2	\emptyset	$1,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39$
\vdots	\vdots	\vdots
38	281,364	$11,31,40,68,96,105,133,142,170,179,207,216,244,253,290,318,327,35$
0		5
38	\emptyset	$20,22,40,77,95,113,131,149,167,185,203,221,239,257,275,293,311,32$ 1

REFERENCES

[1] J .W.P.Hirsehfeld , "projective Geometries over Finite Fields". oxford university, press oxfored , 1979 .
[2] J.W.P.Hirsehfeld, L.Stome ,The Paching Problem in Statistics, Coding Theory and Finite Projective Spaes ,University of Sussex, Ghent university,2001 .
[3] J.H.Van lint, An Introduction to Coding Theory, Second Edition, Springer ,Belin, 1992.
[4] R .Hill , "Optimal Linear Codes" , Cryptography and Codind II, Oxford University ,1992, 41-70
[5] R.Daskalve ,P.Hristor,E.Metodieva,"New minimum distance bounds for Linear codes over GF(5)",2004.
[6] S. BALL, "On the Size of a Double Blocking Set in PG(2, q)" University of Sussex, Falmer, East Sussex, United Kingdom, 1994 , 125-133.
[7] T. Kløve, "On the existence of Proper Codes for Error Detection", University of Bergen, Norway. Singapore, 2007
[8] T.Maruta ,Construction of Optimal Linear Codes By Geometric Puncturing,serdica, J computing (2013),No 1,73-80 .

